Machine Learning Methods for Neural Data Analysis Decoding neural spike trains

Scott Linderman *STATS 220/320 (NBIO220, CS339N). Winter 2023.*

- Bayesian decoders
	- A straw man model, just for illustration
	- An aside on the multivariate Gaussian distribution
	- Improving upon the basic model
- "Direct" decoders and structured prediction

Agenda Decoding neural spike trains

Big picture

In statistics lingo, it's all regression.

Decoding movement from recordings in motor cortex

Shenoy Lab (Stanford)

GOAL: estimate *p*(*X* ∣ *Y*)

Krishna Shenoy, 1968-2023 | Photo by Rod Searcey

<https://engineering.stanford.edu/magazine/krishna-shenoy-engineer-who-reimagined-how-brain-makes-body-move-dies-54>

Decoding movement from neural spike trains Brainstorming

• How would you approach this problem?

Decoding movement from neural spike trains Brainstorming

- It's just a regression problem... let's use the same techniques (GLMs, CNNs, etc) that we used for encoders.
	- I'll call these "direct" decoders, and we'll return to this idea in the second half of lecture.
- First, suppose we know something about the prior distribution of movement, $p(X)$. E.g. current position and velocity determine next position.
- Moreover, suppose we know something about what the neurons encode. E.g. suppose the neurons encode current velocity.
- Can we use that knowledge to inform our decoder?

• Bayes' Rule tells us how to combine a \boldsymbol{p} rior $p(X)$ and a likelihood $p(Y \mid X)$ to obtain a **posterior**,

• Here, the likelihood is the **encoder** and the posterior is the **decoder**.

$$
p(X | Y) = \frac{p(Y | X)p(X)}{p(Y)}
$$

$$
\propto p(Y | X)p(X)
$$

Decoding movement from neural spike trains Bayesian decoders

Decoding movement from neural spike trains A very simple model

- Let $y_t \in \mathbb{N}^N$ denote the spike counts of N neurons at time t . $y_t \in \mathbb{N}^N$
- Let $x_t \in \mathbb{R}^2$ denote the position of the cursor at time t . $x_t \in \mathbb{R}^2$

Consider the following likelihood (i.e. encoder)…

• Consider the following prior…

Question: What's wrong with this model?

Question: What's wrong with this model?

- Independent positions across time
- Gaussian model on counts?
- Condtionally independent counts
- Expected spike count is linear in x_t

The one good thing about this model is it's easy to work with!

Derive the posterior...

Decoding movement from neural spike trains Deriving the posterior (decoder)

Aside: the multivariate Gaussian distribution

• Start with the standard normal distribution,

• Let $z = (z_1, ..., z_D)$ denote a vector of iid standard normal r.v.'s. Then,

$$
\bullet \ \ z_d \sim \mathcal{N}(0,1) \iff p(z_d) = (2\pi)^{-1/2} \exp\left\{-\frac{z_d^2}{2}\right\}
$$

$$
p(z) = \prod_{d=1}^{D} p(z_d)
$$

=
$$
\prod_{d=1}^{D} (2\pi)^{-1/2} \exp \left\{-\frac{z_d^2}{2}\right\}
$$

=
$$
(2\pi)^{-D/2} \exp \left\{-\frac{1}{2}z^\top z\right\}
$$

• We say $z \sim \mathcal{N}(0,I)$, a multivariate normal distribution with mean 0 and covariance I .

The multivariate Gaussian distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

• Change of variables formula:

• Then
$$
z = \Sigma^{-1/2}(x - \mu)
$$
.

$$
p(x) = \left| \frac{dz}{dx} \right| p(z(x))
$$

= $|\Sigma^{-1/2}| \mathcal{N}(\Sigma^{-1/2}(x - \mu), I)$
= $(2\pi)^{-D/2} |\Sigma|^{-1/2} \exp \left\{-\frac{1}{2}(x - \mu)^{\top} \Sigma^{-1} (x - \mu)\right\}$
 $\triangleq \mathcal{N}(x | \mu, \Sigma)$

Aside: the multivariate Gaussian distribution

 \int

• Now let $x = \mu + \sum_{i=1}^{1/2} \tau_i$ for $\mu \in \mathbb{R}^D$ and (invertible) $\Sigma^{1/2} \in \mathbb{R}^{D \times D}$. $x = \mu + \Sigma^{1/2} z$ for $\mu \in \mathbb{R}^D$ $\Sigma^{1/2} \in \mathbb{R}^{D \times D}$

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

}

 $p(x) = (2\pi)^{-D/2} \exp\left\{-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right\}$

Aside: the multivariate Gaussian distribution "Information" form / natural parameters

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

]

 $p(X \mid Y) \propto$ *T* ∏ *t*=1 $[p(y_t | x_t) p(x_t)]$ = *T* ∏ $\begin{array}{c} \mathbf{L} \ \mathbf{L} \\ t=1 \end{array}$ *N* ∏ *n*=1 $(y_{tn} | c_n^T x_t + d_n, r_n^2) \mathcal{N}(x_t | 0, Q)$

