
Machine Learning Methods
for Neural Data Analysis

EM, Mixture Models, and Hidden Markov Models

Scott Linderman STATS 220/320 (NBIO220, CS339N). Winter 2023.

Announcements

• Correction in notes:

• The blocks are given by (except
for and).

• 1 page project proposal due Monday, Feb 27. Teams of 2-3 people.
Ed could be a great way to find teammates!

Jtt = Q−1 + A⊤Q−1A+C⊤R−1C
J11 JTT

Agenda

• Intro to Unit III: Unsupervised Learning

• Expectation-maximization for Gaussian mixture models

• Hidden Markov models and the forward-backward algorithm

Unit III: Unsupervised learning

Data-driven modeling
Searching for signals to explain neural activity

??

signal mapping neural data

?

signal mapping neural data

Encoding models: given stimulus (covariates) and response, find mapping.

Data-driven modeling
Searching for signals to explain neural activity

signal mapping neural data

Paninski (2004)
Truccolo et al (2005)

Pillow et al (2008)

Recent examples: Musall et al (2018), Stringer et al (2018)

Data-driven modeling
Searching for signals to explain neural activity

signal mapping neural data

McIntosh et al (2017)

Toward nonlinear and/or more biophysically plausible mappings.

Data-driven modeling
Searching for signals to explain neural activity

latent signal mapping neural data

Alternative: try to infer latent signals from the data

Data-driven modeling
Searching for signals to explain neural activity

?

latent signal mapping neural data

Alternative: try to infer latent signals from the data, subject to constraints.

Data-driven modeling
Searching for signals to explain neural activity

Latent variable modeling is all about constraints
The five D’s

• Dimensionality: how many latent clusters, factors, etc.?

• Domain: are the latent variables discrete, continuous, bounded, sparse, etc.?

• Dynamics: how do the latent variables change over time?

• Dependencies: how do the latent variables relate to the observed data?

• Distribution: do we have prior knowledge about the variables’ probability?

• We’ve already seen some examples in Unit 1!

Latent variable modeling is all about
constraints

Continuous
Linear

Gaussian

Discrete
(Gen.) Linear

Bernoulli/Poisson/etc.
Nonlinear Observation Models

Discrete
Markovian
Categorical

HMM
Rabiner (1989)

HMM
Rabiner (1989)

Structured VAE
Johnson et al (2016)

Continuous
Linear

Gaussian

LDS
Kalman (1960)

Poisson LDS
Smith and Brown (2003), Paninski et al

(2010)
Macke et al (2011)

Deep PfLDS
Archer et al (2015); Gao et al (2016)

Continuous
Nonlinear (parametric)

Gaussian

NLDS, e.g. Hodgkin-Huxley
Ahrens, Huys, Paninski (2006)

Huys and Paninski (2009)

NLDS, e.g. Hodgkin-Huxley
Meng, Kramer, Eden (2011)

GPSSM, DKF, LFADS, VIND
Frigola et al (2013) , Krishnan et al

(2015), Sussillo et al (2016), Hernandez et
al (2018)

Mixed
Switching Linear

SLDS
Ghahramani and Hinton (1996)

Murphy (1998)

Poisson SLDS
Petreska et al (2013)

Structured VAE
Johnson et al (2016)

Mixed
Recurrent Linear

recurrent/augmented SLDS
Barber (2006); Pachitariu et al (2014);
Linderman et al (2017); Nassar et al

(2019)

rSLDS
Linderman et al (2017)

Nassar et al (2019)

Structured VAE
Johnson et al (2016)

Continuous
Nonlinear (smoothing)

Gaussian

GPFA
Yu, Cunningham, et al (2009)

vLGP
Zhao and Park (2017)

GPLVM
Lawerence (2005), Wu et al (2017)

Continuous
Nonlinear (nonparametric)

Gaussian

GPSSM, DKF, LFADS, VIND
Frigola et al (2013) , Krishnan et al

(2015), Sussillo et al (2016), Hernandez
et al (2018)

GPSSM, DKF, LFADS, VIND
Frigola et al (2013) , Krishnan et al

(2015), Sussillo et al (2016), Hernandez et
al (2018)

GPSSM, DKF, LFADS, VIND
Frigola et al (2013) , Krishnan et al

(2015), Sussillo et al (2016), Hernandez et
al (2018)

Domain/Dependency/Distribution

D
yn

am
ic

s
/D

om
ai

n

Motivate

Wiltschko et al, 2015

Motivating Example: summarizing videos with behavioral states

MotivateMotivating Example: summarizing videos with behavioral states

Rear down Walk forward Grooming

JumpRear upScrunch

Wiltschko et al, 2015

Bayesian inference in latent variable models

Formulating as a probabilistic model

• Variables: Let,

• denote the (vectorized) image at time .

