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Agenda

* Intro to Unit lll: Unsupervised Learning
* Revisiting Gaussian mixture models

 Hidden Markov models and the forward-backward algorithm



Unit lll: Unsupervised learning



Data-driven modeling

Searching for signals to explain neural activity

signal mapping neural data



Data-driven modeling

Searching for signals to explain neural activity

signal mapping neural data

Encoding models: given stimulus (covariates) and response, find mapping.



Data-driven modeling

Searching for signals to explain neural activity

stimulus filter exponential Poisson MM

ST
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signal mapping neural data

Recent examples: Musall et al (2018), Stringer et al (2018)

Paninski (2004)
Truccolo et al (2005)
Pillow et al (2008)



Data-driven modeling

Searching for signals to explain neural activity
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signal mapping neural data

Toward nonlinear and/or more biophysically plausible mappings.

Mclntosh et al (2017)



Data-driven modeling

Searching for signals to explain neural activity

latent signal mapping neural data

Alternative: try to infer latent signals from the data



Data-driven modeling

Searching for signals to explain neural activity
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latent signal mapping neural data

Alternative: try to infer latent signals from the data, subject to constraints.



Latent variable modeling is all about constraints
The five D’s

® Dimensionality: how many latent clusters, factors, etc.?

e Domain: are the latent variables discrete, continuous, bounded, sparse, etc.?
® Dynamics: how do the latent variables change over time?

® Dependencies: how do the latent variables relate to the observed data”?

e Distribution: do we have prior knowledge about the variables’ probability?

 We've already seen some examples in Unit 1!
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Wiltschko et al 2015

- Data: depth camera video of mouse exploring a circular arena
+ Question: how does the brain produce spontaneous behavior?

»  Specifically interested in the neurotransmitter dopamine, which is implicated in
movement/timing deficits in Parkinson’s

» How does dopamine impact both the speed and occurrence of different behaviors?
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Wiltschko et al 2015

- To answer these gquestions, we need a behavioral description of what’s going on in this
video

- Hard to do by hand: time-consuming and biased

» Latent variable models can give us a latent state summary of what’s going on in the
video!
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Wiltschko et al 2015

This result comes from a Hidden Markov Model.
Let’s learn about them!
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What We’ve Seen: The Gaussian Mixture Model
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What We’ve Seen: The Gaussian Mixture Model
Graphical Model

Cluster Questions:
i |
rronabiies * Inference: Given parameters

and observations, what are
most likely {Zt}szl?

Discrete
Cluster
Assignments

 Learning: How do we
Observations .
o . o e . e estimate the parameters

given our observations?
Cluster Relatlvgly easy to answer
Means and since timesteps are
Covariances

iIndependent

(e.g. PCA loadings
of each frame)

O — |atent O = observed —P = dependency

What might go wrong if we apply this model to the mouse video data?



Hidden Markov Models



The Gaussian HMM

A Gaussian HMM is just a Gaussian mixture model but where cluster assignments are
linked across time!

{1 Cat(ﬂ'),
Z | 71 ~ Cat(P, ), fort=2,...,T
X |z~ N(b,,0,) fort=1,...,T

lts parameters are ©® = z, P, { b, Qk}f=1 where P € [0,1]%*X is a row-stochastic
transition matrix.

Under this model, the joint probability factors as

71 I
p(x,2,0) = p(zl)Hp(Zm | zt)Hp(xt | 2,)
=1 =1
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The Gaussian HMM

Graphical Model

Transition
Probabilities

Discrete
Latent States . o e —p
Observations
(e.g. PCA loadings R ..
of each frame)

State
Means and
Covariances

-1 I
p(x.2.0) =p) | |y 1 20| [P 1 2)
=1 =1



The Gaussian HMM

Example draw from a 2D Gaussian HMM with 5 clusters
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Inference for the Gaussian HVIM

The posterior is a little trickier...

 Update the posterior over latent variables given data and parameters,

T—-1 I
p(z ] x.0) x p(x.2,0) = pz) | | psi 1 20| [ P 1 2)
=1 =1

* The normalized posterior no longer has a simple closed form because states
depend on each other!

* However, we can still efficiently compute the marginal probabilities.



Inference for the Gaussian HVIM

Computing the marginal likelihood

» Consider the marginal probability of state k at time t:

K K K K
p(z, =k|x) = Z Z Z ---Zp(zl,...,zt_l,zt=k,zt+1,...,zT\x)

o=l z=lz=1 7=l
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Inference for the Gaussian HVIM

Computing the marginal likelihood

» Consider the marginal probability of state k at time t:

K K

K K
p(z, =k|x) = Z Z Z ---Zp(zl,...,zt_l,zt=k,zt+1,...,zT\x)

7=l 7 1—1Zt+1—1 ZT—l
K
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Computing the marginal likelihood
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Inference for the Gaussian HMM

Computing the marginal likelihood

» Consider the marginal probability of state k at time t:

K K K K
p(z, =k|x) = Z Z Z ---Zp(zl,...,zt_l,zt=k,th,...,zT\x)

o=l z=lz=1 7=l

K K —1
X [Z Z P(Zl)Hp(xS | 2) P20 | 20)
s=1

z1=1 z1=1

K K T
Z Z H p(z, | z,-1) p(x, | Zu)]