Decoding movement from neural spike trains Deriving the posterior (decoder)

Improving upon the basic model

Decoding movement from neural spike trains A linear dynamical system (LDS) model

- One of the problems with the basic model is that it treated each time bin as independent.
- Instead, consider the following prior $p(X) = p(x_1)$ *T* ∏ *t*=2 $p(x_t | x_{t-1})$ $=$ $\mathcal{N}(x_1 | 0, Q)$ *T* ∏ *t*=2 $(x_t | Ax_{t-1}, Q)$
- Parameterized by **dynamics matrix** $A \in \mathbb{R}^{D \times D}$.

$$
p(X \mid Y) \propto \left[\mathcal{N}(x_1 \mid 0, Q) \prod_{t=2}^{T} \mathcal{N}(x_t \mid Ax_{t-1}, Q) \right]
$$

 \blacksquare *T* ∏ *t*=1 $(y_t | Cx_t + d, R)$]

Decoding movement from neural spike trains Derive the posterior under the LDS

Decoding movement from neural spike trains Derive the posterior under the new model (continued)

Decoding movement from neural spike trains Final results

$$
p(X | Y) = \mathcal{N}(\text{vec}(X) | \mu, \Sigma)
$$

\n
$$
\Sigma = J^{-1} \qquad \mu = J^{-1}
$$

\n
$$
J = \begin{bmatrix} J_{11} & J_{21}^{\top} & & \\ J_{21} & J_{22} & J_{32}^{\top} & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & J_{T,T-1}^{\top} \\ & & & J_{T,T-1}J_{TT} \end{bmatrix} \qquad h = \begin{bmatrix} h & & \\ h & & \\ h & & \\ \vdots & & \\ h & & \\ h & & \\ h & & & \end{bmatrix}
$$

Where

- The diagonal blocks are $J_{tt} = Q^{-1} + A^\top Q^{-1}A$ (except for J_{11} and J_{TT}).
- The lower diagonal blocks are $J_{t,t-1} = Q^{-1}A$
- The linear coefficients are $h_t = C^{\top} R^{-1} (y_t d)$.

$$
\begin{bmatrix}\nh_1 \\
h_2 \\
\vdots \\
h_T\n\end{bmatrix}
$$

The posterior is no longer Gaussian, but it's common to approximate it as one.

Decoding movement from neural spike trains Poisson observations

- So far we've used a linear, Gaussian encoder for the spikes, even though they are counts!
- Suppose instead, $p(Y | X) =$ *T* ∏ ∏ *t*=1 *n*=1 *N* $P_o(y_{tn} | f(c_n^Tx_t + d_n))$

Approximate the posterior as

 $p(X | Y) \approx \mathcal{N}(\mu, \Sigma)$

For GLM encoders, the log joint is concave and μ and Σ can be found efficiently.

where

$$
\mathcal{L}(X) = -\log p(X, Y)
$$

$$
\mu = \operatorname{argmin}_{X} \mathcal{L}(X)
$$

$$
\Sigma = \left[\nabla^2 \mathcal{L}(X) \Big|_{X=\mu} \right]^{-1}
$$

Decoding movement from neural spike trains Laplace approximation

Decoding movement from neural spike trains Laplace approximation under a Poisson GLM encoder

Derive the Hessian under the Poisson GLM encoder $-\log p(Y \mid X) = -$ *T* ∑ *t*=1 *n*=1 *N* ∑ $\log \mathrm{Po} \left(y_{tn} \mid f(c_n^{\top} x_t + d_n) \right)$

"Direct" decoders and structured prediction

- If we're going to make a Gaussian approximation anyway, why not learn more flexible means and covariances?
- Recall the form of the LDS posterior,

$$
J_{tt} = Q^{-1} + A^{T} Q^{-1} A
$$

$$
J_{t,t-1} = - Q^{-1} A
$$

$$
h_{t} = C^{T} R^{-1} (y_{t} - d)
$$

• **Idea**: replace these with learned functions of $y_{1:T}$.

Decoding movement from neural spike trains Structured decoders

• For example,

$$
p(X | Y) = \mathcal{N}(\text{vec}(X) | \mu, \Sigma)
$$

$$
\mu = J(Y)^{-1}h(Y)
$$

$$
\Sigma = J(Y)^{-1}
$$

• Where $J(Y)$ is composed of blocks $J_{tt}(y_{t-\Delta:t+\Delta}), J_{t,t-1}(y_{t-\Delta:t+\Delta})$ and $h(Y)$ is composed of blocks $h_t(y_{t-\Delta:t+\Delta})$.

Decoding movement from neural spike trains Structured decoders

Conclusion

- Decoding and encoding are two sides of the same coin.
- We can treat decoding as a simple regression problem, but sometimes we have prior information about X or the encoder $p(Y \mid X)$ that we can leverage.
- Bayesian rule tells us how to combine prior and likelihood to derive a posterior distribution.
- However, the posterior rarely has a simple, closed form, so we need some approximations.
- Structured decoders give us a way to capture general dependency structure while allowing more flexible features of the data to be learned and incorporated.