References#
David J Anderson and Pietro Perona. Toward a science of computational ethology. Neuron, 84(1):18–31, October 2014.
Praneet C Bala, Benjamin R Eisenreich, Seng Bum Michael Yoo, Benjamin Y Hayden, Hyun Soo Park, and Jan Zimmermann. Automated markerless pose estimation in freely moving macaques with OpenMonkeyStudio. Nat. Commun., 11(1):4560, September 2020.
Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006. URL: https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf.
David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation. Journal of machine Learning research, 3(Jan):993–1022, 2003.
Kristin Branson, Alice A Robie, John Bender, Pietro Perona, and Michael H Dickinson. High-throughput ethomics in large groups of drosophila. Nat. Methods, 6(6):451–457, June 2009.
Adam S Charles, Mijung Park, J Patrick Weller, Gregory D Horwitz, and Jonathan W Pillow. Dethroning the Fano factor: A flexible, model-based approach to partitioning neural variability. Neural computation, 30(4):1012–1045, 2018.
Jason E Chung, Jeremy F Magland, Alex H Barnett, Vanessa M Tolosa, Angela C Tooker, Kye Y Lee, Kedar G Shah, Sarah H Felix, Loren M Frank, and Leslie F Greengard. A fully automated approach to spike sorting. Neuron, 95(6):1381–1394, 2017.
Sandeep Robert Datta, David J Anderson, Kristin Branson, Pietro Perona, and Andrew Leifer. Computational neuroethology: a call to action. Neuron, 104(1):11–24, October 2019.
Peter Dayan and Laurence F Abbott. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT press, 2005.
Xinyi Deng, Daniel F Liu, Kenneth Kay, Loren M Frank, and Uri T Eden. Clusterless decoding of position from multiunit activity using a marked point process filter. Neural computation, 27(7):1438–1460, 2015.
Chris HQ Ding, Tao Li, and Michael I Jordan. Convex and semi-nonnegative matrix factorizations. IEEE transactions on pattern analysis and machine intelligence, 32(1):45–55, 2008.
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 2011.
Timothy W Dunn, Jesse D Marshall, Kyle S Severson, Diego E Aldarondo, David GC Hildebrand, Selmaan N Chettih, William L Wang, Amanda J Gellis, David E Carlson, Dmitriy Aronov, and others. Geometric deep learning enables 3d kinematic profiling across species and environments. Nature methods, 18(5):564–573, 2021.
Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial structures for object recognition. International journal of computer vision, 61:55–79, 2005.
Jeremy Freeman, Greg D Field, Peter H Li, Martin Greschner, Deborah E Gunning, Keith Mathieson, Alexander Sher, Alan M Litke, Liam Paninski, Eero P Simoncelli, and others. Mapping nonlinear receptive field structure in primate retina at single cone resolution. Elife, 4:e05241, 2015.
Andrea Giovannucci, Johannes Friedrich, Pat Gunn, Jérémie Kalfon, Brandon L Brown, Sue Ann Koay, Jiannis Taxidis, Farzaneh Najafi, Jeffrey L Gauthier, Pengcheng Zhou, Baljit S Khakh, David W Tank, Dmitri B Chklovskii, and Eftychios A Pnevmatikakis. CaImAn an open source tool for scalable calcium imaging data analysis. Elife, January 2019.
Carl Gold, Darrell A Henze, Christof Koch, and Gyorgy Buzsaki. On the origin of the extracellular action potential waveform: a modeling study. Journal of neurophysiology, 95(5):3113–3128, 2006.
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
Prem K Gopalan and David M Blei. Efficient discovery of overlapping communities in massive networks. Proceedings of the National Academy of Sciences, 110(36):14534–14539, 2013.
Robbe LT Goris, J Anthony Movshon, and Eero P Simoncelli. Partitioning neuronal variability. Nature neuroscience, 17(6):858–865, 2014.
Jacob M Graving, Daniel Chae, Hemal Naik, Liang Li, Benjamin Koger, Blair R Costelloe, and Iain D Couzin. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. Elife, October 2019.
Kiah Hardcastle, Niru Maheswaranathan, Surya Ganguli, and Lisa M Giocomo. A multiplexed, heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron, 94(2):375–387, 2017.
Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Volume 2. Springer, 2009.
Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):83–90, 1971.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. openaccess.thecvf.com, 2016.
Geoffrey Hinton, Nitish Srivasta, and Kevin Swerskey. Neural networks for machine learning lecture 6a. 2014. URL: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500, 1952.
Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and Bernt Schiele. Deepercut: A deeper, stronger, and faster multi-person pose estimation model. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI 14, 34–50. Springer, 2016.
Sean Jewell and Daniela Witten. Exact spike train inference via $\ell _\0\$ optimization. Annals of Applied Statistics, 12(4):2457–2482, December 2018.
