Machine Learning Methods for Neural Data Analysis Summary Statistics and GLMs

Scott Linderman

STATS 220/320 (NBIO220, CS339N).

Agenda **Unit II: Encoding and Decoding**

- You've got spikes. Now what?
- Retinal ganglion cells
- Encoding RGC responses with generalized linear models (GLMs)

You've got spikes. Now what? Plot your data!

- Spike train: neuron x time array of spike counts in each time bin (e.g. 10ms).
- **Empirical firing rate**: smooth the spike train (e.g. with a Gaussian kernel).
- Sanity checks:
 - Are the spike trains plausible (e.g. 1-50 spikes/sec)?
 - Do the firing rates look similar in the beginning, middle, and end of the recording?

You've got spikes. Now what? Spike triggered averages

- Spike triggered average (STA): What did the stimulus look like preceding (or surrounding) each spike?
- STA \equiv conditional distribution of stimulus (x_{t-d}) given response ($y_t = 1$).

Stimulus

Neural Recording

 \mathbf{y}_t^1

 \mathbf{y}_t^n

You've got spikes. Now what? Spike triggered averages

- Spike triggered average (STA): What did the stimulus look like preceding (or surrounding) each spike?
- STA \equiv conditional distribution of stimulus (x_{t-d}) given response ($y_t = 1$).
- Receptive field: portion of stimulus to which neuron responds.

You've got spikes. Now what? **Peri-stimulus time histogram (PSTH)**

- Peri-stimulus time histogram **(PSTH):** What did the response look like following (or surrounding) each stimulus presentation?
- PSTH \equiv conditional distribution of spike train (y_{t+d}) given stimulus $(x_t = k).$

You've got spikes. Now what? Cross-correlation function

 Cross-correlation function (CCF): what is the correlation between neuron *n* and neuron *m* as a function of delay of *d*?

$$\mathbb{E}\left[\frac{(y_{m,t}-\mu_m)(y_{n,t+d}-\mu_n)}{\sigma_m}\right]$$

Pillow et al (Nature, 2008)

You've got spikes. Now what?

 A good model should recapitulate these statistics of the data.

Retinal circuits

Retinal circuits Basic architecture

- Incoming light stimulates photoreceptors (rods and cones) at the back of the eye.
- Rods and cones trigger an intermediate layer of bipolar cells and amacrine cells.
- Activity in these intermediate cells is pooled by retinal ganglion cells (RGCs).
- RGCs send action potentials down the optic nerve to the rest of the brain.
- The optic nerve innervates the lateral geniculate nucleus (LGN) of the thalamus and primary visual cortex (V1)

http://visionmagazineonline.co.za/2018/04/01/why-retinal-ganglion-cells-are-important-in-glaucoma/

Retinal circuits Types of RGCs

- RGCs have been subdivided into dozens of types based on their morphology and their response properties.
- To first approximation, two main types: ON and **OFF** cells.
 - **ON cells** fire action potentials in response to increased light intensity at the center of their receptive field.
 - **OFF cells** fire action potentials in response to **decreased light intensity** at the center of their receptive field.
- Lots of **heterogeneity**; e.g. direction selective cells, transient and sustained responses, local edge detectors...

Retinal circuits

Key question: How are visual stimuli encoded in the output of these retinal circuits?

Generalized linear models of RGC responses

Encoding models of RGC responses Basic linear-nonlinear-Poisson (LNP) model

In statistics, we call this a <u>generalized linear model</u> (GLM).

$$\begin{aligned} \lambda &= f(\vec{k} \cdot \vec{x}) \\ y &\sim \text{Poiss}(\lambda) \end{aligned}$$

Slides from Jonathan Pillo

Encoding models of RGC responses First things first: Linear models

- Let $Y \in \mathbb{N}$ denote an integer-valued random variable; e.g. a spike count.
- Let $X \in \mathbb{R}^p$ be a *p*-dimensional feature vector.
- Linear regression estimates the conditional expectation $\mu(X) \triangleq \mathbb{E}[Y \mid X]$ via a linear function $\hat{\mu} \triangleq \beta^\top X$, where $\beta \in \mathbb{R}^p$ is a vector of regression weights.
- Then, we could assume a Gaussian noise model $Y \sim N(\beta^T X, \sigma^2)$.
- Question: What are some shortcomings of this model for spikes?

