# Machine Learning Methods for Neural Data Analysis EM, Mixture Models, and Hidden Markov Models

Scott Linderman

STATS 220/320 (NBIO220, CS339N). Winter 2023.



## Announcements

- Correction in notes:
  - The blocks are given by  $J_{tt} = Q^{-1} + A^{\top}Q^{-1}A + C^{\top}R^{-1}C$  (except) for  $J_{11}$  and  $J_{TT}$ ).

 1 page project proposal due Monday, Feb 27. Teams of 2-3 people. Ed could be a great way to find teammates!

## Agenda

- Intro to Unit III: Unsupervised Learning
- Expectation-maximization for Gaussian mixture models
- Hidden Markov models and the forward-backward algorithm

# Unit III: Unsupervised learning

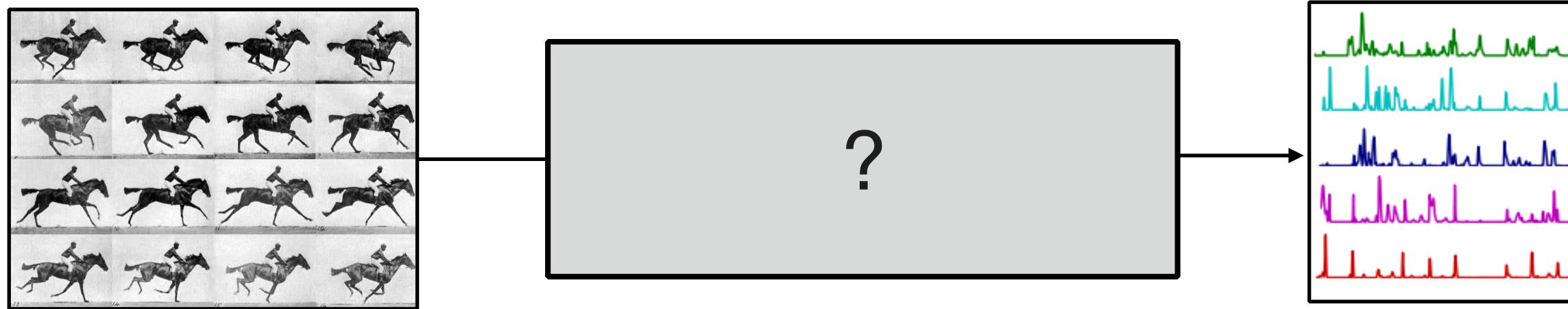


signal

mapping

neural data





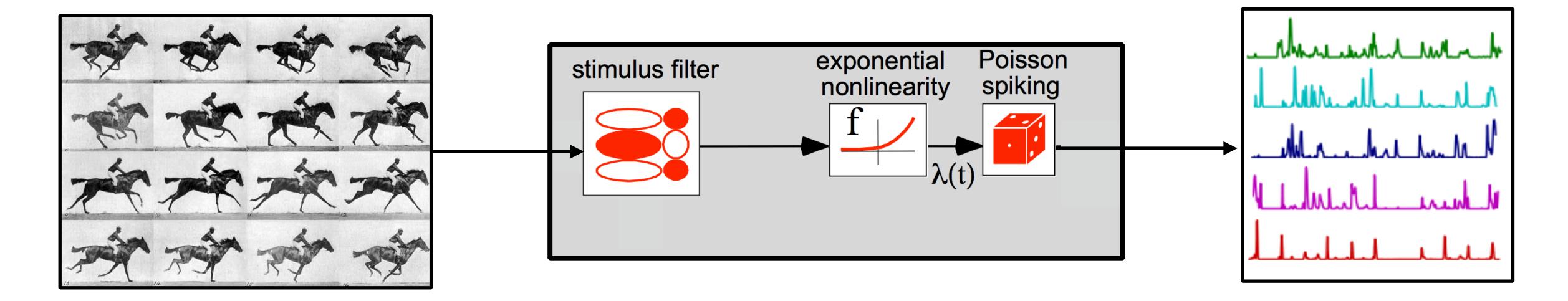
#### signal

Encoding models: given stimulus (covariates) and response, find mapping.

mapping

neural data





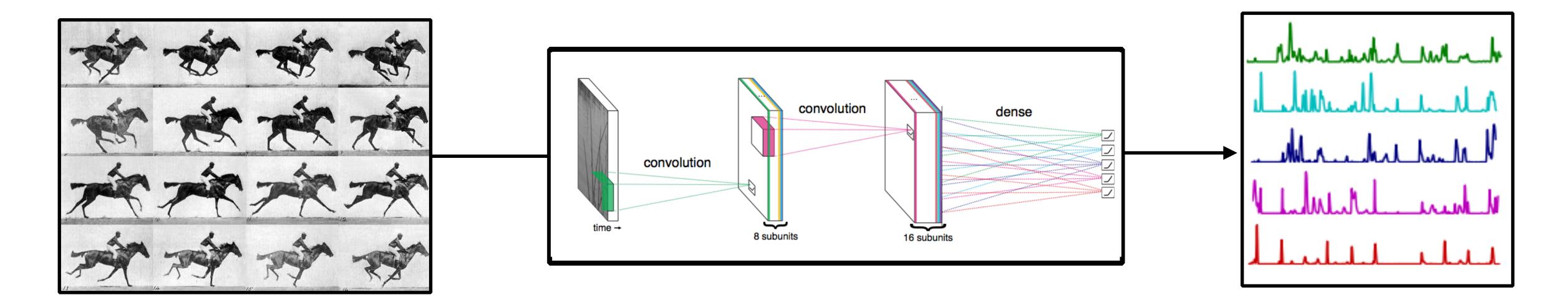
signal

Recent examples: Musall et al (2018), Stringer et al (2018)

#### mapping

neural data

Paninski (2004) Truccolo et al (2005) Pillow et al (2008)



#### signal

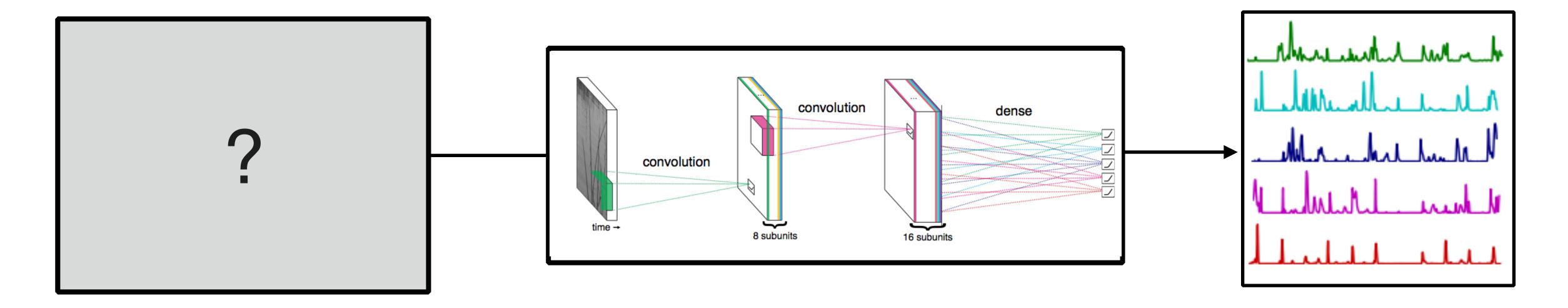
Toward nonlinear and/or more biophysically plausible mappings.

