Machine Learning Methods for Neural Data Analysis

Agenda

- Intro to Unit III: Unsupervised Learning
- Revisiting Gaussian mixture models
- Hidden Markov models and the forward-backward algorithm

Unit III: Unsupervised learning

Searching for signals to explain neural activity

Searching for signals to explain neural activity

Encoding models: given stimulus (covariates) and response, find mapping.

Searching for signals to explain neural activity

signal mapping neural data

Recent examples: Musall et al (2018), Stringer et al (2018)

Paninski (2004) Truccolo et al (2005) Pillow et al (2008)

Searching for signals to explain neural activity

Toward nonlinear and/or more biophysically plausible mappings.

Searching for signals to explain neural activity

Alternative: try to infer latent signals from the data

Searching for signals to explain neural activity

Alternative: try to infer latent signals from the data, subject to constraints.

Latent variable modeling is all about constraints The five D's

- <u>Dimensionality</u>: how many latent clusters, factors, etc.?
- Domain: are the latent variables discrete, continuous, bounded, sparse, etc.?
- Dynamics: how do the latent variables change over time?
- <u>Dependencies</u>: how do the latent variables relate to the observed data?
- <u>Distribution</u>: do we have prior knowledge about the variables' probability?

• We've already seen some examples in Unit 1!

Wiltschko et al 2015

- Data: depth camera video of mouse exploring a circular arena
- Question: how does the brain produce spontaneous behavior?
 - Specifically interested in the neurotransmitter dopamine, which is implicated in movement/timing deficits in Parkinson's
 - How does dopamine impact both the speed and occurrence of different behaviors?

Wiltschko et al 2015

- To answer these questions, we need a behavioral description of what's going on in this video
- Hard to do by hand: time-consuming and biased
- Latent variable models can give us a latent state summary of what's going on in the video!

This result comes from a Hidden Markov Model.

Let's learn about them!

What We've Seen: The Gaussian Mixture Model Graphical Model

Cluster Probabilities

Discrete
Cluster
Assignments

Observations
(e.g. PCA loadings
of each frame)

Cluster
Means and
Covariances

What We've Seen: The Gaussian Mixture Model Graphical Model

Cluster Probabilities

Discrete
Cluster
Assignments

Observations (e.g. PCA loadings of each frame)

 x_1

Cluster
Means and
Covariances

Questions:

- Inference: Given parameters and observations, what are most likely $\{z_t\}_{t=1}^T$?
- Learning: How do we estimate the parameters given our observations?
- Relatively easy to answer since timesteps are independent

What We've Seen: The Gaussian Mixture Model Graphical Model

Questions:

- Inference: Given parameters and observations, what are most likely $\{z_t\}_{t=1}^T$?
- Learning: How do we estimate the parameters given our observations?
- Relatively easy to answer since timesteps are independent

What might go wrong if we apply this model to the mouse video data?

Hidden Markov Models

A Gaussian HMM is just a Gaussian mixture model but where cluster assignments are linked across time!

$$z_{1} \sim \operatorname{Cat}(\pi),$$

$$z_{t} \mid z_{t-1} \sim \operatorname{Cat}(P_{z_{t-1}}), \quad \text{for } t = 2, ..., T.$$

$$x_{t} \mid z_{t} \sim \mathcal{N}(b_{z_{t}}, Q_{z_{t}}) \quad \text{for } t = 1, ..., T$$

Its parameters are $\Theta = \pi, P, \{b_k, Q_k\}_{k=1}^K$ where $P \in [0,1]^{K \times K}$ is a row-stochastic transition matrix.

Under this model, the joint probability factors as

$$p(x, z, \Theta) = p(z_1) \prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^{T} p(x_t \mid z_t)$$

Graphical Model

Transition Probabilities

Discrete **Latent States**

Observations (e.g. PCA loadings of each frame)

> State Means and Covariances

Graphical Model

Discrete Latent States

Observations
(e.g. PCA loadings
of each frame)

State
Means and
Covariances

$$p(x, z, \Theta) = p(z_1) \prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^{T} p(x_t \mid z_t)$$

Example draw from a 2D Gaussian HMM with 5 clusters

The posterior is a little trickier...

Update the posterior over latent variables given data and parameters,

$$p(z \mid x, \Theta) \propto p(x, z, \Theta) = p(z_1) \prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^{T} p(x_t \mid z_t)$$

- The normalized posterior no longer has a simple closed form because states depend on each other!
- However, we can still efficiently compute the marginal probabilities.