• denote the discrete latent state (aka
behavioral “syllable”) at time .

• Model: Assume each time frame is independent and,

• Parameters: Let denote the parameters,

• is the prior probability of each state

• are the conditional mean and
variance of images for discrete state .

xt ∈ ℝP t

zt ∈ {1,…, K}
t

zt ∼ Cat(π)
xt ∣ zt ∼ 𝒩(bzt

, Qzt
)

Θ = π, {bk, Qk}K
k=1

π ∈ ΔK

(bk, Qk) ∈ ℝP × ℝP×P

zt = k

The Gaussian Mixture Model
Example draw from a 2D GMM with 10 clusters

The Gaussian Mixture Model

The joint probability factors into a product over time bins,

p(x, z ∣ Θ) =
T

∏
t=1

p(zt) p(xt ∣ zt)

= latent = observed = dependency

Observations
(e.g. PCA loadings

of each frame)
xt xt+1.x1 xT

Discrete
Cluster

Assignments
. zTzt+1ztz1

Cluster
Probabilities

π

{bk, Qk}
Cluster

Means and
Covariances

The Gaussian Mixture Model
Graphical Model

Bayesian inference in latent variable models
MAP Estimation

• In Unit 1 we used maximum a posteriori (MAP) estimation to find,

• Coordinate ascent (effectively the same as k-means!). Repeat:

• Update cluster assignments:

 # assign each data point to the most likely cluster

• Update parameters for each :

 # count number of frames assigned to each cluster

 # set means equal to the sample mean of assigned data points

 # set covariance equal to the sample covariance of assigned data points

z⋆, Θ⋆ = arg maxz,Θ log p(x, z, Θ)

zt = arg maxk πk ⋅ 𝒩(yt ∣ bk, Qk)

k = 1,…, K

Tk =
T

∑
t=1

𝕀[zt = k]

bk =
1
Tk

T

∑
t=1

yt 𝕀[zt = k]

Qk =
1
Tk

T

∑
t=1

(yt − dk)(yt − dk)⊤ 𝕀[zt = k]

Bayesian inference in latent variable models
MAP Estimation

• This gives us a point estimate of the latent variables and parameters .

• Point estimates can lead to an overly optimistic view of the model.

• Specifically, MAP estimation found the best assignment, which may not
reflect the average performance under the prior .

• Question: What if only one data point is assigned to a cluster on some
iteration?

z Θ

p(z, Θ)

Bayesian inference in latent variable models
Integrating over the latent variables

• A more Bayesian approach is to integrate over the latent variables.

• First, learn a point estimate of the parameters,

where is the marginal likelihood.

• Then, infer the posterior distribution over latent variables given observed data and parameters,

• (A “fully Bayesian” approach would integrate over both and .)

Θ⋆ = arg maxΘ log p(x, Θ)

p(x, Θ) = ∫ p(x, z, Θ) dz = 𝔼p(z,Θ)[p(x ∣ z, Θ)]

p(z ∣ x, Θ) =
p(x ∣ z, Θ) p(z ∣ Θ) p(Θ)

p(x, Θ)

z Θ

Bayesian inference in latent variable models
Integrating over the latent variables

• A more Bayesian approach is to integrate over the latent variables.

• First, learn a point estimate of the parameters,

where is the marginal likelihood.

• Then, infer the posterior distribution over latent variables given observed data and parameters,

• (A “fully Bayesian” approach would integrate over both and .)

Θ⋆ = arg maxΘ log p(x, Θ)

p(x, Θ) = ∫ p(x, z, Θ) dz = 𝔼p(z,Θ)[p(x ∣ z, Θ)]

p(z ∣ x, Θ) =
p(x ∣ z, Θ) p(z ∣ Θ) p(Θ)

p(x, Θ)

z Θ

Bayesian inference in latent variable models
Maximizing the marginal likelihood

• How to learn the parameters?

• First idea: gradient ascent,

• Sometimes, these integrals are available in closed form.

• For example, when is discrete the integrals become sums.

• Can we do better?