#### mapping

neural data

McIntosh et al (2017)



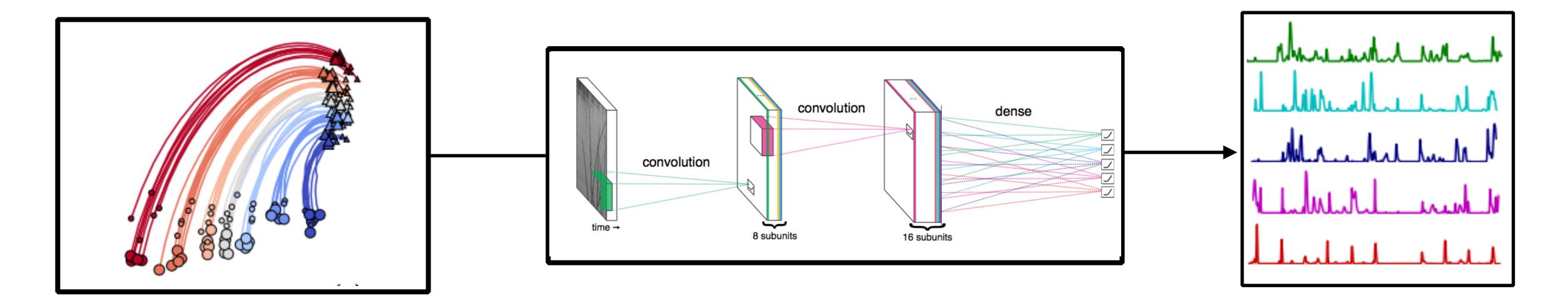


latent signal

#### mapping

neural data

#### **Alternative:** try to infer latent signals from the data



latent signal

Alternative: try to infer latent signals from the data, subject to constraints.

#### mapping

neural data

#### Latent variable modeling is all about constraints The five D's

- *Dimensionality*: how many latent clusters, factors, etc.?
- Domain: are the latent variables discrete, continuous, bounded, sparse, etc.?
- *Dynamics*: how do the latent variables change over time?
- <u>Dependencies</u>: how do the latent variables relate to the observed data?
- *Distribution*: do we have prior knowledge about the variables' probability?

• We've already seen some examples in Unit 1!



#### Latent variable modeling is all about constraints **Domain/Dependency/Distribution**

Discrete Markovian Categorical Continuous Linear Gaussian Continuous **Nonlinear (parametric)** Gaussian Mixed Switching Linear Mixed **Recurrent Linear** 

> Continuous Nonlinear (smoothing) Gaussian

Continuous Nonlinear (nonparametric) Gaussian

LDS

Continuous

Linear

Gaussian

HMM

Rabiner (1989)

Kalman (1960)

NLDS, e.g. Hodgkin-Huxley Ahrens, Huys, Paninski (2006) Huys and Paninski (2009)

SLDS Ghahramani and Hinton (1996) Murphy (1998)

recurrent/augmented SLDS Barber (2006); Pachitariu et al (2014); Linderman et al (2017); Nassar et al

**GPFA** Yu, Cunningham, et al (2009)

**GPSSM, DKF, LFADS, VIND** Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez

/Domain Dynamics

Discrete (Gen.) Linear Bernoulli/Poisson/etc.

**Nonlinear Observation Models** 

HMM Rabiner (1989)

**Structured VAE** Johnson et al (2016)

**Poisson LDS** Smith and Brown (2003), Paninski et al (2010)

NLDS, e.g. Hodgkin-Huxley Meng, Kramer, Eden (2011)

> **Poisson SLDS** Petreska et al (2013)

rSLDS Linderman et al (2017) Nassar et al (2019)

**vLGP** Zhao and Park (2017)

**GPSSM, DKF, LFADS, VIND** 

Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et

**Deep PfLDS** Archer et al (2015); Gao et al (2016)

**GPSSM, DKF, LFADS, VIND** Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et

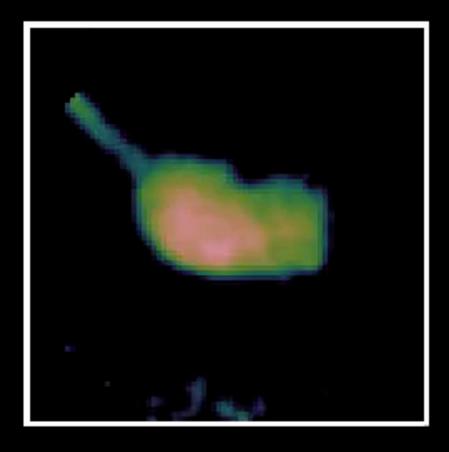
> **Structured VAE** Johnson et al (2016)

> **Structured VAE** Johnson et al (2016)

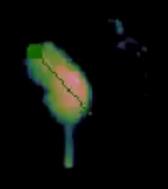
**GPLVM** Lawerence (2005), Wu et al (2017)

**GPSSM, DKF, LFADS, VIND** Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et

#### Motivating Example: summarizing videos with behavioral states



Frame 0

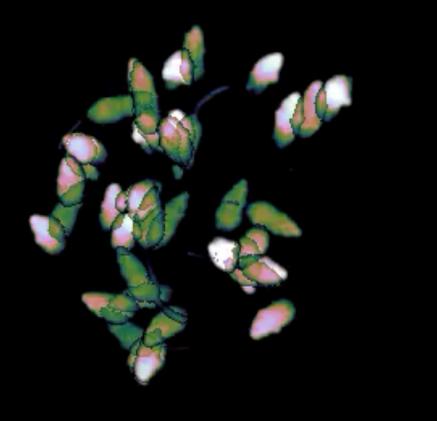


Wiltschko et al, 2015

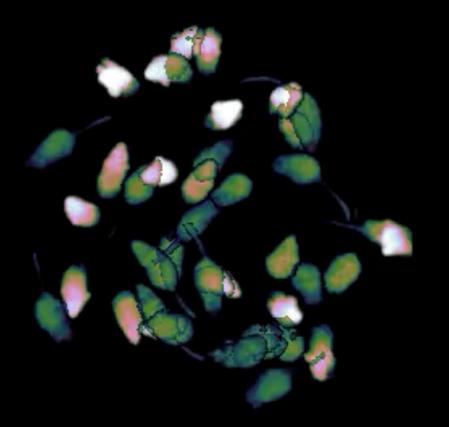


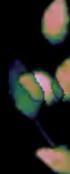
#### Motivating Example: summarizing videos with behavioral states