James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Marius Bauza, Brian Barbarits, Albert K Lee, Costas A Anastassiou, Alexandru Andrei, Çağatay Aydın, Mladen Barbic, Timothy J Blanche, Vincent Bonin, João Couto, Barundeb Dutta, Sergey L Gratiy, Diego A Gutnisky, Michael Häusser, Bill Karsh, Peter Ledochowitsch, Carolina Mora Lopez, Catalin Mitelut, Silke Musa, Michael Okun, Marius Pachitariu, Jan Putzeys, P Dylan Rich, Cyrille Rossant, Wei-Lung Sun, Karel Svoboda, Matteo Carandini, Kenneth D Harris, Christof Koch, John O'Keefe, and Timothy D Harris. Fully integrated silicon probes for high-density recording of neural activity. Nature, 551(7679):232–236, November 2017.
Pierre Karashchuk, Katie L Rupp, Evyn S Dickinson, Sarah Walling-Bell, Elischa Sanders, Eiman Azim, Bingni W Brunton, and John C Tuthill. Anipose: a toolkit for robust markerless 3d pose estimation. Cell reports, 36(13):109730, 2021.
Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
John Frank Charles Kingman. Poisson processes. Volume 3. Clarendon Press, 1992.
Kenneth W Latimer, Fred Rieke, and Jonathan W Pillow. Inferring synaptic inputs from spikes with a conductance-based neural encoding model. Elife, 8:e47012, 2019.
Jessy Lauer, Mu Zhou, Shaokai Ye, William Menegas, Steffen Schneider, Tanmay Nath, Mohammed Mostafizur Rahman, Valentina Di Santo, Daniel Soberanes, Guoping Feng, and others. Multi-animal pose estimation, identification and tracking with deeplabcut. Nature Methods, 19(4):496–504, 2022.
Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788–791, 1999.
JinHyung Lee, Catalin Mitelut, Hooshmand Shokri, Ian Kinsella, Nishchal Dethe, Shenghao Wu, Kevin Li, Eduardo B Reyes, Denis Turcu, Eleanor Batty, and others. YASS: Yet another spike sorter applied to large-scale multi-electrode array recordings in primate retina. bioRxiv, 2020.
Michael Z Lin and Mark J Schnitzer. Genetically encoded indicators of neuronal activity. Nat. Neurosci., 19(9):1142–1153, August 2016.
Scott Linderman and Ryan Adams. Discovering latent network structure in point process data. In International conference on machine learning, 1413–1421. PMLR, 2014.
Scott Linderman, Ryan P Adams, and Jonathan W Pillow. Bayesian latent structure discovery from multi-neuron recordings. Advances in neural information processing systems, 2016.
Liqun Luo. Principles of Neurobiology. Garland Science, 2020.
Ana S Machado, Dana M Darmohray, João Fayad, Hugo G Marques, and Megan R Carey. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. Elife, October 2015.
Jeffrey E Markowitz, Winthrop F Gillis, Maya Jay, Jeffrey Wood, Ryley W Harris, Robert Cieszkowski, Rebecca Scott, David Brann, Dorothy Koveal, Tomasz Kula, and others. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature, pages 1–10, 2023.
Jesse D Marshall, Diego E Aldarondo, Timothy W Dunn, William L Wang, Gordon J Berman, and Bence P Ölveczky. Continuous whole-body 3d kinematic recordings across the rodent behavioral repertoire. Neuron, 109(3):420–437, 2021.
Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga Abe, Venkatesh N Murthy, Mackenzie Weygandt Mathis, and Matthias Bethge. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci., 21(9):1281–1289, August 2018.
Peter McCullagh and John Nelder. Generalized linear models. Routledge, 1983.
Lane McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen Baccus. Deep learning models of the retinal response to natural scenes. Advances in Neural Information Processing Systems, 2016.
Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. Advances in neural information processing systems, 2007.
Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023. URL: http://probml.github.io/book2.
Tanmay Nath, Alexander Mathis, An Chi Chen, Amir Patel, Matthias Bethge, and Mackenzie Weygandt Mathis. Using deeplabcut for 3d markerless pose estimation across species and behaviors. Nature protocols, 14(7):2152–2176, 2019.
Marius Pachitariu, Shashwat Sridhar, and Carsen Stringer. Solving the spike sorting problem with kilosort. bioRxiv, 2023.
Marius Pachitariu, Nicholas Steinmetz, Shabnam Kadir, Matteo Carandini, and others. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. BioRxiv, pages 061481, 2016.
Marius Pachitariu, Carsen Stringer, Mario Dipoppa, Sylvia Schröder, L Federico Rossi, Henry Dalgleish, Matteo Carandini, and Kenneth D Harris. Suite2p: Beyond 10,000 neurons with standard two-photon microscopy. BioRxiv, pages 061507, 2017.
Liam Paninski. Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15(4):243–262, 2004.
Il Memming Park, Miriam LR Meister, Alexander C Huk, and Jonathan W Pillow. Encoding and decoding in parietal cortex during sensorimotor decision-making. Nature neuroscience, 17(10):1395–1403, 2014.
Talmo D Pereira, Nathaniel Tabris, Arie Matsliah, David M Turner, Junyu Li, Shruthi Ravindranath, Eleni S Papadoyannis, Edna Normand, David S Deutsch, Z Yan Wang, and others. SLEAP: A deep learning system for multi-animal pose tracking. Nature methods, 19(4):486–495, 2022.
