Machine Learning Methods for Neural Data Analysis EM, Mixture Models, and Hidden Markov Models

Scott Linderman

STATS 220/320 (NBIO220, CS339N). Winter 2023.

Announcements

- Correction in notes:
 - The blocks are given by $J_{tt} = Q^{-1} + A^{\top}Q^{-1}A + C^{\top}R^{-1}C$ (except) for J_{11} and J_{TT}).

 1 page project proposal due Monday, Feb 27. Teams of 2-3 people. Ed could be a great way to find teammates!

Agenda

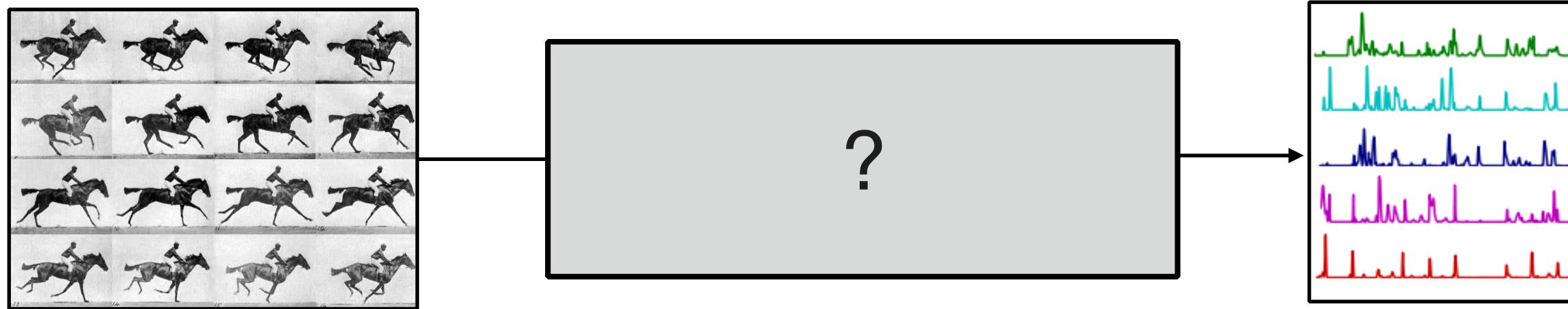
- Intro to Unit III: Unsupervised Learning
- Expectation-maximization for Gaussian mixture models
- Hidden Markov models and the forward-backward algorithm

Unit III: Unsupervised learning

signal

mapping

neural data

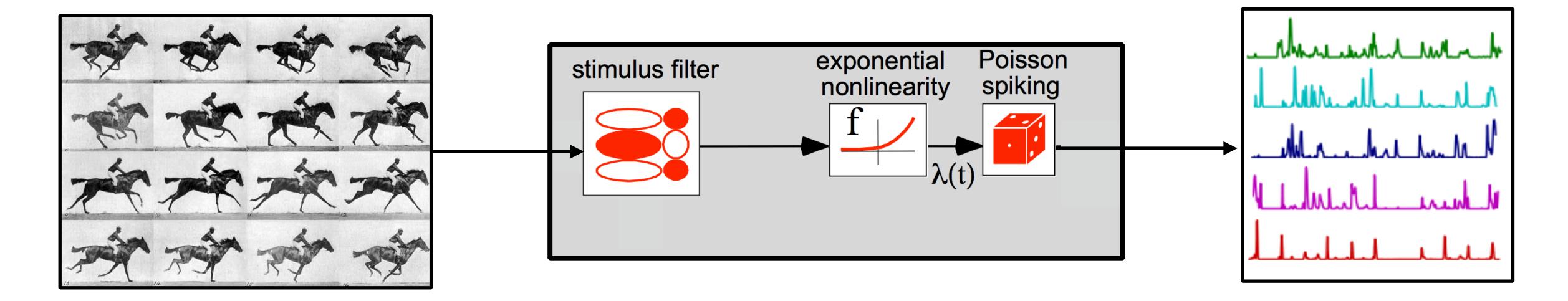


signal

Encoding models: given stimulus (covariates) and response, find mapping.

mapping

neural data



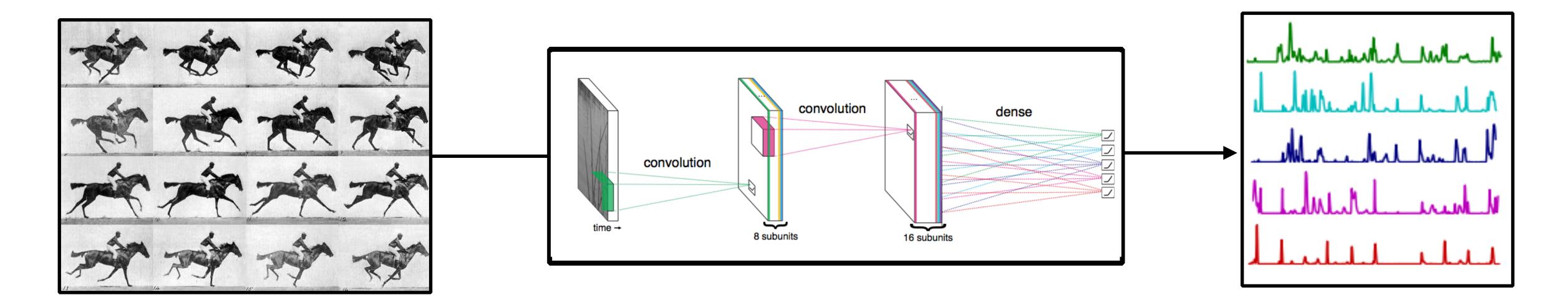
signal

Recent examples: Musall et al (2018), Stringer et al (2018)

mapping

neural data

Paninski (2004) Truccolo et al (2005) Pillow et al (2008)



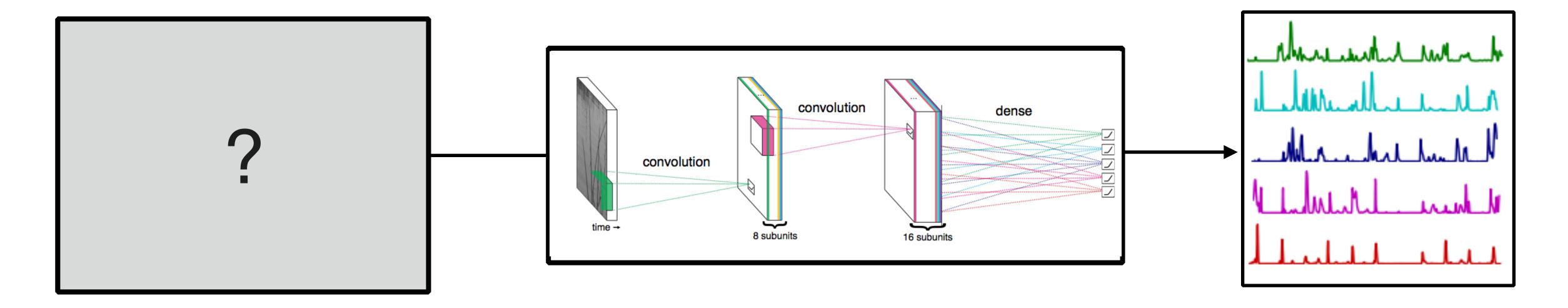
signal

Toward nonlinear and/or more biophysically plausible mappings.

