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Agenda

• Bayesian decoders


• A straw man model, just for illustration


• An aside on the multivariate Gaussian distribution


• Improving upon the basic model


• “Direct” decoders and structured prediction

Decoding neural spike trains



Big picture

Stimulus Neural Recording Behavioral Video
encoding decoding

In statistics lingo, it’s all regression.



Decoding movement from recordings in motor cortex

Shenoy Lab (Stanford)

Y X

GOAL:  estimate p(X ∣ Y)



https://engineering.stanford.edu/magazine/krishna-shenoy-engineer-who-reimagined-how-brain-makes-body-move-dies-54 

https://engineering.stanford.edu/magazine/krishna-shenoy-engineer-who-reimagined-how-brain-makes-body-move-dies-54


Decoding movement from neural spike trains
Brainstorming

• How would you approach this problem?
Y X



Decoding movement from neural spike trains
Brainstorming

• It’s just a regression problem… let’s use the same 
techniques (GLMs, CNNs, etc) that we used for encoders.


• I’ll call these “direct” decoders, and we’ll return to this 
idea in the second half of lecture.


• First, suppose we know something about the prior 
distribution of movement, . E.g. current position and 
velocity determine next position. 


• Moreover, suppose we know something about what the 
neurons encode. E.g. suppose the neurons encode 
current velocity.


• Can we use that knowledge to inform our decoder?

p(X)

Y X



• Bayes’ Rule tells us how to combine a 
prior and a likelihood  to 
obtain a posterior,





• Here, the likelihood is the encoder and the 
posterior is the decoder.

p(X) p(Y ∣ X)

p(X ∣ Y) =
p(Y ∣ X)p(X)

p(Y)
∝ p(Y ∣ X)p(X)

Decoding movement from neural spike trains
Bayesian decoders

Y X



• Let  denote the spike counts 
of  neurons at time .


• Let  denote the position of 
the cursor at time .

yt ∈ ℕN

N t

xt ∈ ℝ2

t

Decoding movement from neural spike trains
A very simple model

Y X



Consider the following likelihood (i.e. 
encoder)…

Decoding movement from neural spike trains
A simple example

Y X



• Consider the following prior…

Decoding movement from neural spike trains
A simple example

Y X



Question: What’s wrong with this 
model?

Decoding movement from neural spike trains
A simple example

Y X



Question: What’s wrong with this 
model?


• Independent positions across time


• Gaussian model on counts?


• Condtionally independent counts 


• Expected spike count is linear in xt

Decoding movement from neural spike trains
A simple example

Y X



The one good thing about this model is 
it’s easy to work with!


Derive the posterior…

Decoding movement from neural spike trains
Deriving the posterior (decoder)

Y X



Aside: the multivariate Gaussian distribution



• Start with the standard normal distribution,


• 


• Let  denote a vector of iid standard normal 
r.v.’s. Then,





• We say , a multivariate normal distribution with 
mean 0 and covariance .

zd ∼ 𝒩(0,1) ⟺ p(zd) = (2π)−1/2exp {−
z2

d

2 }
z = (z1, …, zD)

p(z) =
D

∏
d=1

p(zd)

=
D

∏
d=1

(2π)−1/2exp {−
z2

d

2 }
= (2π)−D/2exp {− 1

2 z⊤z}
z ∼ 𝒩(0,I)

I

The multivariate Gaussian distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution


• Now let  for  and 
(invertible) . 


• Then . 


• Change of variables formula:


x = μ + Σ1/2z μ ∈ ℝD

Σ1/2 ∈ ℝD×D

z = Σ−1/2(x − μ)

p(x) =
dz
dx

p(z(x))

= |Σ−1/2 |𝒩(Σ−1/2(x − μ), I)

= (2π)−D/2 |Σ |−1/2 exp {−
1
2

(x − μ)⊤Σ−1(x − μ)}
≜ 𝒩(x ∣ μ, Σ)

Aside: the multivariate Gaussian distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution


p(x) = (2π)−D/2exp {− 1
2 (x − μ)⊤Σ−1(x − μ)}

Aside: the multivariate Gaussian distribution
“Information” form / natural parameters

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

https://en.wikipedia.org/wiki/Multivariate_normal_distribution


p(X ∣ Y) ∝
T

∏
t=1

[p(yt ∣ xt) p(xt)]

=
T

∏
t=1 [

N

∏
n=1

𝒩(ytn ∣ c⊤
n xt + dn, r2

n) 𝒩(xt ∣ 0,Q)]

Decoding movement from neural spike trains
Deriving the posterior (decoder)

Y X



Improving upon the basic model



• One of the problems with the basic model 
is that it treated each time bin as 
independent.