https://tinyurl.com/stats220apr23

Encoding models of RGC responses Generalized linear models

- **Generalized linear models** address these shortcomings with a simple tweak:
- Let $\hat{\eta}(X) \triangleq \beta^{\top} X$ be a linear predictor defined by parameter β , which we will estimate.
- \mathcal{M} is the space of conditional expectations of Y.
- The inverse of the mean function, $g^{-1}: \mathcal{M} \to \mathbb{R}$, is called the **link function**.
- Finally, plug the conditional expectation into a **conditional distribution** of Y given X.
 - E.g. $Y \mid X \sim \operatorname{Po}(g(\eta(X)))$
- Generally, we assume the conditional distribution is a member of the **exponential family**.

• Map the predictor through a monotonic, continuous, non-linear **mean function** $g(\cdot) : \mathbb{R} \to \mathcal{M}$, where

• E.g. If $Y \in \mathbb{N}$ is a non-negative integer its expectations lie in $\mathcal{M} = \mathbb{R}_+$, so we might take $g(a) = e^a$.

Encoding models of RGC responses Generalized linear models

- Let $X \in \mathbb{R}^{T \times P_H \times P_W}$ denote a stimulus movie and $Y \in \mathbb{N}^{N \times T}$ denote the resulting spike train.
- frames of stimulus.

• Define a **Poisson GLM** to predict (encode) neural responses given the past D

Encoding models Generalized linear models

Stimulus

Filter Weights

 \mathbf{x}_t

 \star

 W_n

Firing Rates

Neural Recording

 $\lambda_{nt} = g([X \star W_n]_t)$

Slides from Jonathan Pillo

Encoding models of RGC responses Adding coupling between neurons

Structured Prior Distributions

Encoding models of RGC responses Separately modeling the coupling sparsity and weights

Binary Adjacency Matrix

Real-Valued Weight Matrix

Encoding models of RGC responses Latent variable models for networks

Independent Edge Model

None

Adjacency Models \boldsymbol{A}

Types or

Features

 \boldsymbol{Z}

Weight Models $\overline{\mathbf{X}}$

Hoff (NeurIPS, 2007)

Encoding models of RGC responses Going deeper

Figure 1: A schematic of the model architecture. The stimulus was convolved with 8 learned spatiotemporal filters whose activations were rectified. The second convolutional layer then projected the activity of these subunits through spatial filters onto 16 subunit types, whose activity was linearly combined and passed through a final soft rectifying nonlinearity to yield the predicted response.

McIntosh et al (*NeurIPS*, 2016)

Conclusion

- sensory stimuli.
 - (lagged) motor outputs instead.
- Generalized linear models are an effective means of modeling these conditional distributions.
- its linear in the stimulus.

Encoding models predict the conditional distribution of neural responses to

• Note, however, that we could have done the same thing by conditioning on

Deep neural networks, e.g. CNNs, essentially add multiple nonlinear layers to obtain features for estimating the conditional mean, rather than assuming

Further reading

- Dayan, Peter, and Laurence F. Abbott. Theoretical neuroscience: computational and
- Signalling in a Complete Neuronal Population." Nature 454 (7207): 995–99.
- information processing systems, 29, 1369.
- on Neural Information Processing Systems. 2016.
- Pillow, Jonathan. Cosyne Tutorial, 2018. http://pillowlab.princeton.edu/pubs/pillow_TutorialSlides_Cosyne2018.pdf

mathematical modeling of neural systems. Computational Neuroscience Series, 2001.

• Pillow, Jonathan W., Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M. Litke, E. J. Chichilnisky, and Eero P. Simoncelli. 2008. "Spatio-Temporal Correlations and Visual

• McIntosh, L. T., Maheswaranathan, N., Nayebi, A., Ganguli, S., & Baccus, S. A. (2016). Deep learning models of the retinal response to natural scenes. Advances in neural

• Linderman, Scott W., Ryan P. Adams, and Jonathan W. Pillow. "Bayesian latent structure discovery from multi-neuron recordings." Proceedings of the 30th International Conference