Rear down



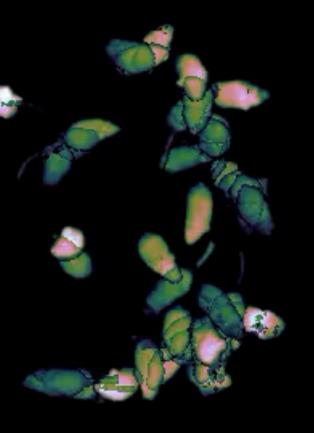
Scrunch

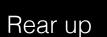




Walk forward

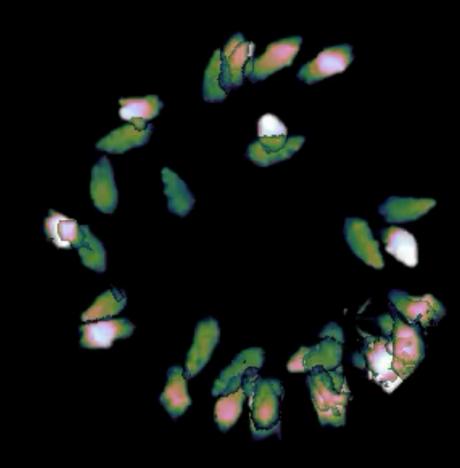
Grooming











#### Wiltschko et al, 2015



## Bayesian inference in latent variable models

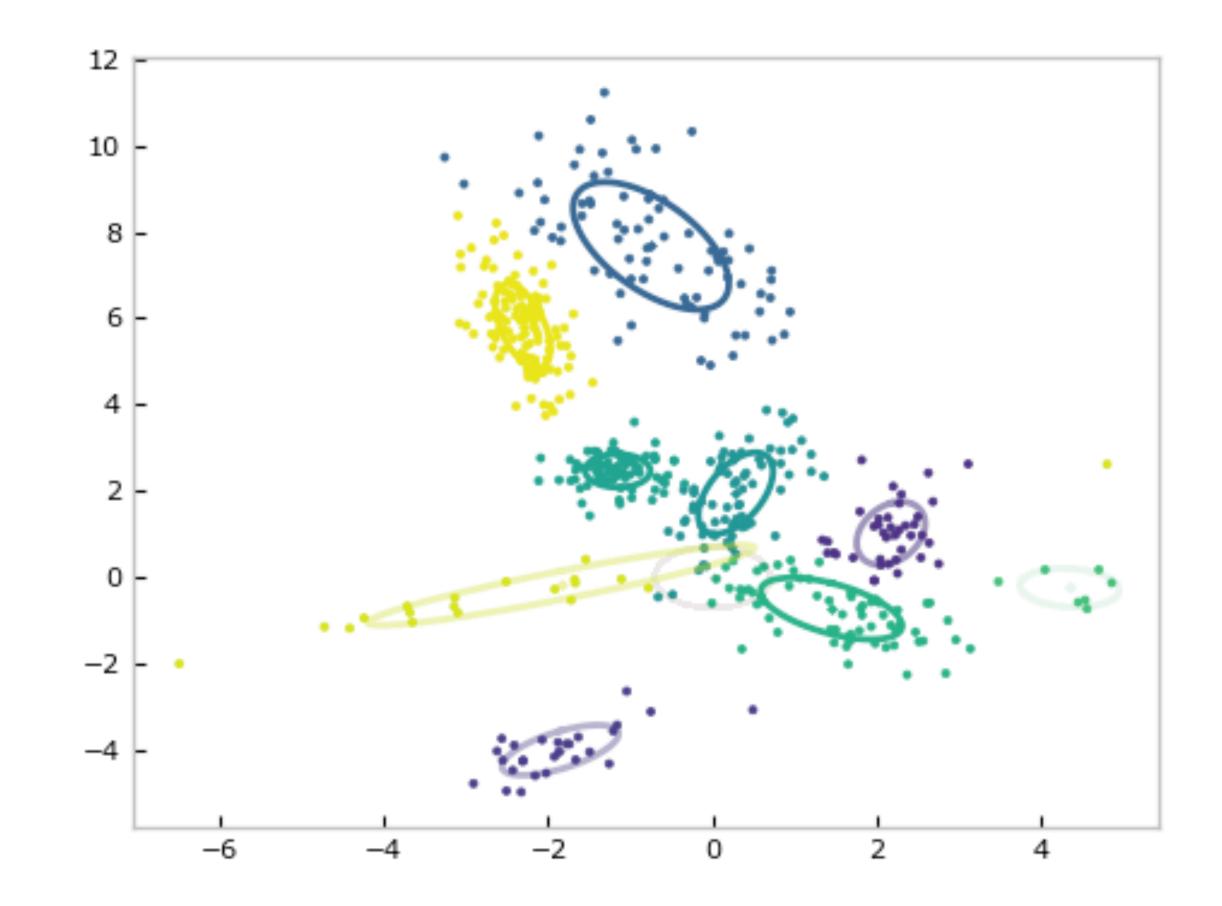
## Formulating as a probabilistic model

- Variables: Let,
  - $x_t \in \mathbb{R}^P$  denote the (vectorized) image at time *t*.
  - $z_t \in \{1, \dots, K\}$  denote the discrete latent state (aka behavioral "syllable") at time t.
- **Model:** Assume each time frame is independent and,

 $z_t \sim \operatorname{Cat}(\pi)$  $x_t \mid z_t \sim \mathcal{N}(b_{z_t}, Q_{z_t})$ 

- **Parameters:** Let  $\Theta = \pi$ ,  $\{b_k, Q_k\}_{k=1}^K$  denote the parameters,
  - $\pi \in \Delta_K$  is the prior probability of each state
  - $(b_k, Q_k) \in \mathbb{R}^P \times \mathbb{R}^{P \times P}$  are the conditional mean and variance of images for discrete state  $z_t = k$ .