mapping

neural data

McIntosh et al (2017)

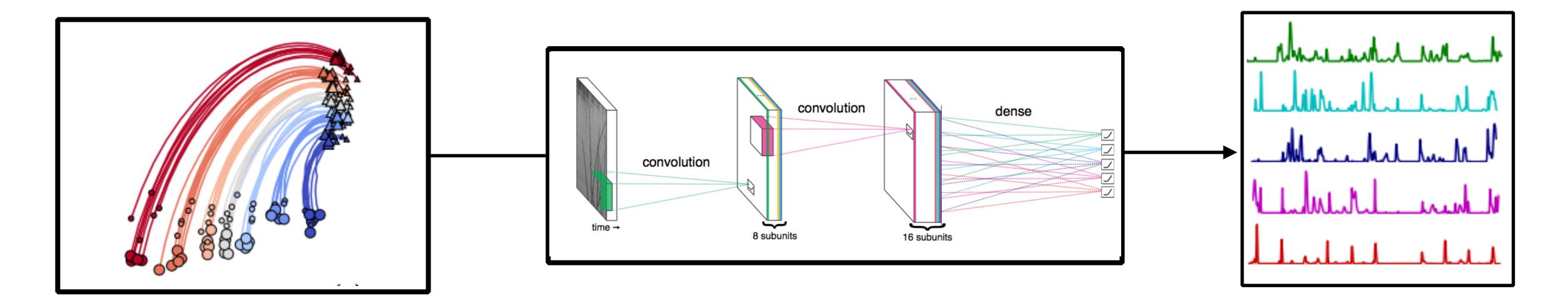


latent signal

mapping

neural data

Alternative: try to infer latent signals from the data



latent signal

Alternative: try to infer latent signals from the data, subject to constraints.

mapping

neural data

Latent variable modeling is all about constraints The five D's

- *Dimensionality*: how many latent clusters, factors, etc.?
- Domain: are the latent variables discrete, continuous, bounded, sparse, etc.?
- *Dynamics*: how do the latent variables change over time?
- <u>Dependencies</u>: how do the latent variables relate to the observed data?
- *Distribution*: do we have prior knowledge about the variables' probability?

• We've already seen some examples in Unit 1!

Latent variable modeling is all about constraints **Domain/Dependency/Distribution**

Discrete Markovian Categorical Continuous Linear Gaussian Continuous **Nonlinear (parametric)** Gaussian Mixed Switching Linear Mixed **Recurrent Linear**

> Continuous Nonlinear (smoothing) Gaussian

Continuous Nonlinear (nonparametric) Gaussian

LDS

Continuous

Linear

Gaussian

HMM

Rabiner (1989)

Kalman (1960)

NLDS, e.g. Hodgkin-Huxley Ahrens, Huys, Paninski (2006) Huys and Paninski (2009)

SLDS Ghahramani and Hinton (1996) Murphy (1998)

recurrent/augmented SLDS Barber (2006); Pachitariu et al (2014); Linderman et al (2017); Nassar et al

GPFA Yu, Cunningham, et al (2009)

GPSSM, DKF, LFADS, VIND Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez

/Domain Dynamics

Discrete (Gen.) Linear Bernoulli/Poisson/etc.

Nonlinear Observation Models

HMM Rabiner (1989)

Structured VAE Johnson et al (2016)

Poisson LDS Smith and Brown (2003), Paninski et al (2010)

NLDS, e.g. Hodgkin-Huxley Meng, Kramer, Eden (2011)

> **Poisson SLDS** Petreska et al (2013)

rSLDS Linderman et al (2017) Nassar et al (2019)

vLGP Zhao and Park (2017)

GPSSM, DKF, LFADS, VIND

Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et

Deep PfLDS Archer et al (2015); Gao et al (2016)

GPSSM, DKF, LFADS, VIND Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et

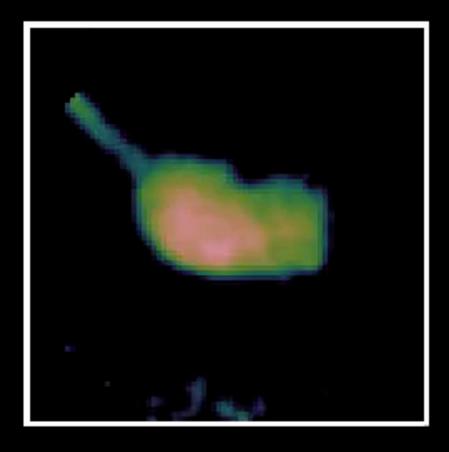
> **Structured VAE** Johnson et al (2016)

> **Structured VAE** Johnson et al (2016)

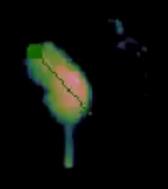
GPLVM Lawerence (2005), Wu et al (2017)

GPSSM, DKF, LFADS, VIND Frigola et al (2013), Krishnan et al (2015), Sussillo et al (2016), Hernandez et

Motivating Example: summarizing videos with behavioral states



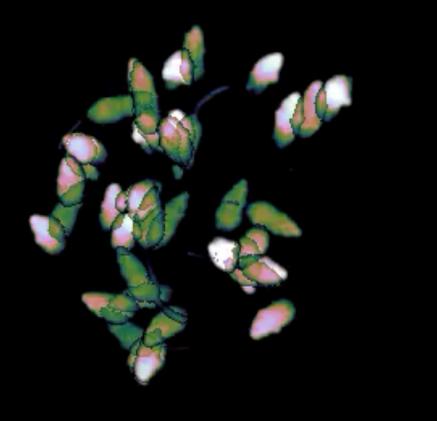
Frame 0



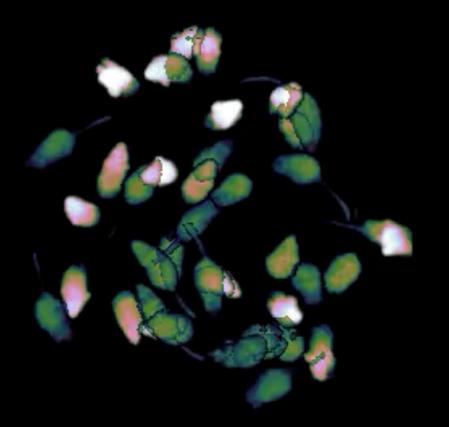
Wiltschko et al, 2015

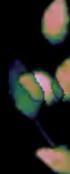
Motivating Example: summarizing videos with behavioral states