∇Θlog p(x, Θ) =
∇Θ p(x, Θ)

p(x, Θ)
=

∫ ∇Θ p(x, z, Θ) dz
∫ p(x, z, Θ) dz

z

Bayesian inference in latent variable models
Lower bound the marginal likelihood

• Next idea: lower bound the marginal likelihood with a more tractable form,

• is called the evidence lower bound or the ELBO for short.

log p(x, Θ) = log∫ p(x, z, Θ) dz

= log∫
q(z)
q(z)

p(x, z, Θ) dz for any distribution q(z)

= log 𝔼q(z) [p(x, z, Θ)
q(z)]

≥ 𝔼q(z) [log p(x, z, Θ) − log q(z)] by Jensen's inequality

≜ ℒ[q, Θ]

ℒ

Bayesian inference in latent variable models
Lower bound the marginal likelihood

• Next idea: lower bound the marginal likelihood with a more tractable form,

• is called the evidence lower bound or the ELBO for short.

log p(x, Θ) = log∫ p(x, z, Θ) dz

= log∫
q(z)
q(z)

p(x, z, Θ) dz for any distribution q(z)

= log 𝔼q(z) [p(x, z, Θ)
q(z)]

≥ 𝔼q(z) [log p(x, z, Θ) − log q(z)] by Jensen's inequality

≜ ℒ[q, Θ]

ℒ

Bayesian inference in latent variable models
Lower bound the marginal likelihood

• Next idea: lower bound the marginal likelihood with a more tractable form,

• is called the evidence lower bound or the ELBO for short.

log p(x, Θ) = log∫ p(x, z, Θ) dz

= log∫
q(z)
q(z)

p(x, z, Θ) dz for any distribution q(z)

= log 𝔼q(z) [p(x, z, Θ)
q(z)]

≥ 𝔼q(z) [log p(x, z, Θ) − log q(z)] by Jensen's inequality

≜ ℒ[q, Θ]

ℒ

Bayesian inference in latent variable models
Lower bound the marginal likelihood

• Next idea: lower bound the marginal likelihood with a more tractable form,

• is called the evidence lower bound or the ELBO for short.

log p(x, Θ) = log∫ p(x, z, Θ) dz

= log∫
q(z)
q(z)

p(x, z, Θ) dz for any distribution q(z)

= log 𝔼q(z) [p(x, z, Θ)
q(z)]

≥ 𝔼q(z) [log p(x, z, Θ) − log q(z)] by Jensen's inequality

≜ ℒ[q, Θ]

ℒ

Bayesian inference in latent variable models
Lower bound the marginal likelihood

• Next idea: lower bound the marginal likelihood with a more tractable form,

• is called the evidence lower bound or the ELBO for short.

log p(x, Θ) = log∫ p(x, z, Θ) dz

= log∫
q(z)
q(z)

p(x, z, Θ) dz for any distribution q(z)

= log 𝔼q(z) [p(x, z, Θ)
q(z)]

≥ 𝔼q(z) [log p(x, z, Θ) − log q(z)] by Jensen's inequality

≜ ℒ[q, Θ]

ℒ

Bayesian inference in latent variable models
Coordinate ascent on the ELBO

• Update the parameters,

• Update the distribution on latent variables,

Θ ← arg maxΘ ℒ[q, Θ] = arg maxΘ 𝔼q(z)[log p(x, z, Θ)]

q ← arg maxq ℒ[q, Θ]

= arg maxq 𝔼q(z) [log p(x, z, Θ)
q(z)]

= arg minq KL (q(z) ∥ p(z ∣ x, Θ))
= p(z ∣ x, Θ)

Bayesian inference in latent variable models
Coordinate ascent on the ELBO

• Update the parameters,

• Update the distribution on latent variables,

Θ ← arg maxΘ ℒ[q, Θ] = arg maxΘ 𝔼q(z)[log p(x, z, Θ)]

q ← arg maxq ℒ[q, Θ]

= arg maxq 𝔼q(z) [log p(x, z, Θ)
q(z)]

= arg minq KL (q(z) ∥ p(z ∣ x, Θ))
= p(z ∣ x, Θ)

Bayesian inference in latent variable models
The Expectation-Maximization (EM) algorithm

• M-step: Maximize the expected log probability

• E-step: Update the posterior over latent variables

• After each E-step, the ELBO is tight:

• EM converges to local optima of the marginal distribution.