### **The Gaussian Mixture Model** Example draw from a 2D GMM with 10 clusters



## The Gaussian Mixture Model

The joint probability factors into a product over time bins,

$$p(x, z \mid \Theta) = \prod_{t=1}^{T} p(z_t) p(x_t \mid z_t)$$

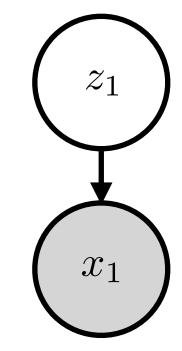
## The Gaussian Mixture Model **Graphical Model**

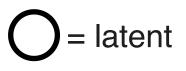
Cluster **Probabilities** 

Discrete Cluster Assignments

**Observations** (e.g. PCA loadings of each frame)

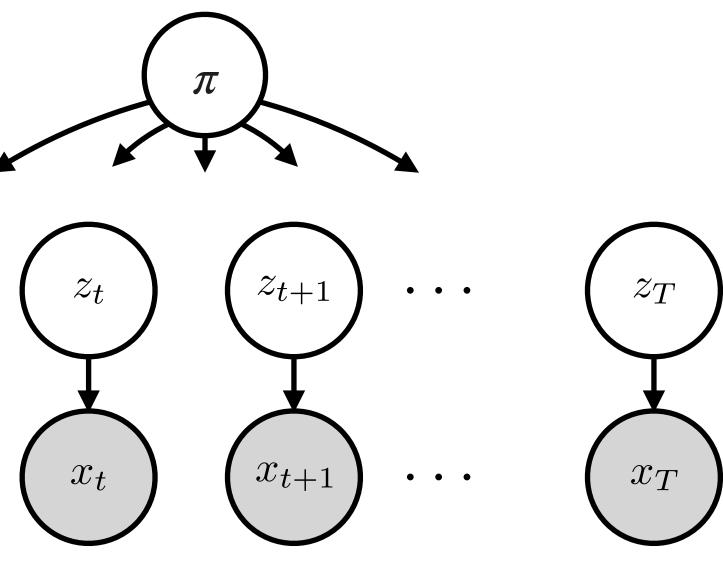
> Cluster Means and Covariances

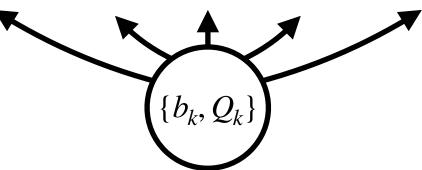




• • •

• •





#### **Bayesian inference in latent variable models** MAP Estimation

• In Unit 1 we used *maximum a posteriori* (MAP) estimation to find,

$$z^{\star}, \Theta^{\star} = \arg \max_{z,\Theta} \log p(x, z, \Theta)$$

- Coordinate ascent (effectively the same as **k-means!**). Repeat:
  - Update cluster assignments:

$$z_t = \arg\max_k \pi_k \cdot \mathcal{N}(y_t \mid b_k, Q_k) \qquad \qquad \text{# assig}$$

• Update parameters for each k = 1, ..., K:

$$T_k = \sum_{t=1}^T \mathbb{I}[z_t = k]$$
 # count

$$b_k = \frac{1}{T_k} \sum_{t=1}^T y_t \mathbb{I}[z_t = k]$$
 # set m

$$Q_k = \frac{1}{T_k} \sum_{t=1}^T (y_t - d_k) (y_t - d_k)^\top \mathbb{I}[z_t = k]$$
 # set co

gn each data point to the most likely cluster

t number of frames assigned to each cluster

leans equal to the sample mean of assigned data points

ovariance equal to the sample covariance of assigned data points



#### **Bayesian inference in latent variable models** MAP Estimation

- This gives us a point estimate of the latent variables z and parameters  $\Theta$ .
- Point estimates can lead to an overly optimistic view of the model.
- Specifically, MAP estimation found the best assignment, which may not reflect the average performance under the prior  $p(z, \Theta)$ .
- Question: What if only one data point is assigned to a cluster on some iteration?



## **Bayesian inference in latent variable models** Integrating over the latent variables

- A more Bayesian approach is to integrate over the latent variables.
- First, **learn** a point estimate of the parameters,

$$\Theta^{\star} = \arg \max_{\Theta} \log p(x, \Theta)$$
  
where  $p(x, \Theta) = \int p(x, z, \Theta) dz = \mathbb{E}_{p(z, \Theta)}[A$ 

 $[p(x \mid z, \Theta)]$  is the marginal likelihood.



## **Bayesian inference in latent variable models** Integrating over the latent variables

- A more **Bayesian approach** is to **integrate** over the latent variables. •
- First, **learn** a point estimate of the parameters,

$$\Theta^{\star} = \arg \max_{\Theta} \log p(x, \Theta)$$
  
where  $p(x, \Theta) = \int p(x, z, \Theta) dz = \mathbb{E}_{p(z, \Theta)}[f(x, z, \Theta)] dz$ 

- $p(z \mid x, \Theta) = \frac{p(x \mid z, \Theta) p(z \mid \Theta) p(\Theta)}{p(x, \Theta)}$
- (A "fully Bayesian" approach would integrate over both z and  $\Theta$ .)

#### $p(x \mid z, \Theta)$ is the marginal likelihood.

Then, infer the posterior distribution over latent variables given observed data and parameters,



## **Bayesian inference in latent variable models** Maximizing the marginal likelihood

- How to learn the parameters?
- First idea: gradient ascent,

$$\nabla_{\Theta} \log p(x, \Theta) = \frac{\nabla_{\Theta} p(x, \Theta)}{p(x, \Theta)} = \frac{\int \nabla_{\Theta} p(x, z, \Theta) \, dz}{\int p(x, z, \Theta) \, dz}$$

- Sometimes, these integrals are available in closed form.
  - For example, when z is discrete the integrals become sums.
- Can we do better?



• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(x, \Theta) = \log \int p(x, z, \Theta) \, \mathrm{d}z$$



• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(x, \Theta) = \log \int p(x, z, \Theta) dz$$
$$= \log \int \frac{q(z)}{q(z)} p(x, z, \Theta) dz$$

for any distribution q(z)



• Next idea: lower bound the marginal likelihood with a more tractable form,

$$og p(x, \Theta) = log \int p(x, z, \Theta) dz$$
$$= log \int \frac{q(z)}{q(z)} p(x, z, \Theta) dz$$
$$= log \mathbb{E}_{q(z)} \left[ \frac{p(x, z, \Theta)}{q(z)} \right]$$

for any distribution q(z)



• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(x, \Theta) = \log \int p(x, z, \Theta) dz$$
$$= \log \int \frac{q(z)}{q(z)} p(x, z, \Theta) dz$$
$$= \log \mathbb{E}_{q(z)} \left[ \frac{p(x, z, \Theta)}{q(z)} \right]$$
$$\geq \mathbb{E}_{q(z)} \left[ \log p(x, z, \Theta) - \log q(z) \right]$$

for any distribution q(z)

by Jensen's inequality



• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(x, \Theta) = \log \int p(x, z, \Theta) dz$$
$$= \log \int \frac{q(z)}{q(z)} p(x, z, \Theta) dz$$
$$= \log \mathbb{E}_{q(z)} \left[ \frac{p(x, z, \Theta)}{q(z)} \right]$$
$$\geq \mathbb{E}_{q(z)} \left[ \log p(x, z, \Theta) - \log q(z) \right]$$
$$\triangleq \mathscr{L}[q, \Theta]$$