Rear down



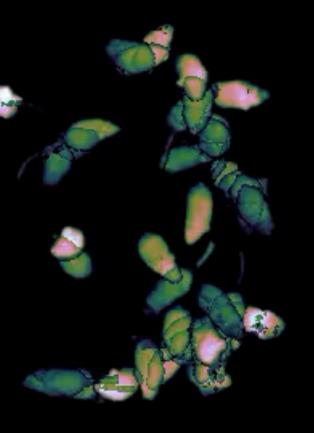
Scrunch

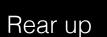


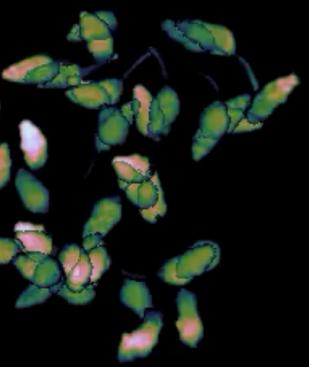


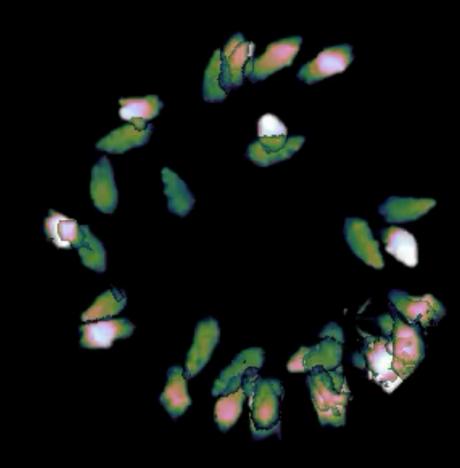
Walk forward

Grooming









Wiltschko et al, 2015

Bayesian inference in latent variable models

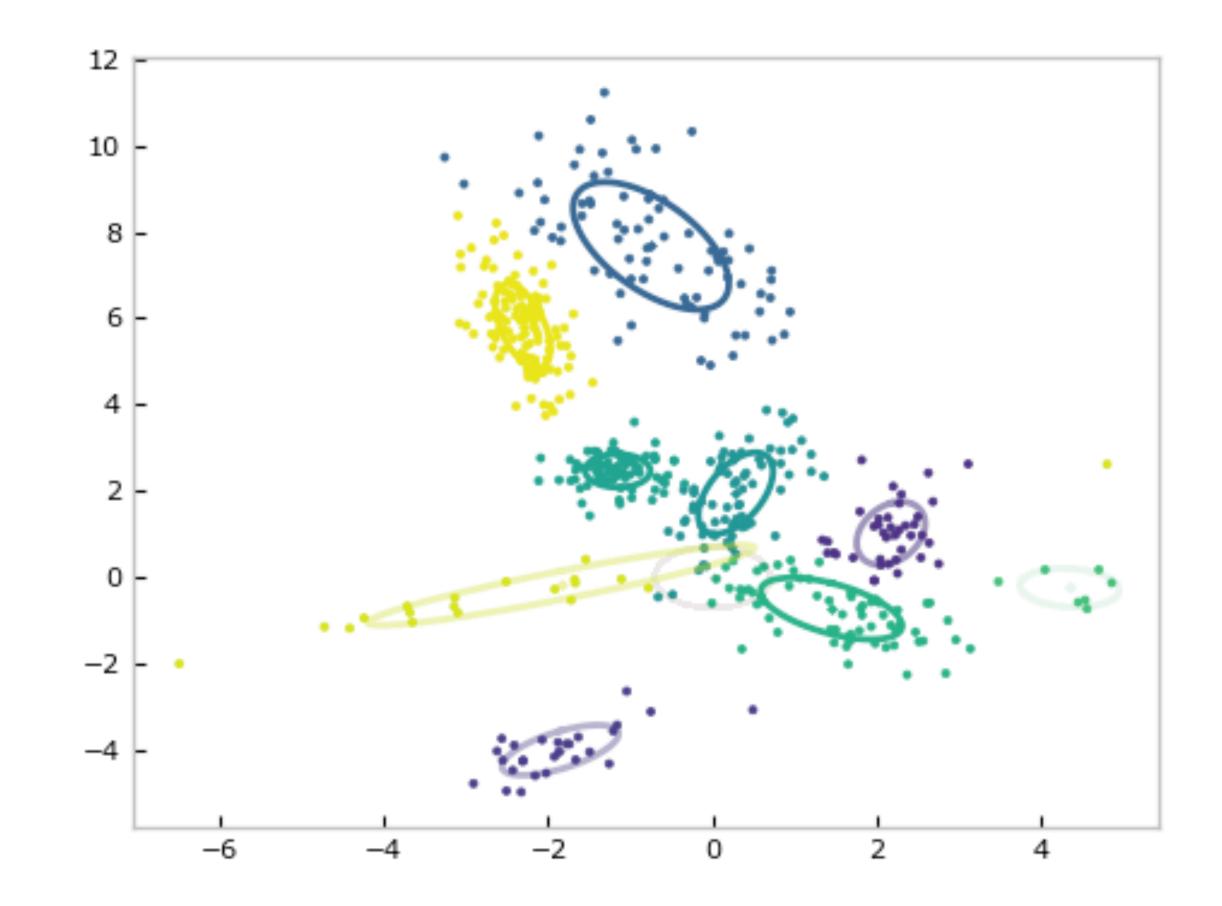
Formulating as a probabilistic model

- Variables: Let,
 - $x_t \in \mathbb{R}^P$ denote the (vectorized) image at time *t*.
 - $z_t \in \{1, \dots, K\}$ denote the discrete latent state (aka behavioral "syllable") at time t.
- **Model:** Assume each time frame is independent and,

 $z_t \sim \operatorname{Cat}(\pi)$ $x_t \mid z_t \sim \mathcal{N}(b_{z_t}, Q_{z_t})$

- **Parameters:** Let $\Theta = \pi$, $\{b_k, Q_k\}_{k=1}^K$ denote the parameters,
 - $\pi \in \Delta_K$ is the prior probability of each state
 - $(b_k, Q_k) \in \mathbb{R}^P \times \mathbb{R}^{P \times P}$ are the conditional mean and variance of images for discrete state $z_t = k$.