Θ ← arg maxΘ 𝔼q(z)[log p(x, z, Θ)]

q ← p(z ∣ x, Θ)

ℒ[q, Θ] = 𝔼p(z∣x,Θ) [log
p(x, z, Θ)
p(z ∣ x, Θ)]

= 𝔼p(z∣x,Θ) [log p(x, Θ)]
= log p(x, Θ)

Bishop (2006). Pattern Recognition and Machine Learning, Ch 9.4.

The Gaussian Mixture Model
Example draw from a 2D GMM with 10 clusters

EM for the Gaussian mixture model

• E-step: Update the posterior over latent variables,

• M-step: Update the parameters. Let , then

i.e. set the parameters to their weighted averages.

• Compare these updates to the MAP estimation / coordinate ascent updates from before!

q(zt = k) ← p(zt = k ∣ xt, Θ) =
πk𝒩(xt ∣ bk, Qk)

∑K
j=1 πj𝒩(xt ∣ bj, Qj)

Tk =
T

∑
t=1

q(zt = k)

πk ←
Tk

T
, bk ←

1
Tk

T

∑
t=1

q(zt = k) xt, Qk ←
1
Tk

T

∑
t=1

q(zt = k) (xt − bk)(xt − bk)⊤ .

Hidden Markov Models

A Gaussian HMM is just a Gaussian mixture model but where cluster assignments are linked
across time!

.

Its parameters are where is a row-stochastic
transition matrix.

Under this model, the joint probability factors as

z1 ∼ Cat(π),
zt ∣ zt−1 ∼ Cat(Pzt−1

), for t = 2,…, T
xt ∣ zt ∼ 𝒩(bzt

, Qzt
) for t = 1,…, T

Θ = π, P, {bk, Qk}K
k=1 P ∈ [0,1]K×K

p(x, z, Θ) = p(z1)
T−1

∏
t=1

p(zt+1 ∣ zt)
T

∏
t=1

p(xt ∣ zt)

The Gaussian HMM

= latent = observed = dependency

Observations
(e.g. PCA loadings

of each frame)
xt xt+1.x1 xT

Discrete
Latent States zTzt+1ztz1

Transition
Probabilities

P

{bk, Qk}
State

Means and
Covariances

Graphical Model

π

The Gaussian HMM

Example draw from a 2D Gaussian HMM with 5 clusters
The Gaussian HMM

EM for the Gaussian HMM

• E-step: Update the posterior over latent variables,

• The normalized posterior no longer has a simple closed form!

• However, we can still efficiently compute the marginal probabilities for the M-step.

q(z) ← p(z ∣ x, Θ) ∝ p(x, z, Θ) = p(z1)
T−1

∏
t=1

p(zt+1 ∣ zt)
T

∏
t=1

p(xt ∣ zt)

The posterior is a little trickier…

EM for the Gaussian HMM

• Consider the marginal probability of state at time :

k t

q(zt = k) =
K

∑
z1=1

⋯
K

∑
zt−1=1

K

∑
zt+1=1

⋯
K

∑
zT=1

q(z,…, zt−1, zt = k, zt+1, …, zT)

∝ [
K

∑
z1=1

⋯
K

∑
zt−1=1

p(z1)
t−1

∏
s=1

p(xs ∣ zs) p(zs+1 ∣ zs)] × [p(xt ∣ zt)]
× [

K

∑
zt+1=1

⋯
K

∑
zT=1

T

∏
u=t+1

p(zu ∣ zu−1) p(xu ∣ zu)]
≜ αt(zt) × p(xt ∣ zt) × βt(zt)

Computing the marginal likelihood

EM for the Gaussian HMM

• Consider the marginal probability of state at time :

k t

q(zt = k) =
K

∑
z1=1

⋯
K

∑
zt−1=1

K

∑
zt+1=1

⋯
K

∑
zT=1

q(z,…, zt−1, zt = k, zt+1, …, zT)

∝ [
K

∑
z1=1

⋯
K

∑
zt−1=1

p(z1)
t−1

∏
s=1

p(xs ∣ zs) p(zs+1 ∣ zs)] × [p(xt ∣ zt)]
× [

K

∑
zt+1=1

⋯
K

∑
zT=1

T

∏
u=t+1

p(zu ∣ zu−1) p(xu ∣ zu)]
≜ αt(zt) × p(xt ∣ zt) × βt(zt)

Computing the marginal likelihood

EM for the Gaussian HMM
Computing the marginal likelihood

• Consider the marginal probability of state at time :

k t

q(zt = k) =
K

∑
z1=1

⋯
K

∑
zt−1=1

K

∑
zt+1=1

⋯
K

∑
zT=1

q(z,…, zt−1, zt = k, zt+1, …, zT)

∝ [
K

∑
z1=1

⋯
K

∑
zt−1=1

p(z1)
t−1

∏
s=1

p(xs ∣ zs) p(zs+1 ∣ zs)] × [p(xt ∣ zt)]
× [

K

∑
zt+1=1

⋯
K

∑
zT=1

T

∏
u=t+1

p(zu ∣ zu−1) p(xu ∣ zu)]
≜ αt(zt) × p(xt ∣ zt) × βt(zt)

EM for the Gaussian HMM

• Consider the forward messages:

• We can compute these messages recursively!