Computing the marginal likelihood

$$p(z_t = k \mid x) = \sum_{z_1=1}^K \dots \sum_{z_{t-1}=1}^K \sum_{z_{t+1}=1}^K \dots \sum_{z_T=1}^K p(z_1, \dots, z_{t-1}, z_t = k, z_{t+1}, \dots, z_T \mid x)$$

Computing the marginal likelihood

$$p(z_t = k \mid x) = \sum_{z_1=1}^K \dots \sum_{z_{t-1}=1}^K \sum_{z_{t+1}=1}^K \dots \sum_{z_T=1}^K p(z_1, \dots, z_{t-1}, z_t = k, z_{t+1}, \dots, z_T \mid x)$$

Computing the marginal likelihood

$$p(z_{t} = k \mid x) = \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} p(z_{1}, \dots, z_{t-1}, z_{t} = k, z_{t+1}, \dots, z_{T} \mid x)$$

$$\propto \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(z_{s+1} \mid z_{s}) p(x_{s} \mid z_{s}) p(x_{t} \mid z_{t} = k)$$

$$\times \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u})$$

Computing the marginal likelihood

$$p(z_{t} = k \mid x) = \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} p(z_{1}, \dots, z_{t-1}, z_{t} = k, z_{t+1}, \dots, z_{T} \mid x)$$

$$\propto \left[\sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right] \times \left[p(x_{t} \mid z_{t} = k) \right]$$

$$\times \left[\sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u}) \right]$$

Computing the marginal likelihood

$$p(z_{t} = k \mid x) = \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} p(z_{1}, ..., z_{t-1}, z_{t} = k, z_{t+1}, ..., z_{T} \mid x)$$

$$\propto \left[\sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right] \times \left[p(x_{t} \mid z_{t} = k) \right]$$

$$\times \left[\sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u}) \right]$$

$$\triangleq \alpha_{t}(z_{t}) \times p(x_{t} \mid z_{t}) \times \beta_{t}(z_{t})$$

Computing the forward messages $\alpha_t(z_t)$

Consider the forward messages:

$$\alpha_{t}(z_{t}) \triangleq \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s})$$

Computing the forward messages $\alpha_t(z_t)$

Consider the forward messages:

$$\alpha_{t}(z_{t}) \triangleq \sum_{z_{t-1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s})$$

$$= \sum_{z_{t-1}=1}^{K} \left[\left(\sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-2}=1}^{K} p(z_{1}) \prod_{s=1}^{t-2} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right) p(x_{t-1} \mid z_{t-1}) p(z_{t} \mid z_{t-1}) \right]$$

Computing the forward messages $\alpha_t(z_t)$

Consider the forward messages:

$$\alpha_{t}(z_{t}) \triangleq \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s})$$

$$= \sum_{z_{t-1}=1}^{K} \left[\left(\sum_{z_1=1}^{K} \cdots \sum_{z_{t-2}=1}^{K} p(z_1) \prod_{s=1}^{t-2} p(x_s \mid z_s) p(z_{s+1} \mid z_s) \right) p(x_{t-1} \mid z_{t-1}) p(z_t \mid z_{t-1}) \right]$$

Computing the forward messages $\alpha_t(z_t)$

Consider the forward messages:

$$\alpha_{t}(z_{t}) \triangleq \sum_{z_{t-1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s})$$

$$= \sum_{z_{t-1}=1}^{K} \left[\left(\sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-2}=1}^{K} p(z_{1}) \prod_{s=1}^{t-2} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s}) \right) p(x_{t-1} \mid z_{t-1}) p(z_{t} \mid z_{t-1}) \right]$$

$$= \sum_{z_{t-1}=1}^{K} \alpha_{t-1}(z_{t-1}) p(x_{t-1} \mid z_{t-1}) p(z_{t} \mid z_{t-1})$$

• We can compute these messages recursively!

Computing the forward messages $\alpha_t(z_t)$. Vectorized.

• Let $\alpha_t = [\alpha_t(z_t = 1), ..., \alpha_t(z_t = K)]^{\mathsf{T}}$ denote the column vector of forward messages. Then,

$$\alpha_t = P^{\mathsf{T}}(\alpha_{t-1} \odot \mathcal{E}_{t-1})$$

where

- $\ell_{t-1} = [p(x_{t-1} \mid z_{t-1} = 1), ..., p(x_{t-1} \mid z_{t-1} = K)]^{\mathsf{T}}$ is the vector of likelihoods,
- O denotes the element-wise product, and
- P is the transition matrix with $P_{ij} = p(z_t = j \mid z_{t-1} = i)$.
- For the base case, let $\alpha_1(z_1) = p(z_1)$.