The Gaussian Mixture Model Example draw from a 2D GMM with 10 clusters



The Gaussian Mixture Model

The joint probability factors into a product over time bins,

$$p(x, z \mid \Theta) = \prod_{t=1}^{T} p(z_t) p(x_t \mid z_t)$$

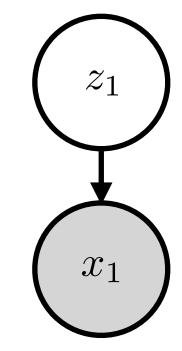
The Gaussian Mixture Model **Graphical Model**

Cluster **Probabilities**

Discrete Cluster Assignments

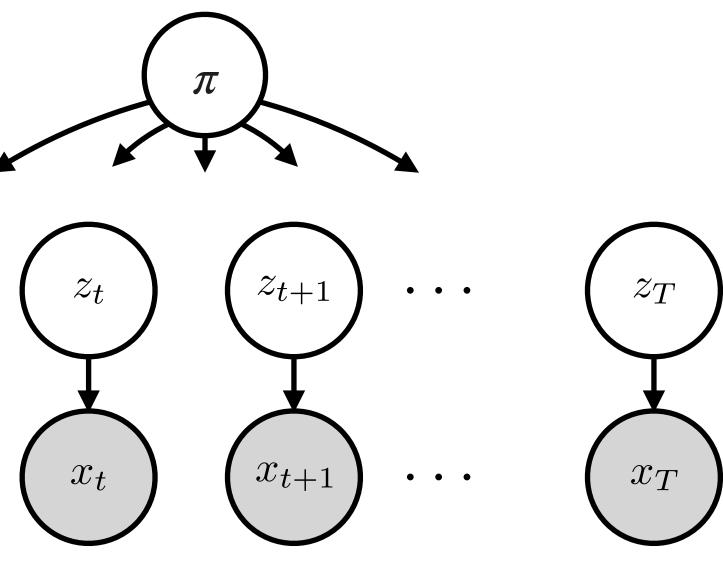
Observations (e.g. PCA loadings of each frame)

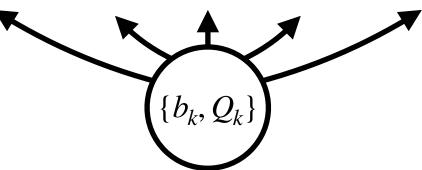
> Cluster Means and Covariances



• • •

• •





Bayesian inference in latent variable models MAP Estimation

• In Unit 1 we used *maximum a posteriori* (MAP) estimation to find,

$$z^{\star}, \Theta^{\star} = \arg \max_{z,\Theta} \log p(x, z, \Theta)$$

- Coordinate ascent (effectively the same as **k-means!**). Repeat:
 - Update cluster assignments:

$$z_t = \arg\max_k \pi_k \cdot \mathcal{N}(y_t \mid b_k, Q_k) \qquad \qquad \text{# assig}$$

• Update parameters for each k = 1, ..., K:

$$T_k = \sum_{t=1}^T \mathbb{I}[z_t = k]$$
 # count

$$b_k = \frac{1}{T_k} \sum_{t=1}^T y_t \mathbb{I}[z_t = k]$$
 # set m

$$Q_k = \frac{1}{T_k} \sum_{t=1}^T (y_t - d_k) (y_t - d_k)^\top \mathbb{I}[z_t = k]$$
 # set co

gn each data point to the most likely cluster

t number of frames assigned to each cluster

leans equal to the sample mean of assigned data points

ovariance equal to the sample covariance of assigned data points

Bayesian inference in latent variable models MAP Estimation

- This gives us a point estimate of the latent variables z and parameters Θ .
- Point estimates can lead to an overly optimistic view of the model.
- Specifically, MAP estimation found the best assignment, which may not reflect the average performance under the prior $p(z, \Theta)$.
- Question: What if only one data point is assigned to a cluster on some iteration?

Bayesian inference in latent variable models Integrating over the latent variables

- A more Bayesian approach is to integrate over the latent variables.
- First, **learn** a point estimate of the parameters,

$$\Theta^{\star} = \arg \max_{\Theta} \log p(x, \Theta)$$

where $p(x, \Theta) = \int p(x, z, \Theta) dz = \mathbb{E}_{p(z, \Theta)}[A$

 $[p(x \mid z, \Theta)]$ is the marginal likelihood.

Bayesian inference in latent variable models Integrating over the latent variables

- A more **Bayesian approach** is to **integrate** over the latent variables. •
- First, **learn** a point estimate of the parameters,

$$\Theta^{\star} = \arg \max_{\Theta} \log p(x, \Theta)$$

where $p(x, \Theta) = \int p(x, z, \Theta) dz = \mathbb{E}_{p(z, \Theta)}[f(x, z, \Theta)] dz$

- $p(z \mid x, \Theta) = \frac{p(x \mid z, \Theta) p(z \mid \Theta) p(\Theta)}{p(x, \Theta)}$
- (A "fully Bayesian" approach would integrate over both z and Θ .)

$p(x \mid z, \Theta)$ is the marginal likelihood.

Then, infer the posterior distribution over latent variables given observed data and parameters,

Bayesian inference in latent variable models Maximizing the marginal likelihood

- How to learn the parameters?
- First idea: gradient ascent,

$$\nabla_{\Theta} \log p(x, \Theta) = \frac{\nabla_{\Theta} p(x, \Theta)}{p(x, \Theta)} = \frac{\int \nabla_{\Theta} p(x, z, \Theta) \, dz}{\int p(x, z, \Theta) \, dz}$$

- Sometimes, these integrals are available in closed form.
 - For example, when z is discrete the integrals become sums.
- Can we do better?

• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(x, \Theta) = \log \int p(x, z, \Theta) \, \mathrm{d}z$$



• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(x, \Theta) = \log \int p(x, z, \Theta) dz$$
$$= \log \int \frac{q(z)}{q(z)} p(x, z, \Theta) dz$$

for any distribution q(z)

• Next idea: lower bound the marginal likelihood with a more tractable form,

$$og p(x, \Theta) = log \int p(x, z, \Theta) dz$$
$$= log \int \frac{q(z)}{q(z)} p(x, z, \Theta) dz$$
$$= log \mathbb{E}_{q(z)} \left[\frac{p(x, z, \Theta)}{q(z)} \right]$$

for any distribution q(z)

• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(x, \Theta) = \log \int p(x, z, \Theta) dz$$
$$= \log \int \frac{q(z)}{q(z)} p(x, z, \Theta) dz$$
$$= \log \mathbb{E}_{q(z)} \left[\frac{p(x, z, \Theta)}{q(z)} \right]$$
$$\geq \mathbb{E}_{q(z)} \left[\log p(x, z, \Theta) - \log q(z) \right]$$

for any distribution q(z)

by Jensen's inequality

• Next idea: lower bound the marginal likelihood with a more tractable form,

$$\log p(x, \Theta) = \log \int p(x, z, \Theta) dz$$
$$= \log \int \frac{q(z)}{q(z)} p(x, z, \Theta) dz$$
$$= \log \mathbb{E}_{q(z)} \left[\frac{p(x, z, \Theta)}{q(z)} \right]$$
$$\geq \mathbb{E}_{q(z)} \left[\log p(x, z, \Theta) - \log q(z) \right]$$
$$\triangleq \mathscr{L}[q, \Theta]$$

