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Learning Objectives
• Understand where neural data comes 

from, what the key analysis problems 
are, and how state-of-the-art methods 
work.


• Develop probabilistic models for 
neural data analysis and algorithms to 
fit those models.


• Implement models and algorithms in 
Python/PyTorch and apply them to real 
data.


• Generalize to new problems and 
datasets in a course project.
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Spike Sorting

• Modern recording probes like Neuropixels 
measure the electrical activity of hundreds 
of cells across multiple brain regions 
simultaneously.


• When neurons near the probe fire an action 
potential, it registers a spike in the 
voltage on nearby channels.


• Our goal is to find the spikes in this time 
series and assign a neuron label based on 
its waveform.


• What we learned: mixture models, matrix 
factorization, MAP inference, coordinate 
ascent.

Jun et al, 2017.

Unit I: Signal Extraction



Demixing calcium imaging data

• When neurons spike, there’s a large influx of 
calcium ions (Ca2+) into the cell.


• Genetically encoded calcium indicators 
(GECIs) bind to calcium ions, and when light is 
shone on them they fluoresce. 


• Using these indicators, neuroscientists can 
optically record calcium concentrations, a 
good proxy for neural spiking.


• Demixing videos to identify cells and 
deconvolving traces to identify spikes is an 
area of active research.


• What we learned: convolutional matrix 
factorization, convex optimization, CVXpy

Data from Sue Ann Koay and David Tank

Giovanucci et al (eLife, 2019)

Unit I: Signal Extraction



Markerless pose tracking

• We want to understand how neural 
activity produces behavior.


• First, we need to quantify motor 
outputs, ideally in unconstrained animals.


• State of the art methods for markerless 
pose tracking use deep convolutional 
neural networks (CNNs) to find 
keypoints in videos.


• What we learned: logistic regression, 
convolutional neural networks, transfer 
learning, DataLoaders, 
torchvision.models.

Unit I: Signal Extraction

Mathis et al (Nat. Neuro., 2018) 
https://github.com/DeepLabCut/DeepLabCut



Predicting neural responses to images

• CNNs aren’t just useful for signal 
extraction, they’re also our best models 
for how the visual system encodes 
sensory inputs. 

• Of course, we see a constantly changing 
visual scene.  We’ll build models that take 
in movies and output neural firing rates. 

• Neural spikes are modeled as draws from 
a Poisson process with these firing rates.


• What we learned: generalized linear 
models, Poisson processes, random 
graph models, more CNNs.

McIntosh et al (NeurIPS 2016)

Yamins and DiCarlo (Nat. Neuro. 2016)

Unit II: Encoding and Decoding Neural Spike Trains



Decoding arm movements from neural data

• We also want to understand how to 
decode motor outputs from neural 
activity.


• This is a central challenge in building 
neural prostheses.


• Neurons in motor cortex, in particular, fire at 
different rates for different movements.


• We can leverage these differences to infer 
movements from neural data. 

• What we learned: Bayesian decoders, 
linear dynamical systems, natural and mean 
parameters of the Gaussian distribution.

Unit II: Encoding and Decoding Neural Spike Trains

Prof. Krishna Shenoy, EE124



Summarizing behavior with movement “syllables”

• We can learn a lot about the brain by 
understanding the structure of its outputs.


• Recently, there’s been a “call to action” to 
better characterize animal behavior. Krakauer et 
al (Neuron, 2017); Datta et al. (Neuron, 2019)


• Latent variable models offer a compelling 
means of summarizing behavior in terms of 
hidden states, or “syllables,” of movement.


• We’ll build autoregressive hidden Markov 
models to extract such syllables from video 
data.


• What we learned: expectation-maximization 
(EM), hidden Markov models, sufficient statistics

Wiltschko et al (Neuron 2015)

Rear down Walk forward Grooming

JumpRear upScrunch

Unit III: Latent variable models of neural and behavioral data



Discovering dynamical states in whole-brain recordings

• A remarkable property of brain activity 
is that it is often lower dimensional 
than the sheer number of neurons.


• Moreover, the dynamics within this 
low dimensional space are often 
indicative of the animal’s behavior.


• We will study state space models for 
characterizing these low dimensional 
dynamics.


• What we learned: factor analysis, 
switching LDS, variational EM, SSM

Unit III: Latent variable models of neural and behavioral data

Kato et al (Cell, 2015)



State space models and inference algorithms

• Designing more flexible and interpretable 
models for neural and behavioral time 
series remains an important area of 
research.


• In parallel, we are working on improved 
algorithms for inferring states and 
estimating parameters of these models too.


• As datasets grow, our models must as well. 
At some point, these so-called foundation 
models could unlock new possibilities for 
understanding neural computation. 


• What we learned: Gaussian processes, 
SDEs, VAEs, foundation models.

Unit IV: Current research topics



Unit V: More data, more problems 



• Finding the “wiring diagram” of the brain by 
reconstructing cells from electron microscopy image 
stacks. 


• The connectome of C. elegans (c.f. Lab 8) was 
published by White et al, 1986, with 302 neurons 
and ~7k synapses.


• It has recently been refined (Cook et al, 2019) for 
both sexes and over development (Witvliet et al, 
2020).