•  $\mathscr{L}$  is called the **evidence lower bound** or the **ELBO** for short.

for any distribution q(z)

by Jensen's inequality



#### **Bayesian inference in latent variable models Coordinate ascent on the ELBO**

Update the parameters,

 $\Theta \leftarrow \arg \max_{\Theta} \mathscr{L}[q, \Theta] = \arg \max_{\Theta} \mathbb{E}_{q(z)}[\log p(x, z, \Theta)]$ 

• Update the distribution on latent variables,

$$q \leftarrow \arg\max_q \mathscr{L}[q, \Theta]$$



#### **Bayesian inference in latent variable models Coordinate ascent on the ELBO**

Update the parameters,

 $\Theta \leftarrow \arg \max_{\Theta} \mathscr{L}[q, \Theta] = \arg \max_{\Theta} \mathbb{E}_{q(z)}[\log p(x, z, \Theta)]$ 

Update the distribution on latent variables,

$$q \leftarrow \arg \max_{q} \mathscr{L}[q, \Theta]$$
  
=  $\arg \max_{q} \mathbb{E}_{q(z)} \left[ \frac{\log p(x, z, \Theta)}{q(z)} \right]$   
=  $\arg \min_{q} \operatorname{KL} \left( q(z) \parallel p(z \mid x, \Theta) \right)$   
=  $p(z \mid x, \Theta)$ 





## **Bayesian inference in latent variable models** The Expectation-Maximization (EM) algorithm

**M-step:** Maximize the expected log probability

$$\Theta \leftarrow \arg \max_{\Theta} \mathbb{E}_{q(z)}[\log p(x, z, \Theta)]$$

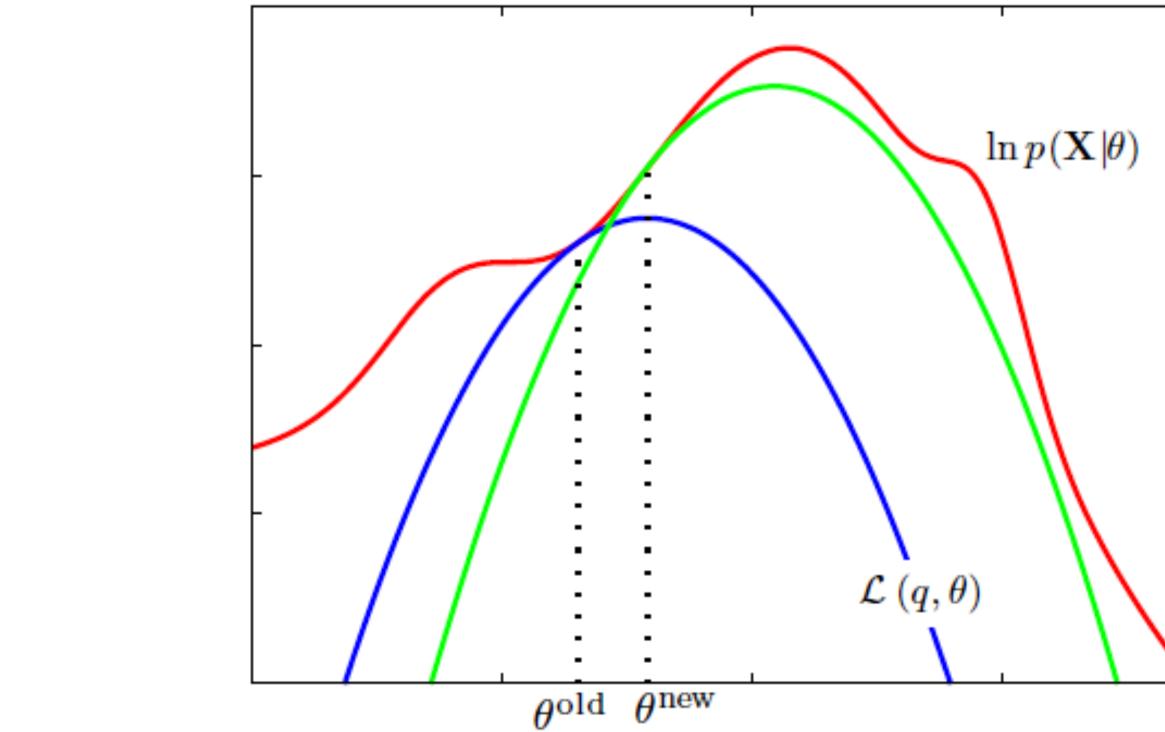
• **E-step**: Update the posterior over latent variables

$$q \leftarrow p(z \mid x, \Theta)$$

• After each E-step, the **ELBO is tight**:

$$\begin{aligned} \mathscr{L}[q,\Theta] &= \mathbb{E}_{p(z|x,\Theta)} \left[ \log \frac{p(x,z,\Theta)}{p(z|x,\Theta)} \right] \\ &= \mathbb{E}_{p(z|x,\Theta)} \left[ \log p(x,\Theta) \right] \\ &= \log p(x,\Theta) \end{aligned}$$