• \mathscr{L} is called the **evidence lower bound** or the **ELBO** for short.

for any distribution q(z)

by Jensen's inequality

Bayesian inference in latent variable models Coordinate ascent on the ELBO

Update the parameters,

 $\Theta \leftarrow \arg \max_{\Theta} \mathscr{L}[q, \Theta] = \arg \max_{\Theta} \mathbb{E}_{q(z)}[\log p(x, z, \Theta)]$

• Update the distribution on latent variables,

$$q \leftarrow \arg\max_q \mathscr{L}[q, \Theta]$$

Bayesian inference in latent variable models Coordinate ascent on the ELBO

Update the parameters,

 $\Theta \leftarrow \arg \max_{\Theta} \mathscr{L}[q, \Theta] = \arg \max_{\Theta} \mathbb{E}_{q(z)}[\log p(x, z, \Theta)]$

Update the distribution on latent variables,

$$q \leftarrow \arg \max_{q} \mathscr{L}[q, \Theta]$$

= $\arg \max_{q} \mathbb{E}_{q(z)} \left[\frac{\log p(x, z, \Theta)}{q(z)} \right]$
= $\arg \min_{q} \operatorname{KL} \left(q(z) \parallel p(z \mid x, \Theta) \right)$
= $p(z \mid x, \Theta)$

Bayesian inference in latent variable models The Expectation-Maximization (EM) algorithm

M-step: Maximize the expected log probability

$$\Theta \leftarrow \arg \max_{\Theta} \mathbb{E}_{q(z)}[\log p(x, z, \Theta)]$$

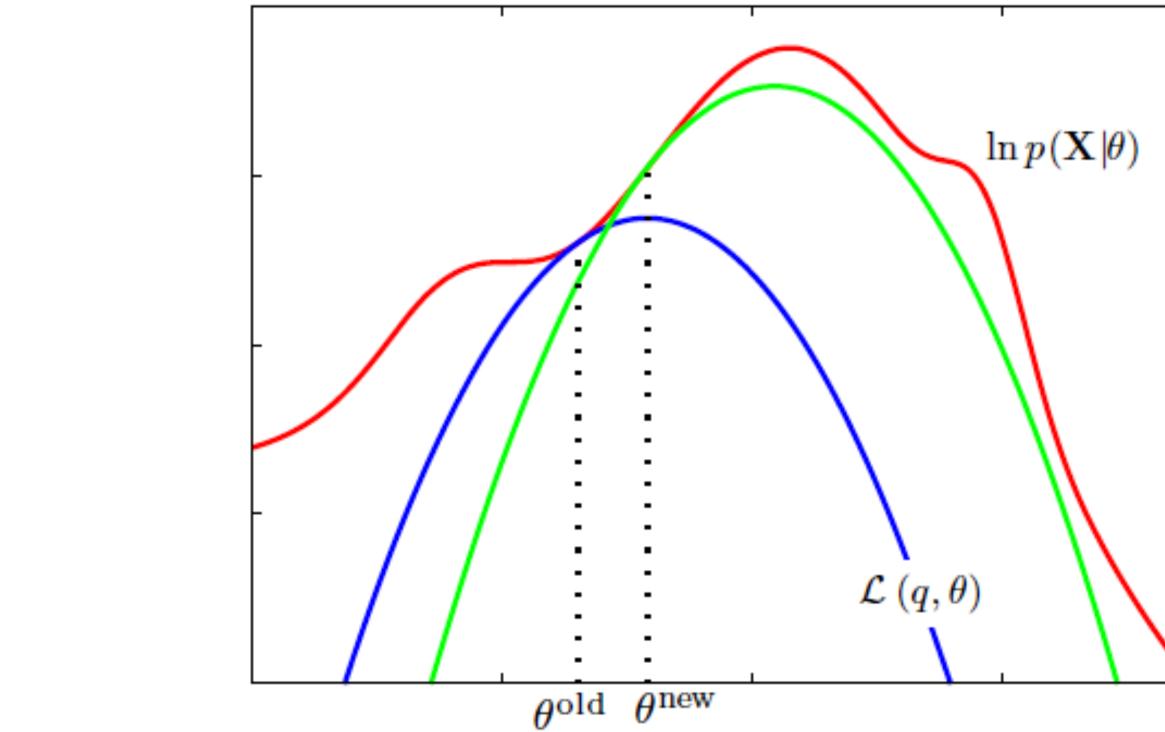
• **E-step**: Update the posterior over latent variables

$$q \leftarrow p(z \mid x, \Theta)$$

• After each E-step, the **ELBO is tight**:

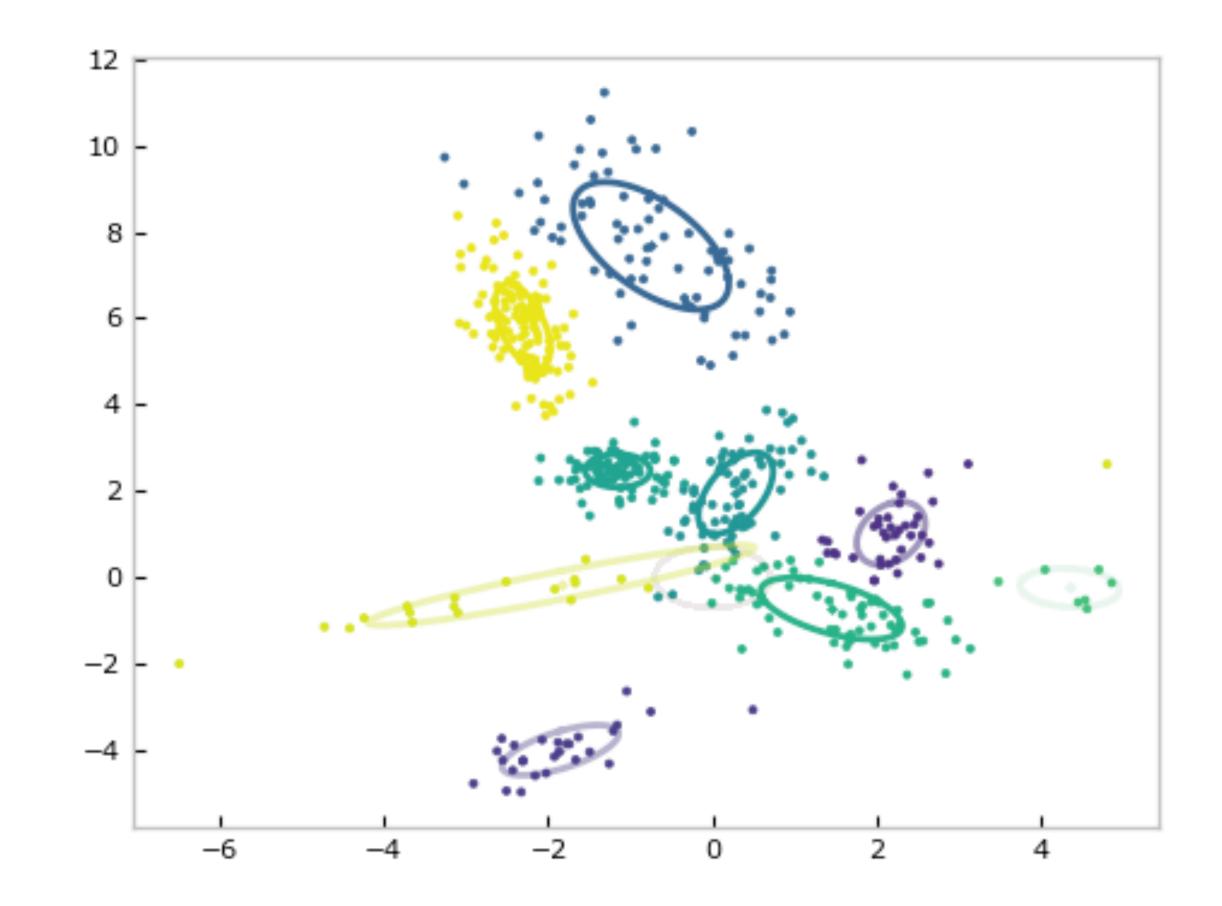
$$\begin{aligned} \mathscr{L}[q,\Theta] &= \mathbb{E}_{p(z|x,\Theta)} \left[\log \frac{p(x,z,\Theta)}{p(z|x,\Theta)} \right] \\ &= \mathbb{E}_{p(z|x,\Theta)} \left[\log p(x,\Theta) \right] \\ &= \log p(x,\Theta) \end{aligned}$$