Kaare Brandt Petersen, Michael Syskind Pedersen, and others. The matrix cookbook. Technical University of Denmark, 7(15):510, 2008. URL: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.
Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke, EJ Chichilnisky, and Eero P Simoncelli. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207):995–999, 2008.
Eftychios A Pnevmatikakis, Daniel Soudry, Yuanjun Gao, Timothy A Machado, Josh Merel, David Pfau, Thomas Reardon, Yu Mu, Clay Lacefield, Weijian Yang, and others. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron, 2016.
Lawrence Rabiner and Biinghwang Juang. An introduction to hidden Markov models. ieee assp magazine, 3(1):4–16, 1986.
Alexandro D Ramirez and Liam Paninski. Fast inference in generalized linear models via expected log-likelihoods. Journal of computational neuroscience, 36:215–234, 2014.
Sam Roweis and Zoubin Ghahramani. A unifying review of linear Gaussian models. Neural computation, 11(2):305–345, 1999.
Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, Marius Bauza, Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn Broux, and others. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science, 372(6539):eabf4588, 2021.
Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and momentum in deep learning. In International conference on machine learning, 1139–1147. PMLR, 2013.
N Tinbergen. On aims and methods of ethology. Z. Tierpsychol., 20(4):410–433, 1963.
Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):611–622, 1999.
Eric M Trautmann, Sergey D Stavisky, Subhaneil Lahiri, Katherine C Ames, Matthew T Kaufman, Daniel J O’Shea, Saurabh Vyas, Xulu Sun, Stephen I Ryu, Surya Ganguli, and others. Accurate estimation of neural population dynamics without spike sorting. Neuron, 103(2):292–308, 2019.
Wilson Truccolo, Uri T Eden, Matthew R Fellows, John P Donoghue, and Emery N Brown. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of neurophysiology, 93(2):1074–1089, 2005.
Michael Vidne, Yashar Ahmadian, Jonathon Shlens, Jonathan W Pillow, Jayant Kulkarni, Alan M Litke, EJ Chichilnisky, Eero Simoncelli, and Liam Paninski. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. Journal of computational neuroscience, 33:97–121, 2012.
Joshua T Vogelstein, Adam M Packer, Timothy A Machado, Tanya Sippy, Baktash Babadi, Rafael Yuste, and Liam Paninski. Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104(6):3691–3704, 2010.
Alison I Weber and Jonathan W Pillow. Capturing the dynamical repertoire of single neurons with generalized linear models. Neural computation, 29(12):3260–3289, 2017.
Matthew R Whiteway, Dan Biderman, Yoni Friedman, Mario Dipoppa, E Kelly Buchanan, Anqi Wu, John Zhou, Niccolò Bonacchi, Nathaniel J Miska, Jean-Paul Noel, and others. Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders. PLoS computational biology, 17(9):e1009439, 2021.
Anqi Wu, Estefany Kelly Buchanan, Matthew Whiteway, Michael Schartner, Guido Meijer, Jean-Paul Noel, Erica Rodriguez, Claire Everett, Amy Norovich, Evan Schaffer, and others. Deep Graph Pose: a semi-supervised deep graphical model for improved animal pose tracking. Advances in Neural Information Processing Systems, 33:6040–6052, 2020.
Anqi Wu, Estefany Kelly Buchanan, Matthew Whiteway, Michael Schartner, Guido Meijer, Jean-Paul Noel, Erica Rodriguez, Claire Everett, Amy Norovich, Evan Schaffer, and Others. Deep graph pose: a semi-supervised deep graphical model for improved animal pose tracking. Adv. Neural Inf. Process. Syst., 2020.
Jacob L Yates, Il Memming Park, Leor N Katz, Jonathan W Pillow, and Alexander C Huk. Functional dissection of signal and noise in MT and LIP during decision-making. Nature neuroscience, 20(9):1285–1292, 2017.
Libby Zhang, Tim Dunn, Jesse Marshall, Bence Olveczky, and Scott Linderman. Animal pose estimation from video data with a hierarchical von Mises-Fisher-Gaussian model. In International Conference on Artificial Intelligence and Statistics, 2800–2808. PMLR, 2021.
Feng Zhou, Zhidong Li, Xuhui Fan, Yang Wang, Arcot Sowmya, and Fang Chen. Scalable inference for nonparametric Hawkes process using Pó$ lya-gamma augmentation. arXiv preprint arXiv:1910.13052, 2019.
Pengcheng Zhou, Shanna L Resendez, Jose Rodriguez-Romaguera, Jessica C Jimenez, Shay Q Neufeld, Andrea Giovannucci, Johannes Friedrich, Eftychios A Pnevmatikakis, Garret D Stuber, Rene Hen, and others. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. elife, 7:e28728, 2018.
David Zoltowski and Jonathan W Pillow. Scaling the Poisson glm to massive neural datasets through polynomial approximations. Advances in neural information processing systems, 2018.