Zl‘+1=1 ZT=1 M=t+1

2 a,(z) X p(x, | z,) X Bfz)

X

p(xt ‘ {p = k)]

X




Inference for the Gaussian HVIM

Computing the forward messages a,(z)
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az) & Z Z p(zo]'[p(x | 2) P41 | 2,)

lel Z,_ 1:1



Inference for the Gaussian HVIM

Computing the forward messages a,(z)

e Consider the
K

az) & Z D p(zo]'[p(x | 2) P41 | 2,)

z1=1 z1=1

K K
= Z [(Z Z p(zl)Hp(x | 2)P(Z44q | Z))P(x_1 | 2P | 221)

z1=1 7=l z =l



Inference for the Gaussian HVIM
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Inference for the Gaussian HVIM

Computing the forward messages a,(z)

e Consider the

az) & Z Z p(zl)Hp(x | 2) P41 | 2,)

7=l z =l
K

= Z [(Z Z p(zl)Hp(x | 2)P(Z44 1 | Z))p(x_1 | 2P | 221)

z1=1 7=l 7z ,=l

M~

o,_1(Z_) Py | 2_) Pz | Z,-1)

Z1=1

 We can compute these messages recursively!



Inference for the Gaussian HVIM

Computing the forward messages «,(z,). Vectorized.

e Leta, =[a(z,=1),...,a(z,= K)]' denote the column vector of forward
messages. Then,

a,=P'(a_,OF_))
where
e _=[px_i|z_1=1),....,p(x_; | z_; = K)]' is the vector of likelihoods,
 ( denotes the element-wise product, and

+ P is the transition matrix with P;; = p(z, = j | 2, = 1)

» For the base case, let a(z;) = p(z)-



Inference for the Gaussian HVIM

Computing the forward messages a,(z)

* Take a step back: what are we actually computing anyway??

K
Z Z p(onp(x | 2) P41 | 2,)

<y 1—1

K
Z Z p({Z 5= 1’ X }g— Pz |2, 1)

Z_1=1

a/(2;)

» we can normalize this to get the conditional distribution p(z, | {xs}i;ll)!



Inference for the Gaussian HVIM

Computing the backward messages £,z

* Now take the backward messages:

K K I
B2 ) ) ] pGl ) p | 2)

Zt+1=1 ZT=1 I/l=t+1



Inference for the Gaussian HVIM

Computing the backward messages £,z

* Now take the backward messages:

K K I
b2 ) ) 1 PGl 2P, | 2)

Zt+1=1 ZT=1 I/l=t+1

K K K T
— Z P(Zt+1 ‘ Zt)P(XtH ‘ Zt_|_1) Z Z H p(zu ‘ Zu_l)p(xu \ Zu)

Zt+1=1 Zt+2=1 ZT=1 u:t+2



Inference for the Gaussian HVIM

Computing the backward messages £,z

* Now take the backward messages:

K K I
b2 ) ) 1 PGl 2P, | 2)

Zt+1=1 ZT=1 I/l=t+1

K K K T
Y PG | 2)pG 12D Y = Y T p |z pe, 1 2,)

Zt+1=1 Zt+2=1 ZT=1 u:t+2

K
Z PZq | 2D POy | 2 1) Pri1(Zig1)

=1

 Again, we can compute the backward messages recursively!



Inference for the Gaussian HVIM

Computing the backward messages f(z,). Vectorized.

e Letp, = [p(z,=1),...,p(z, = K)]

backward messages. Then,

ﬁt — P(ﬂt+1 © Lﬁt+1)

» For the base case, let f(z7) = 1.

denote the column vector of



Inference for the Gaussian HVIM

Combining the forward and backward messages

» The posterior marginal probability of state k at time 7 is,

p(Zz — k‘x) X at(Zt — k) Xp(xt ‘ {p = k) Xﬂz(zt — k)

= 0yl 1P
* [he probabillities need to sum to one. Normalizing yields,
Ol Pk
i=1 al‘jfl‘jﬁfj

- Finally, note the marginal is invariant to multiplying a, and/or f, by a
constant.



Inference for the Gaussian HVIM

Normalizing the messages to prevent underflow

* [he messages involve products of probabilities, which quickly
underflow.

 We can leverage the scale invariance to renormalize the messages. l.e.
replace:

A= Zk 01 1 Co1 i

~ 1 ~
Ay = EPT(at—l O #)

a, = PT(at_l ©Z,_;) with

where @, are normalized for numerical stability. As before, a; = p(z;).



Inference for the Gaussian HVIM

Computing the marginal likelihood

* Finally, we can compute the marginal likelihood alongside the forward
messages

log p(x | ©) = logz Z p<z1>1'[p<zt+1 \ z»Hza(xt | 2)

zl—l Zr=1

= log Z ar(zp) pOer | 27)

LT |



Conclusion

 Hidden Markov models (HMMs) are just mixture models with dependencies
across time.

 We use the forward-backward algorithm to compute latent state
probabillities and expected sufficient stats.

 Next time: we’ll see how to update parameters