• EM converges to **local optima** of the marginal distribution.



Bishop (2006). Pattern Recognition and Machine Learning, Ch 9.4.

The Gaussian Mixture Model Example draw from a 2D GMM with 10 clusters



EM for the Gaussian mixture model

E-step: Update the posterior over latent variables, ullet

$$q(z_t = k) \leftarrow p(z_t = k \mid x_t, \Theta) = \frac{\pi_k \mathcal{N}(x_t \mid \Omega)}{\sum_{j=1}^K \pi_j \mathcal{N}(x_j \mid \Omega)}$$

M-step: Update the parameters. Let $T_k = \sum_{k=1}^{r} q(z_t = k)$, then t=1

$$\pi_k \leftarrow \frac{T_k}{T}, \qquad b_k \leftarrow \frac{1}{T_k} \sum_{t=1}^T q(z_t = k) x_t,$$

i.e. set the parameters to their weighted averages.

Compare these updates to the MAP estimation / coordinate ascent updates from before! lacksquare

 b_k, Q_k) $[x_t \mid b_j, Q_j)$

$$Q_k \leftarrow \frac{1}{T_k} \sum_{t=1}^T q(z_t = k) (x_t - b_k) (x_t - b_k)^\top.$$

Hidden Markov Models

The Gaussian HMM

A Gaussian HMM is just a Gaussian mixture model but where cluster assignments are linked across time!

$$z_1 \sim \operatorname{Cat}(\pi),$$

$$z_t \mid z_{t-1} \sim \operatorname{Cat}(P_{z_{t-1}}), \quad \text{for } t = 2,.$$

$$x_t \mid z_t \sim \mathcal{N}(b_{z_t}, Q_{z_t}) \quad \text{for } t = 1,.$$

Its parameters are $\Theta = \pi, P, \{b_k, Q_k\}_{k=1}^K$ where $P \in [0,1]^{K \times K}$ is a row-stochastic transition matrix.

Under this model, the **joint probability** factors as

$$p(x, z, \Theta) = p(z_1) \prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^{T} p(x_t \mid z_t)$$

 \ldots, T_{\perp} ..., *T*

 Z_t

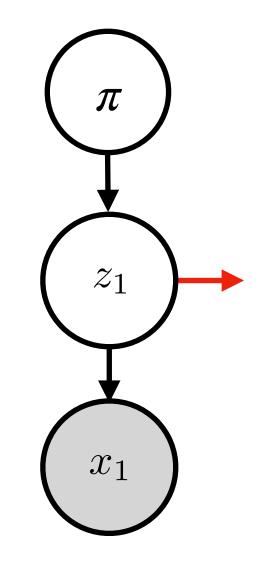
The Gaussian HMM **Graphical Model**

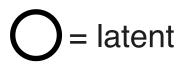
Transition **Probabilities**

Discrete Latent States

Observations (e.g. PCA loadings of each frame)