• Instead, consider the following prior




• Parameterized by dynamics matrix 
.

p(X) = p(x1)
T

∏
t=2

p(xt ∣ xt−1)

= 𝒩(x1 ∣ 0,Q)
T

∏
t=2

𝒩(xt ∣ Axt−1, Q)

A ∈ ℝD×D

Decoding movement from neural spike trains
A linear dynamical system (LDS) model

Y X



p(X ∣ Y) ∝ [𝒩(x1 ∣ 0,Q)
T

∏
t=2

𝒩(xt ∣ Axt−1, Q)] [
T

∏
t=1

𝒩(yt ∣ Cxt + d, R)]

Decoding movement from neural spike trains
Derive the posterior under the LDS



Decoding movement from neural spike trains
Derive the posterior under the new model (continued)



Decoding movement from neural spike trains
Final results




Where 


• The diagonal blocks are  (except for  and ).


• The lower diagonal blocks are 


• The linear coefficients are .

p(X ∣ Y ) = 𝒩(vec(X) ∣ μ, Σ)
Σ = J−1 μ = J−1h

J =

J11 J⊤
21

J21 J22 J⊤
32

⋱ ⋱ ⋱
⋱ ⋱ J⊤

T,T−1

JT,T−1JTT

h =

h1

h2
⋮
hT

Jtt = Q−1 + A⊤Q−1A J11 JTT

Jt,t−1 = − Q−1A

ht = C⊤R−1(yt − d)



• So far we’ve used a linear, Gaussian 
encoder for the spikes, even though 
they are counts!


• Suppose instead, 




• The posterior is no longer Gaussian, but 
it’s common to approximate it as one.

p(Y ∣ X) =
T

∏
t=1

N

∏
n=1

Po (ytn ∣ f(c⊤
n xt + dn))

Decoding movement from neural spike trains
Poisson observations

Y X



Approximate the posterior as





where 





For GLM encoders, the log joint is concave 
and  and  can be found efficiently.

p(X ∣ Y) ≈ 𝒩(μ, Σ)

ℒ(X) = − log p(X, Y)
μ = argminX ℒ(X)

Σ = [∇2ℒ(X)
X=μ ]

−1

μ Σ

Decoding movement from neural spike trains
Laplace approximation

Y X



Derive the Hessian under the Poisson GLM encoder 

 −log p(Y ∣ X) = −
T

∑
t=1

N

∑
n=1

log Po (ytn ∣ f(c⊤
n xt + dn))

Decoding movement from neural spike trains
Laplace approximation under a Poisson GLM encoder



“Direct” decoders and structured prediction



• If we’re going to make a Gaussian approximation 
anyway, why not learn more flexible means and 
covariances?


• Recall the form of the LDS posterior,











• Idea: replace these with learned functions of .

Jtt = Q−1 + A⊤Q−1A

Jt,t−1 = − Q−1A

ht = C⊤R−1(yt − d)

y1:T

Decoding movement from neural spike trains
Structured decoders

Y X



• For example,


•



• Where  is composed of blocks 
,  and  is 

composed of blocks .


p(X ∣ Y) = 𝒩(vec(X) ∣ μ, Σ)
μ = J(Y)−1h(Y)
Σ = J(Y)−1

J(Y)
Jtt(yt−Δ:t+Δ) Jt,t−1(yt−Δ:t+Δ) h(Y)

ht(yt−Δ:t+Δ)

Decoding movement from neural spike trains
Structured decoders

Y X



Conclusion

• Decoding and encoding are two sides of the same coin.


• We can treat decoding as a simple regression problem, but sometimes we have 
prior information about  or the encoder  that we can leverage.


• Bayesian rule tells us how to combine prior and likelihood to derive a posterior 
distribution.


• However, the posterior rarely has a simple, closed form, so we need some 
approximations.


• Structured decoders give us a way to capture general dependency structure 
while allowing more flexible features of the data to be learned and incorporated.

X p(Y ∣ X)