αt(zt) ≜
K

∑
z1=1

⋯
K

∑
zt−1=1

p(z1)
t−1

∏
s=1

p(xs ∣ zs) p(zs+1 ∣ zs)

=
K

∑
zt−1=1

[(
K

∑
z1=1

⋯
K

∑
zt−2=1

p(z1)
t−2

∏
s=1

p(xs ∣ zs)p(zs+1 ∣ zs))p(xt−1 ∣ zt−1) p(zt ∣ zt−1)]
=

K

∑
zt−1=1

αt−1(zt−1) p(xt−1 ∣ zt−1) p(zt ∣ zt−1)

Computing the forward messages αt(zt)

EM for the Gaussian HMM

• Consider the forward messages:

• We can compute these messages recursively!

αt(zt) ≜
K

∑
z1=1

⋯
K

∑
zt−1=1

p(z1)
t−1

∏
s=1

p(xs ∣ zs) p(zs+1 ∣ zs)

=
K

∑
zt−1=1

[(
K

∑
z1=1

⋯
K

∑
zt−2=1

p(z1)
t−2

∏
s=1

p(xs ∣ zs)p(zs+1 ∣ zs))p(xt−1 ∣ zt−1) p(zt ∣ zt−1)]
=

K

∑
zt−1=1

αt−1(zt−1) p(xt−1 ∣ zt−1) p(zt ∣ zt−1)

Computing the forward messages αt(zt)

EM for the Gaussian HMM

• Consider the forward messages:

• We can compute these messages recursively!

αt(zt) ≜
K

∑
z1=1

⋯
K

∑
zt−1=1

p(z1)
t−1

∏
s=1

p(xs ∣ zs) p(zs+1 ∣ zs)

=
K

∑
zt−1=1

[(
K

∑
z1=1

⋯
K

∑
zt−2=1

p(z1)
t−2

∏
s=1

p(xs ∣ zs)p(zs+1 ∣ zs))p(xt−1 ∣ zt−1) p(zt ∣ zt−1)]
=

K

∑
zt−1=1

αt−1(zt−1) p(xt−1 ∣ zt−1) p(zt ∣ zt−1)

Computing the forward messages αt(zt)

EM for the Gaussian HMM

• Let denote the column vector of forward
messages. Then,

where

• is the vector of likelihoods,

• denotes the element-wise product, and

• is the transition matrix with .

• For the base case, let .

αt = [αt(zt = 1), …, αt(zt = K)]⊤

αt = P⊤(αt−1 ⊙ ℓt−1)

ℓt−1 = [p(xt−1 ∣ zt−1 = 1), …, p(xt−1 ∣ zt−1 = K)]⊤

⊙

P Pij = p(zt = j ∣ zt−1 = i)

α1(z1) = p(z1)

Computing the forward messages . Vectorized.αt(zt)

EM for the Gaussian HMM

• Now take the backward messages:

• Again, we can compute the backward messages recursively!

βt(zt) ≜
K

∑
zt+1=1

⋯
K

∑
zT=1

T

∏
u=t+1

p(zu ∣ zu−1) p(xu ∣ zu)

=
K

∑
zt+1=1

p(zt+1 ∣ zt) p(xt+1 ∣ zt+1)
K

∑
zt+2=1

⋯
K

∑
zT=1

T

∏
u=t+2

p(zu ∣ zu−1) p(xu ∣ zu)

=
K

∑
zt+1=1

p(zt+1 ∣ zt) p(xt+1 ∣ zt+1) βt+1(zt+1)

Computing the backward messages βt(zt)

EM for the Gaussian HMM

• Now take the backward messages:

• Again, we can compute the backward messages recursively!