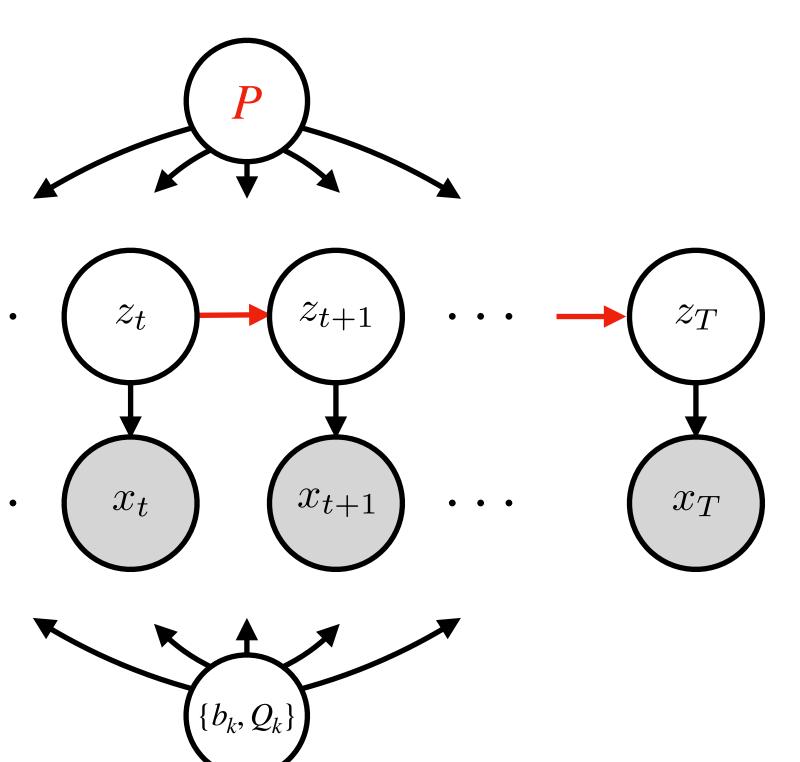
> State Means and Covariances



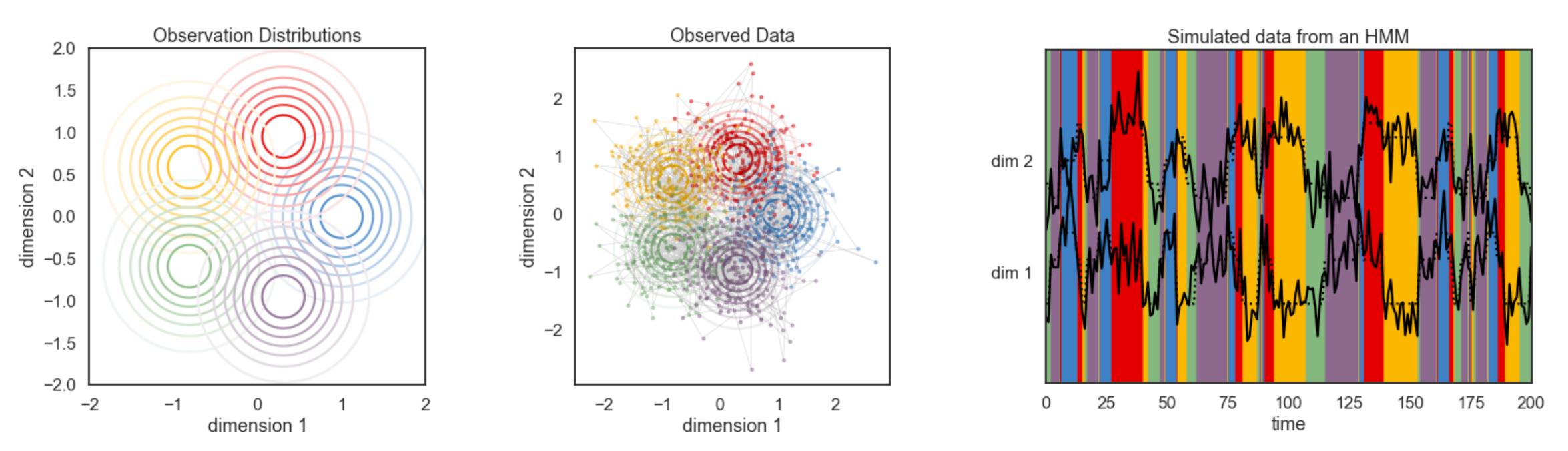


• •

• •



The Gaussian HMM Example draw from a 2D Gaussian HMM with 5 clusters



EM for the Gaussian HMM The posterior is a little trickier...

E-step: Update the posterior over latent variables, \bullet

 $q(z) \leftarrow p(z \mid x, \Theta) \propto p(x, z, \Theta) = p(z_1)$

- The normalized posterior no longer has a simple **closed form!** •
- However, we can still efficiently compute the marginal probabilities for the M-step. \bullet

$$\prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^{T} p(x_t \mid z_t)$$

Consider the marginal probability of state k at time t:

$$q(z_t = k) = \sum_{z_1 = 1}^{K} \cdots \sum_{z_{t-1} = 1}^{K} \sum_{z_{t+1} = 1}^{K} \cdots \sum_{z_T = 1}^{K} q(z_t)$$

 $z_1, \ldots, z_{t-1}, z_t = k, z_{t+1}, \ldots, z_T$

• Consider the marginal probability of state k at time t:

$$q(z_{t} = k) = \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} q(z_{1}, \dots, z_{t-1}, z_{t} = k, z_{t+1}, \dots, z_{T})$$

$$\propto \left[\sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right] \times \left[p(x_{t} \mid z_{t}) \right]$$

$$\times \left[\sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u}) \right]$$

Consider the marginal probability of state k at time t: •

$$q(z_{t} = k) = \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} q(z_{1}, \dots, z_{t-1}, z_{t} = k, z_{t+1}, \dots, z_{T})$$

$$\propto \left[\sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right] \times \left[p(x_{t} \mid z_{t}) \right]$$

$$\times \left[\sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u}) \right]$$

$$\triangleq \alpha_{t}(z_{t}) \times p(x_{t} \mid z_{t}) \times \beta_{t}(z_{t})$$

EM for the Gaussian HMM Computing the forward messages $\alpha_t(z_t)$

 Consider the forward messages: $\alpha_t(z_t) \triangleq \sum_{k=1}^{K} \cdots \sum_{k=1}^{K} p(z_1) \prod_{k=1}^{t-1} p(x_s \mid z_s) p(z_{s+1} \mid z_s)$ $z_1 = 1$ $z_{t-1} = 1$ s = 1

EM for the Gaussian HMM Computing the forward messages $\alpha_t(z_t)$

• Consider the forward messages: $\alpha_t(z_t) \triangleq \sum_{k=1}^{K} \cdots \sum_{s=1}^{K} p(z_1) \prod_{k=1}^{t-1} p(x_s \mid z_s) p(z_{s+1} \mid z_s)$ $z_1 = 1$ $z_{t-1} = 1$ s = 1

 $=\sum_{z_{t-1}=1}^{K} \left[\left(\sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-2}=1}^{K} p(z_{1}) \prod_{s=1}^{t-2} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right) p(x_{t-1} \mid z_{t-1}) p(z_{t} \mid z_{t-1}) \right]$

EM for the Gaussian HMM Computing the forward messages $\alpha_t(z_t)$

 Consider the forward messages: $\alpha_t(z_t) \triangleq \sum_{k=1}^{K} \cdots \sum_{s=1}^{K} p(z_1) \prod_{k=1}^{t-1} p(x_s \mid z_s) p(z_{s+1} \mid z_s)$ $z_1 = 1$ $z_{t-1} = 1$ s = 1 $= \sum_{t=1}^{n} \alpha_{t-1}(z_{t-1}) p(x_{t-1} \mid z_{t-1}) p(z_t \mid z_{t-1})$ $z_{t-1} = 1$

• We can compute these messages **recursively**!

 $= \sum_{z_{t-1}=1}^{K} \left[\left(\sum_{z_1=1}^{K} \cdots \sum_{z_{t-2}=1}^{K} p(z_1) \prod_{s=1}^{t-2} p(x_s \mid z_s) p(z_{s+1} \mid z_s) \right) p(x_{t-1} \mid z_{t-1}) p(z_t \mid z_{t-1}) \right]$

EM for the Gaussian HMM Computing the forward messages $\alpha_t(z_t)$. Vectorized.

• Let $\alpha_t = [\alpha_t(z_t = 1), \dots, \alpha_t(z_t = K)]^T$ denote the column vector of forward messages. Then,

$$\alpha_t = P^{\top}(\alpha_{t-1} \odot \mathcal{C}_{t-1})$$

where

- O denotes the element-wise product, and
- *P* is the transition matrix with $P_{ij} = p(z_t = j \mid z_{t-1} = i)$.
- For the base case, let $\alpha_1(z_1) = p(z_1)$.