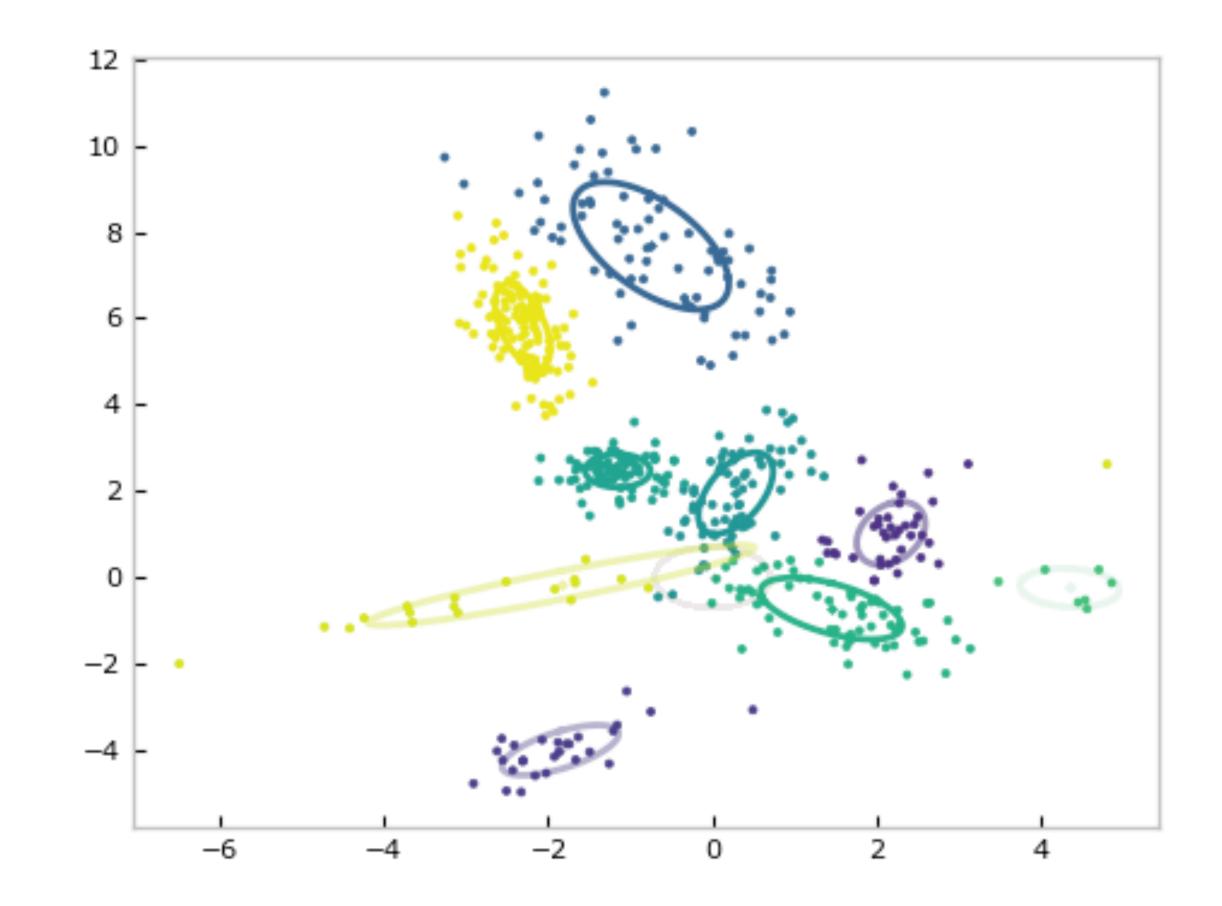
• EM converges to **local optima** of the marginal distribution.



Bishop (2006). Pattern Recognition and Machine Learning, Ch 9.4.



### **The Gaussian Mixture Model** Example draw from a 2D GMM with 10 clusters



## EM for the Gaussian mixture model

**E-step:** Update the posterior over latent variables, ullet

$$q(z_t = k) \leftarrow p(z_t = k \mid x_t, \Theta) = \frac{\pi_k \mathcal{N}(x_t \mid \Omega)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_j \mid \Omega)}$$

**M-step**: Update the parameters. Let  $T_k = \sum_{k=1}^{r} q(z_t = k)$ , then t=1

$$\pi_k \leftarrow \frac{T_k}{T}, \qquad b_k \leftarrow \frac{1}{T_k} \sum_{t=1}^T q(z_t = k) x_t,$$

i.e. set the parameters to their weighted averages.

**Compare** these updates to the MAP estimation / coordinate ascent updates from before! lacksquare

 $b_k, Q_k$ )  $[x_t \mid b_j, Q_j)$ 

$$Q_k \leftarrow \frac{1}{T_k} \sum_{t=1}^T q(z_t = k) (x_t - b_k) (x_t - b_k)^\top.$$

# Hidden Markov Models

## The Gaussian HMM

A Gaussian HMM is just a Gaussian mixture model but where cluster assignments are linked across time!

$$z_1 \sim \operatorname{Cat}(\pi),$$

$$z_t \mid z_{t-1} \sim \operatorname{Cat}(P_{z_{t-1}}), \quad \text{for } t = 2,.$$

$$x_t \mid z_t \sim \mathcal{N}(b_{z_t}, Q_{z_t}) \quad \text{for } t = 1,.$$

Its parameters are  $\Theta = \pi, P, \{b_k, Q_k\}_{k=1}^K$  where  $P \in [0,1]^{K \times K}$  is a row-stochastic transition matrix.

Under this model, the **joint probability** factors as

$$p(x, z, \Theta) = p(z_1) \prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^{T} p(x_t \mid z_t)$$