βt(zt) ≜
K

∑
zt+1=1

⋯
K

∑
zT=1

T

∏
u=t+1

p(zu ∣ zu−1) p(xu ∣ zu)

=
K

∑
zt+1=1

p(zt+1 ∣ zt) p(xt+1 ∣ zt+1)
K

∑
zt+2=1

⋯
K

∑
zT=1

T

∏
u=t+2

p(zu ∣ zu−1) p(xu ∣ zu)

=
K

∑
zt+1=1

p(zt+1 ∣ zt) p(xt+1 ∣ zt+1) βt+1(zt+1)

Computing the backward messages βt(zt)

EM for the Gaussian HMM

• Now take the backward messages:

• Again, we can compute the backward messages recursively!

βt(zt) ≜
K

∑
zt+1=1

⋯
K

∑
zT=1

T

∏
u=t+1

p(zu ∣ zu−1) p(xu ∣ zu)

=
K

∑
zt+1=1

p(zt+1 ∣ zt) p(xt+1 ∣ zt+1)
K

∑
zt+2=1

⋯
K

∑
zT=1

T

∏
u=t+2

p(zu ∣ zu−1) p(xu ∣ zu)

=
K

∑
zt+1=1

p(zt+1 ∣ zt) p(xt+1 ∣ zt+1) βt+1(zt+1)

Computing the backward messages βt(zt)

EM for the Gaussian HMM

• Let denote the column vector of
backward messages. Then,

• For the base case, let .

βt = [βt(zt = 1), …, βt(zt = K)]⊤

βt = P(βt+1 ⊙ ℓt+1)

βT(zT) = 1

Computing the backward messages . Vectorized.βt(zt)

EM for the Gaussian HMM

• The posterior marginal probability of state at time is,

• The probabilities need to sum to one. Normalizing yields,

• Finally, note the marginal is invariant to multiplying and/or by a
constant.

k t
q(zt = k) ∝ αt(zt = k) × p(xt ∣ zt = k) × βt(zt = k)

= αtkℓtkβtk

q(zt = k) =
αtkℓtkβtk

∑K
j=1 αtjℓtjβtj

αt βt

Combining the forward and backward messages

EM for the Gaussian HMM

• The messages involve products of probabilities, which quickly underflow.

• We can leverage the scale invariance to renormalize the messages. I.e. replace:

 with

where are normalized for numerical stability. As before, .

• This lends a nice interpretation: the forward messages are conditional
probabilities and the normalization constants are
the marginal likelihoods .

αt = P⊤(αt−1 ⊙ ℓt−1)
At−1 = ∑k α̃t−1,k ℓt−1,k

α̃t = 1
At−1

P⊤(α̃t−1 ⊙ ℓt−1)

α̃t α̃1 = π

α̃tk = p(zt = k ∣ x1:t−1)
At = p(xt ∣ x1:t−1)

Normalizing the messages to prevent underflow

EM for the Gaussian HMM

• Finally, we can compute the marginal likelihood alongside the forward messages

• Again, makes sense since the normalization constants are .

log p(x ∣ Θ) = log
K

∑
z1=1

⋯
K

∑
zT=1 [p(z1)

T−1

∏
t=1

p(zt+1 ∣ zt)
T

∏
t=1

p(xt ∣ zt)]
= log

K

∑
zT=1

αT(zT) p(xT ∣ zT)

= log
T

∏
t=1

At =
T

∑
t=1

log At

At = p(xt ∣ x1:t−1)

Computing the marginal likelihood

EM for the Gaussian HMM

• E-step: Run the forward-backward algorithm to compute

 and the marginal log likelihood .

• M-step: Update the parameters.

• Note: You can use the forward-backward algorithm to compute too. That’s all you need
to update the transition matrix .

q(zt = k) ← p(zt = k ∣ x1:T, Θ) =
αtkℓtkβtk

∑K
j=1 αtjℓtjβtj

log p(x1:T ∣ Θ)

Tk =
T

∑
t=1

q(zt = k) bk =
1
Tk

T

∑
t=1

q(zt = k)xt Qk =
1
Tk

T

∑
t=1

q(zt = k)(xt − bk)(xt − bk)⊤

q(zt = i, zt+1 = j)
P

Putting it all together

Conclusion

• EM for mixture models (with exponential family likelihoods) amounts to
computing cluster assignment probabilities and expected sufficient
statistics, then updating parameters based on them.

• Stochastic EM generalizes this approach to work with mini-batches of data.

• Hidden Markov models (HMMs) are just mixture models with dependencies
across time.

• The EM algorithm is nearly the same, but we use the forward-backward
algorithm to compute latent state probabilities and expected sufficient stats.