Computing the forward messages $\alpha_t(z_t)$

Take a step back: what are we actually computing anyway?

$$\alpha_{t}(z_{t}) = \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(z_{1}) \prod_{s=1}^{t-1} p(x_{s} \mid z_{s}) p(z_{s+1} \mid z_{s})$$

$$= \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(\{z_{s}\}_{s=1}^{t-1}, \{x_{s}\}_{s=1}^{t-1}) p(z_{t} \mid z_{t-1})$$

$$= \sum_{z_{1}=1}^{K} \cdots \sum_{z_{t-1}=1}^{K} p(\{z_{s}\}_{s=1}^{t-1}, \{x_{s}\}_{s=1}^{t-1}) p(z_{t} \mid z_{t-1})$$

• we can normalize this to get the conditional distribution $p(z_t | \{x_s\}_{s=1}^{t-1})!$

Computing the backward messages $\beta_t(z_t)$

Now take the backward messages:

$$\beta_{t}(z_{t}) \triangleq \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u})$$

Computing the backward messages $\beta_t(z_t)$

Now take the backward messages:

$$\beta_{t}(z_{t}) \triangleq \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u})$$

$$= \sum_{z_{t+1}=1}^{K} p(z_{t+1} \mid z_{t}) p(x_{t+1} \mid z_{t+1}) \sum_{z_{t+2}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+2}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u})$$

Computing the backward messages $\beta_t(z_t)$

Now take the backward messages:

$$\beta_{t}(z_{t}) \triangleq \sum_{z_{t+1}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+1}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u})$$

$$= \sum_{z_{t+1}=1}^{K} p(z_{t+1} \mid z_{t}) p(x_{t+1} \mid z_{t+1}) \sum_{z_{t+2}=1}^{K} \cdots \sum_{z_{T}=1}^{K} \prod_{u=t+2}^{T} p(z_{u} \mid z_{u-1}) p(x_{u} \mid z_{u})$$

$$= \sum_{z_{t+1}=1}^{K} p(z_{t+1} \mid z_{t}) p(x_{t+1} \mid z_{t+1}) \beta_{t+1}(z_{t+1})$$

• Again, we can compute the backward messages recursively!

Computing the backward messages $\beta_t(z_t)$. Vectorized.

• Let $\beta_t = [\beta_t(z_t = 1), ..., \beta_t(z_t = K)]^{\mathsf{T}}$ denote the column vector of backward messages. Then,

$$\beta_t = P(\beta_{t+1} \odot \ell_{t+1})$$

• For the base case, let $\beta_T(z_T) = 1$.

Combining the forward and backward messages

• The posterior marginal probability of state k at time t is,

$$p(z_t = k \mid x) \propto \alpha_t(z_t = k) \times p(x_t \mid z_t = k) \times \beta_t(z_t = k)$$
$$= \alpha_{tk} \ell_{tk} \beta_{tk}$$

The probabilities need to sum to one. Normalizing yields,

$$p(z_t = k \mid x) = \frac{\alpha_{tk} \ell_{tk} \beta_{tk}}{\sum_{j=1}^{K} \alpha_{tj} \ell_{tj} \beta_{tj}}$$

• Finally, note the marginal is invariant to multiplying α_t and/or β_t by a constant.

Normalizing the messages to prevent underflow

- The messages involve **products of probabilities**, which quickly underflow.
- We can leverage the scale invariance to renormalize the messages. I.e. replace:

$$\alpha_t = P^\top(\alpha_{t-1} \odot \mathscr{E}_{t-1}) \qquad \text{with} \qquad \begin{aligned} A_{t-1} &= \sum_k \tilde{\alpha}_{t-1,k} \mathscr{E}_{t-1,k} \\ \tilde{\alpha}_t &= \frac{1}{A_{t-1}} P^\top(\tilde{\alpha}_{t-1} \odot \mathscr{E}_{t-1}) \end{aligned}$$

where $\tilde{\alpha}_t$ are normalized for numerical stability. As before, $\tilde{\alpha}_1 = p(z_1)$.

Computing the marginal likelihood

 Finally, we can compute the marginal likelihood alongside the forward messages

$$\log p(x \mid \Theta) = \log \sum_{z_1=1}^K \dots \sum_{z_T=1}^K \left[p(z_1) \prod_{t=1}^{T-1} p(z_{t+1} \mid z_t) \prod_{t=1}^T p(x_t \mid z_t) \right]$$

$$= \log \sum_{z_T=1}^K \alpha_T(z_T) p(x_T \mid z_T)$$

Conclusion

- Hidden Markov models (HMMs) are just mixture models with dependencies across time.
- We use the forward-backward algorithm to compute latent state probabilities and expected sufficient stats.
- Next time: we'll see how to update parameters