 $\ldots, T_{\perp}$ ..., *T* 

 $Z_t$ 

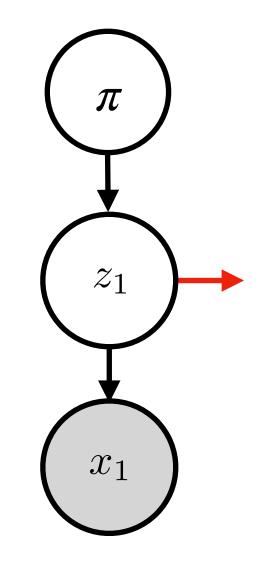
## The Gaussian HMM **Graphical Model**

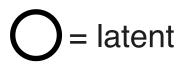
Transition **Probabilities** 

Discrete Latent States

**Observations** (e.g. PCA loadings of each frame)

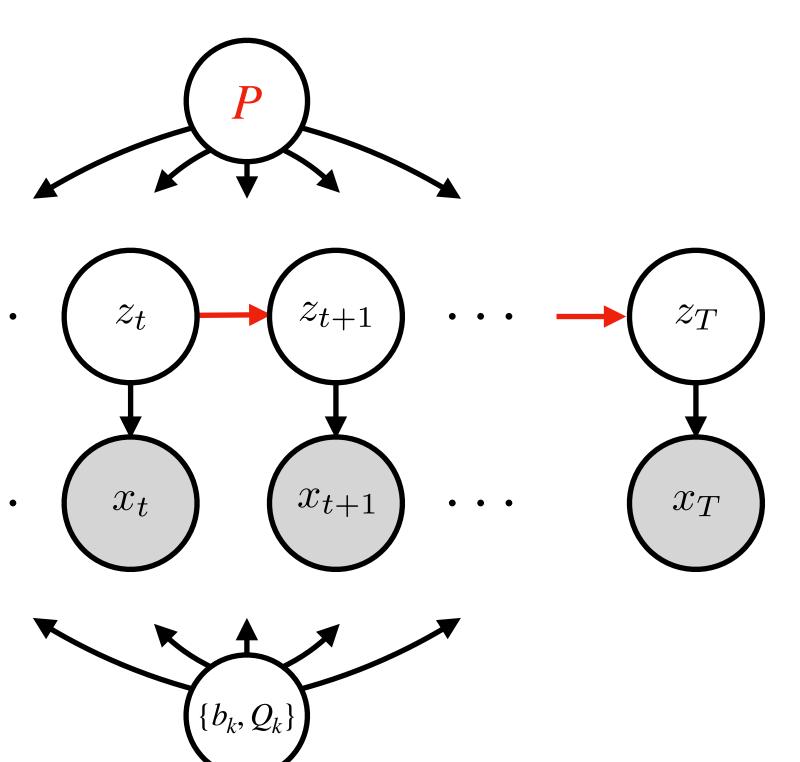
> State Means and Covariances



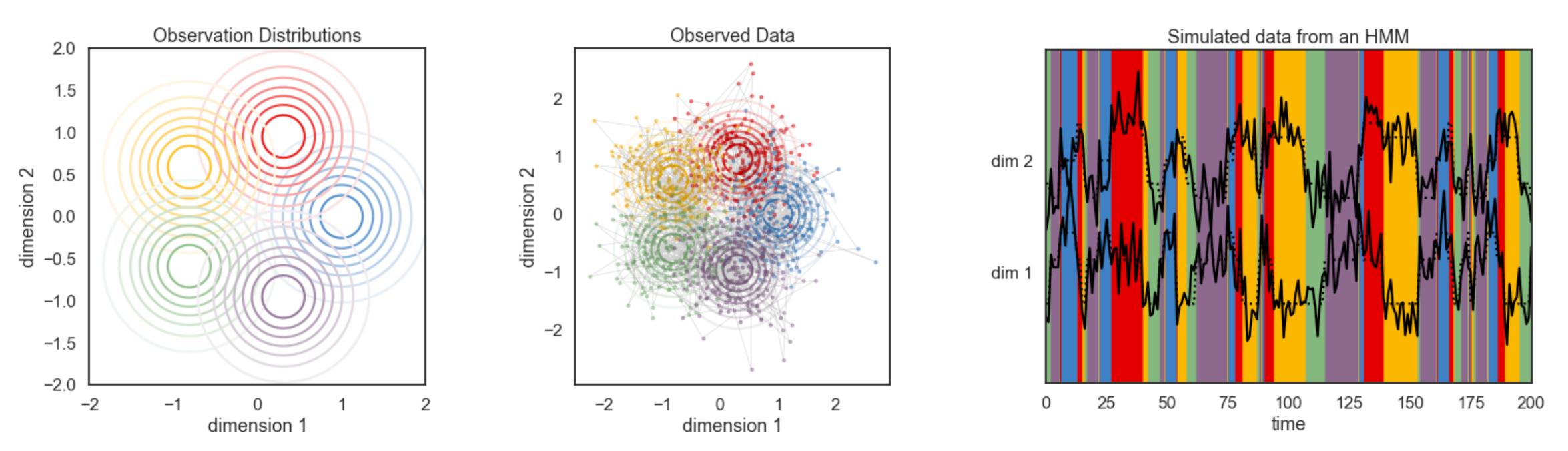


• •

• •



#### **The Gaussian HMM** Example draw from a 2D Gaussian HMM with 5 clusters



#### EM for the Gaussian HMM The posterior is a little trickier...

**E-step:** Update the posterior over latent variables,  $\bullet$ 

 $q(z) \leftarrow p(z \mid x, \Theta) \propto p(x, z, \Theta) = p(z_1)$ 

- The normalized posterior no longer has a simple **closed form!** •
- However, we can still efficiently compute the marginal probabilities for the M-step.  $\bullet$

$$\prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^{T} p(x_t \mid z_t)$$

Consider the marginal probability of state k at time t: 

$$q(z_t = k) = \sum_{z_1 = 1}^{K} \cdots \sum_{z_{t-1} = 1}^{K} \sum_{z_{t+1} = 1}^{K} \cdots \sum_{z_T = 1}^{K} q(z_t)$$

 $z_1, \ldots, z_{t-1}, z_t = k, z_{t+1}, \ldots, z_T$ 

• Consider the marginal probability of state k at time t:

$$q(z_{t} = k) = \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} q(z_{1}, \dots, z_{t-1}, z_{t} = k, z_{t+1}, \dots, z_{T})$$

$$\propto \left[ \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right] \times \left[ p(x_{t} \mid z_{t}) \right]$$

$$\times \left[ \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u}) \right]$$

Consider the marginal probability of state k at time t: •

$$q(z_{t} = k) = \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} q(z_{1}, \dots, z_{t-1}, z_{t} = k, z_{t+1}, \dots, z_{T})$$

$$\propto \left[ \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right] \times \left[ p(x_{t} \mid z_{t}) \right]$$

$$\times \left[ \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u}) \right]$$

$$\triangleq \alpha_{t}(z_{t}) \times p(x_{t} \mid z_{t}) \times \beta_{t}(z_{t})$$

## EM for the Gaussian HMM Computing the forward messages $\alpha_t(z_t)$

 Consider the forward messages:  $\alpha_t(z_t) \triangleq \sum_{k=1}^{K} \cdots \sum_{k=1}^{K} p(z_1) \prod_{k=1}^{t-1} p(x_s \mid z_s) p(z_{s+1} \mid z_s)$  $z_1 = 1$   $z_{t-1} = 1$  s = 1

## EM for the Gaussian HMM Computing the forward messages $\alpha_t(z_t)$

• Consider the forward messages:  $\alpha_t(z_t) \triangleq \sum_{k=1}^{K} \cdots \sum_{s=1}^{K} p(z_1) \prod_{k=1}^{t-1} p(x_s \mid z_s) p(z_{s+1} \mid z_s)$  $z_1 = 1$   $z_{t-1} = 1$  s = 1

 $=\sum_{z_{t-1}=1}^{K} \left[ \left( \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-2}=1}^{K} p(z_{1}) \prod_{s=1}^{t-2} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right) p(x_{t-1} \mid z_{t-1}) p(z_{t} \mid z_{t-1}) \right]$ 

## EM for the Gaussian HMM Computing the forward messages $\alpha_t(z_t)$

 Consider the forward messages:  $\alpha_t(z_t) \triangleq \sum_{k=1}^{K} \cdots \sum_{s=1}^{K} p(z_1) \prod_{k=1}^{t-1} p(x_s \mid z_s) p(z_{s+1} \mid z_s)$  $z_1 = 1$   $z_{t-1} = 1$  s = 1 $= \sum_{t=1}^{n} \alpha_{t-1}(z_{t-1}) p(x_{t-1} \mid z_{t-1}) p(z_t \mid z_{t-1})$  $z_{t-1} = 1$ 

• We can compute these messages **recursively**!

 $= \sum_{z_{t-1}=1}^{K} \left[ \left( \sum_{z_1=1}^{K} \cdots \sum_{z_{t-2}=1}^{K} p(z_1) \prod_{s=1}^{t-2} p(x_s \mid z_s) p(z_{s+1} \mid z_s) \right) p(x_{t-1} \mid z_{t-1}) p(z_t \mid z_{t-1}) \right]$ 

## **EM for the Gaussian HMM** Computing the forward messages $\alpha_t(z_t)$ . Vectorized.

• Let  $\alpha_t = [\alpha_t(z_t = 1), \dots, \alpha_t(z_t = K)]^T$  denote the column vector of forward messages. Then,

$$\alpha_t = P^{\top}(\alpha_{t-1} \odot \mathcal{C}_{t-1})$$

where

- O denotes the element-wise product, and
- *P* is the transition matrix with  $P_{ij} = p(z_t = j \mid z_{t-1} = i)$ .
- For the base case, let  $\alpha_1(z_1) = p(z_1)$ .