• $\ell_{t-1} = [p(x_{t-1} \mid z_{t-1} = 1), ..., p(x_{t-1} \mid z_{t-1} = K)]^{\mathsf{T}}$ is the vector of likelihoods,

EM for the Gaussian HMM Computing the backward messages $\beta_t(z_t)$

 Now take the backward messages: $\beta_t(z_t) \triangleq \sum_{i=1}^K \cdots \sum_{i=1}^K \prod_{i=1}^T p(z_u \mid z_{u-1}) p(x_u \mid z_u)$ $z_{t+1} = 1$ $z_T = 1$ u = t+1

EM for the Gaussian HMM Computing the backward messages $\beta_t(z_t)$

• Now take the **backward messages**: $\beta_t(z_t) \triangleq \sum_{i=1}^K \cdots \sum_{i=1}^K \prod_{i=1}^T p(z_u \mid z_{u-1}) p(x_u \mid z_u)$ $z_{t+1} = 1$ $z_T = 1$ u = t+1 $= \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} \cdots \sum_{k=1}^{K} \prod_{i=1}^{T} p(z_u \mid z_{u-1}) p(x_u \mid z_u)$ $z_{t+1} = 1$

$z_{t+2} = 1$ $z_T = 1$ u = t+2

EM for the Gaussian HMM Computing the backward messages $\beta_t(z_t)$

- Now take the **backward messages**: $\beta_t(z_t) \triangleq \sum_{i=1}^K \cdots \sum_{i=1}^K \prod_{i=1}^T p(z_u \mid z_{u-1}) p(x_u \mid z_u)$ $z_{t+1} = 1$ $z_T = 1$ u = t+1 $= \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \sum_{k=1}^{K} p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_t) p(x_t) p(x_t) p(x_t) p(x_t) p(x_t) p(x_t) p(x_t) p($ $z_{t+1} = 1$ $z_{t+2} =$ K $= \sum p(z_{t+1} \mid z_t) p(x_{t+1} \mid z_{t+1}) \beta_{t+1}(z_{t+1})$ $z_{t+1} = 1$
- Again, we can compute the backward messages recursively!

$$\sum_{i=1}^{K} \cdots \sum_{z_T=1}^{K} \prod_{u=t+2}^{T} p(z_u \mid z_{u-1}) p(x_u \mid z_u)$$

EM for the Gaussian HMM Computing the backward messages $\beta_t(z_t)$. Vectorized.

• Let $\beta_t = [\beta_t(z_t = 1), \dots, \beta_t(z_t = K)]^T$ denote the column vector of backward messages. Then,

$$\beta_t = P(\beta_{t+1} \odot \mathcal{C}_{t+1})$$

• For the base case, let $\beta_T(z_T) = 1$.

EM for the Gaussian HMM **Combining the forward and backward messages**

- The posterior marginal probability of state k at time t is, $q(z_t = k) \propto \alpha_t(z_t = k) \times p(x_t \mid z_t = k) \times \beta_t(z_t = k)$ $= \alpha_{tk} \ell_{tk} \beta_{tk}$
- The probabilities need to sum to one. Normalizing yields,

$$q(z_t = k) = \frac{\alpha_{tk} \ell_{tk} \beta_{tk}}{\sum_{j=1}^{K} \alpha_{tj} \ell_{tj} \beta_{tj}}$$

• Finally, note the marginal is invariant to multiplying α_t and/or β_t by a constant.

EM for the Gaussian HMM Normalizing the messages to prevent underflow

- The messages involve products of probabilities, which quickly underflow.
- We can leverage the scale invariance to renormalize the messages. I.e. replace:

$$\alpha_t = P^{\mathsf{T}}(\alpha_{t-1} \odot \mathscr{C}_{t-1}) \quad \text{with}$$

where $\tilde{\alpha}_{t}$ are normalized for numerical stability. As before, $\tilde{\alpha}_{1} = \pi$.

 This lends a nice interpretation: the forward messages are conditional probabilities $\tilde{\alpha}_{tk} = p(z_t = k \mid x_{1:t-1})$ and the normalization constants are the marginal likelihoods $A_t = p(x_t | x_{1:t-1})$.

$$\begin{aligned} A_{t-1} &= \sum_{k} \tilde{\alpha}_{t-1,k} \mathcal{\ell}_{t-1,k} \\ \tilde{\alpha}_{t} &= \frac{1}{A_{t-1}} P^{\top} (\tilde{\alpha}_{t-1} \odot \mathcal{\ell}_{t-1}) \end{aligned}$$

Finally, we can compute the marginal likelihood alongside the forward messages •

$$\log p(x \mid \Theta) = \log \sum_{z_1=1}^K \cdots \sum_{z_T=1}^K \left[p(z_1) \prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^T p(x_t \mid z_t) \right]$$
$$= \log \sum_{z_T=1}^K \alpha_T(z_T) p(x_T \mid z_T)$$
$$= \log \prod_{t=1}^T A_t = \sum_{t=1}^T \log A_t$$
pain makes sense since the normalization constants are $A_t = p(x \mid x_t)$

• Again, makes sense since the normalization constants are $A_t = p(x_t \mid x_{1:t-1})$.

EM for the Gaussian HMM Putting it all together

E-step: Run the forward-backward algorithm to compute ullet

$$q(z_t = k) \leftarrow p(z_t = k \mid x_{1:T}, \Theta) = \frac{\alpha_{tk} \ell_{tk} \beta_{tk}}{\sum_{j=1}^{K} \alpha_{tj} \ell_{tj} \beta_{tj}} \text{ and }$$

M-step: Update the parameters. ullet

$$T_k = \sum_{t=1}^T q(z_t = k) \qquad b_k = \frac{1}{T_k} \sum_{t=1}^T q(z_t = k) x_t \qquad Q_k = \frac{1}{T_k} \sum_{t=1}^T q(z_t = k) (x_t - b_k) (x_t - b_k)^{\mathsf{T}}$$

to update the transition matrix P.

and the marginal log likelihood $\log p(x_{1:T} \mid \Theta)$.

• Note: You can use the forward-backward algorithm to compute $q(z_t = i, z_{t+1} = j)$ too. That's all you need

Conclusion

- EM for mixture models (with exponential family likelihoods) amounts to computing cluster assignment probabilities and expected sufficient statistics, then updating parameters based on them.
- Stochastic EM generalizes this approach to work with mini-batches of data.
- Hidden Markov models (HMMs) are just mixture models with dependencies across time.
- The EM algorithm is nearly the same, but we use the forward-backward algorithm to compute latent state probabilities and expected sufficient stats.