• Large scale efforts are underway to map the 
connectome of other model organisms: Drosophila 
(Xu et al, 2020), larval zebrafish (Kunst et al, 2019), 
mouse (Oh et al, 2014; Schneider-Mizell et al, 2020)


• Statistical challenges: image segmentation, 3D 
reconstruction, shape analysis, network analysis, …

Connectomics

Allen Institute for Brain Science



Schneider-Mizell et al. bioRxiv 2020

Allen Institute for Brain Science



Characterizing cell types
Genetic Sequencing

https://portal.brain-map.org/atlases-and-data/rnaseq



Voltage Imaging

Hochbaum et al (2014)

Goal: develop a model that captures spatiotemporal voltage dynamics and 
use it to smooth noisy imaging data with low temporal resolution.

Challenge: we don’t know the precise ion channel kinematics.



Measuring neural activity in the human brain
Functional Magnetic Resonance Imaging (fMRI)

• fMRI measures the blood oxygenation level 
dependent (BOLD) contrast to measure blood 
flow, which is correlated with neural activity.


• “Resting state” fMRI has been used to characterize 
the default mode network of correlated brain 
regions and apparent brain states. 


• fMRI is one of our best tools for measuring human 
brain activity in healthy subjects. 


• Statistical challenges: Multivariate analysis, 
functional connectivity, hypothesis testing. 



• EEG measures electrical activity in the brain 
via electrodes positioned along the scalp. 


• It is (relatively) non-invasive, but electrical 
signals are filtered and attenuated by the 
skull.


• Commonly used to diagnose epilepsy, 
sleep disorders, etc. 


• Recent work by Prof. Emery Brown (MIT) 
uses EEG to monitor patients during 
anesthesia. 


• Statistical challenges: signal processing, 
spectral analysis, state space modeling.

Electroencephalography (EEG)

https://arstechnica.com/information-technology/2018/04/hacking-your-brain-researchers-discover-security-bugs-in-eeg-systems/

(not me)



• Sometimes called “intracranial EEG,” ECoG 
measures electrical activity in the brain via electrodes 
placed on the exposed surface of the brain.


• As such, it is only used for patients who need 
neurosurgery, e.g. due to medically-intractable 
epilepsy.


• Surface and depth electrodes record local field 
potentials (LFP) and single neurons. 


• ECoG is a promising technique for developing brain-
computer interfaces. C.f. work from the Henderson 
Lab at Stanford and Eddie Chang’s group at UCSF. 


• Statistical challenges: dynamical systems 
modeling, neural decoding, transfer learning 
(between patients with different grid placements).

Electrocorticography (ECoG)

(not me)

https://en.wikipedia.org/wiki/Electrocorticography



• MEG measures brain activity via the 
magnetic fields induced by ionic 
currents.


• MEG has a fast temporal response 
(10ms), making it particularly useful 
for fast computations like rapid 
image classification and speech. 


• See Laura Gwilliams’ work at 
Stanford!


• Statistical challenges: source 
localization, “beam forming,”  

Magnetoencephalography (MEG)

https://en.wikipedia.org/wiki/Magnetoencephalography



Spatial and temporal trade-offs

Sejnowski et al, Nature Neuro. 2014.



“XROMM combines 3D 
models of bone morphology 
with movement data from 
biplanar x-ray video to create 
highly accurate (±0.1 mm) 
reanimations of the 3D bones 
moving in 3D space.”

X-ray Reconstruction of Moving Morphology (XROMM)

https://www.xromm.org/

https://www.youtube.com/watch?v=Zgc6lKeLSsE


Unit V: More models, more problems
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Task-based modeling with RNNs

Yang et al, Nature Neuro. 2019.



The Bayesian Brain

https://blogs.scientificamerican.com/cross-check/are-brains-bayesian/

Lake et al (Science, 2015)

https://blogs.scientificamerican.com/cross-check/are-brains-bayesian/


Theoretical Neuroscience

www.cbmm.mit.edu



Related Faculty at Stanford 
(I’m sure I’m missing many!)

• Rosa Cao (Philosophy)


• EJ Chichilnisky (EE)


• Karl Deisseroth (Psychiatry and BioE)


• Shaul Druckmann (Neurobiology)


• Surya Ganguli (Applied Physics)


• Justin Gardner (Psychology)


• Tobias Gerstenberg (Psychology)


• Noah Goodman (Psychology and CS)

• Laura Gwilliams (Psychology, Wu Tsai, SDS)


• Liqun Luo (Biology)


• Jay McClelland (Psychology)


• Paul Nuyujukian (BioE)


• Russ Poldrack (Psychology)


• Robert Sapolsky (Biology)


• Mark Schnitzer (Applied Physics)


• Dan Yamins (Psychology and CS)



Conclusion

• It’s an exciting age for neuroscience: a confluence of technological advances is offering many 
new ways to measure the brain in action. 


• In parallel, machine learning and statistics are experiencing a renaissance of their own, fueled 
by advances in deep learning, generative modeling, efficient hardware, and more. 


• At the intersection, there is an array of exciting problems to tackle, ranging from using ML 
and statistical methods to better analyze and glean insight from neural data, to using ML to 
advance new hypotheses for how the brain computes.


• This course has introduced a few of the current methods for analyzing brain data. In fact, 
you’ve now built many of these tools from the ground up! 


• We’ve just scratched the surface though, and there are tons of great courses and books to 
explore if you want to learn more.



Feedback

• As always, we would greatly appreciate 
your feedback on the course. 


• Were the learning objectives 
(understand, develop, implement, & 
generalize) achieved?


• In particular, we dropped the in-class 
lab component this year. Do you think 
we should revive it next time?
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Thank You!