•  $\ell_{t-1} = [p(x_{t-1} \mid z_{t-1} = 1), ..., p(x_{t-1} \mid z_{t-1} = K)]^{\mathsf{T}}$  is the vector of likelihoods,

## EM for the Gaussian HMM Computing the backward messages $\beta_t(z_t)$

 Now take the backward messages:  $\beta_t(z_t) \triangleq \sum_{i=1}^K \cdots \sum_{i=1}^K \prod_{i=1}^T p(z_u \mid z_{u-1}) p(x_u \mid z_u)$  $z_{t+1} = 1$   $z_T = 1$  u = t+1

## **EM for the Gaussian HMM** Computing the backward messages $\beta_t(z_t)$

• Now take the **backward messages**:  $\beta_t(z_t) \triangleq \sum_{i=1}^K \cdots \sum_{i=1}^K \prod_{i=1}^T p(z_u \mid z_{u-1}) p(x_u \mid z_u)$  $z_{t+1} = 1$   $z_T = 1$  u = t+1 $= \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} \cdots \sum_{k=1}^{K} \prod_{i=1}^{T} p(z_u \mid z_{u-1}) p(x_u \mid z_u)$  $z_{t+1} = 1$ 

# $z_{t+2} = 1$ $z_T = 1$ u = t+2

## EM for the Gaussian HMM Computing the backward messages $\beta_t(z_t)$

- Now take the **backward messages**:  $\beta_t(z_t) \triangleq \sum_{i=1}^K \cdots \sum_{i=1}^K \prod_{i=1}^T p(z_u \mid z_{u-1}) p(x_u \mid z_u)$  $z_{t+1} = 1$   $z_T = 1$  u = t+1 $= \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_t) p(x_t) p(x_t) p(x_t) p(x_t) p(x_t) p(x_t) p(x_t) p($  $z_{t+1} = 1$  $z_{t+2} =$ K  $= \sum p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \beta_{t+1}(z_{t+1})$  $z_{t+1} = 1$
- Again, we can compute the backward messages recursively!

$$\sum_{i=1}^{K} \cdots \sum_{z_T=1}^{K} \prod_{u=t+2}^{T} p(z_u \mid z_{u-1}) p(x_u \mid z_u)$$

#### EM for the Gaussian HMM Computing the backward messages $\beta_t(z_t)$ . Vectorized.

• Let  $\beta_t = [\beta_t(z_t = 1), \dots, \beta_t(z_t = K)]^T$  denote the column vector of backward messages. Then,

$$\beta_t = P(\beta_{t+1} \odot \mathcal{C}_{t+1})$$

• For the base case, let  $\beta_T(z_T) = 1$ .

#### EM for the Gaussian HMM **Combining the forward and backward messages**

- The posterior marginal probability of state k at time t is,  $q(z_t = k) \propto \alpha_t(z_t = k) \times p(x_t \mid z_t = k) \times \beta_t(z_t = k)$  $= \alpha_{tk} \ell_{tk} \beta_{tk}$
- The probabilities need to sum to one. Normalizing yields,

$$q(z_t = k) = \frac{\alpha_{tk} \ell_{tk} \beta_{tk}}{\sum_{j=1}^{K} \alpha_{tj} \ell_{tj} \beta_{tj}}$$

• Finally, note the marginal is invariant to multiplying  $\alpha_t$  and/or  $\beta_t$  by a constant.

#### **EM for the Gaussian HMM** Normalizing the messages to prevent underflow

- The messages involve products of probabilities, which quickly underflow.
- We can leverage the scale invariance to renormalize the messages. I.e. replace:

$$\alpha_t = P^{\mathsf{T}}(\alpha_{t-1} \odot \mathscr{C}_{t-1}) \quad \text{with}$$

where  $\tilde{\alpha}_{t}$  are normalized for numerical stability. As before,  $\tilde{\alpha}_{1} = \pi$ .

 This lends a nice interpretation: the forward messages are conditional probabilities  $\tilde{\alpha}_{tk} = p(z_t = k \mid x_{1:t-1})$  and the normalization constants are the marginal likelihoods  $A_t = p(x_t | x_{1:t-1})$ .

$$\begin{aligned} A_{t-1} &= \sum_{k} \tilde{\alpha}_{t-1,k} \mathcal{\ell}_{t-1,k} \\ \tilde{\alpha}_{t} &= \frac{1}{A_{t-1}} P^{\top} (\tilde{\alpha}_{t-1} \odot \mathcal{\ell}_{t-1}) \end{aligned}$$

Finally, we can compute the marginal likelihood alongside the forward messages •

$$\log p(x \mid \Theta) = \log \sum_{z_1=1}^K \cdots \sum_{z_T=1}^K \left[ p(z_1) \prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^T p(x_t \mid z_t) \right]$$
$$= \log \sum_{z_T=1}^K \alpha_T(z_T) p(x_T \mid z_T)$$
$$= \log \prod_{t=1}^T A_t = \sum_{t=1}^T \log A_t$$
pain makes sense since the normalization constants are  $A_t = p(x \mid x_t)$ 

• Again, makes sense since the normalization constants are  $A_t = p(x_t \mid x_{1:t-1})$ .

#### **EM for the Gaussian HMM** Putting it all together

**E-step:** Run the forward-backward algorithm to compute ullet

$$q(z_t = k) \leftarrow p(z_t = k \mid x_{1:T}, \Theta) = \frac{\alpha_{tk} \ell_{tk} \beta_{tk}}{\sum_{j=1}^{K} \alpha_{tj} \ell_{tj} \beta_{tj}} \text{ and }$$

**M-step**: Update the parameters. ullet

$$T_k = \sum_{t=1}^T q(z_t = k) \qquad b_k = \frac{1}{T_k} \sum_{t=1}^T q(z_t = k) x_t \qquad Q_k = \frac{1}{T_k} \sum_{t=1}^T q(z_t = k) (x_t - b_k) (x_t - b_k)^{\mathsf{T}}$$

to update the transition matrix P.

and the marginal log likelihood  $\log p(x_{1:T} \mid \Theta)$ .

• Note: You can use the forward-backward algorithm to compute  $q(z_t = i, z_{t+1} = j)$  too. That's all you need

## Conclusion

- EM for mixture models (with exponential family likelihoods) amounts to computing cluster assignment probabilities and expected sufficient statistics, then updating parameters based on them.
- Stochastic EM generalizes this approach to work with mini-batches of data.
- Hidden Markov models (HMMs) are just mixture models with dependencies across time.
- The EM algorithm is nearly the same, but we use the forward-backward algorithm to compute latent state probabilities and expected sufficient stats.