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Agenda

Unit ll: Encoding and Decoding

* You’ve got spikes. Now what?

* Retinal ganglion cells

 Encoding RGC responses with generalized linear models (GLMs)



You’ve got spikes. Now what?

Plot your data!

» Spike train: neuron x time array of
spike counts in each time bin (e.qg.
10ms).

 Empirical firing rate: smooth the
spike train (e.g. with a Gaussian
kernel).

e Sanity checks:

* Are the spike trains plausible (e.qg.
1-50 spikes/sec)?

* Do the firing rates look similar in
the beginning, middle, and end of
the recording?
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You’ve got spikes. Now what?

Spike triggered averages

 Spike triggered average (STA):
What did the stimulus look like

preceding (or surrounding) each Stimulus neural Recording
spike?
" e yi 1]
« STA = conditional distribution of 5
stimulus (x,_ ) given response Xt .
t v | Il

WV, = 1).



You’ve got spikes. Now what?

Spike triggered averages

iron 1, Oms pre neuron 1, 10ms pre neuron 1, 20ms pre neuron 1, 30ms pre neuron 1, 40ms pre

 Spike triggered average (STA):
What did the stimulus look like
preceding (or surrounding) each
spike?

neuron 1, 100ms pre neuron 1, 110ms pre neuron 1, 120ms pre neuron 1, 130ms pre neuron 1, 140ms pre

e STA = conditional distribution of
stimulus (x,__) given response

()7 — 1 ) neuron 1, 150ms pre neuron 1, 160ms pre neuron 1, 170ms pre neuron 1, 180ms pre neuron 1, 190ms pre
l— ]

 Receptive field: portion of
Sti m u | u S to Wh iC h n eu ro n neuron 1, 200ms pre neuron 1, 210ms pre neuron 1, 220ms pre neuron 1, 230ms pre neuron 1, 240ms pre
responds.



You’ve got spikes. Now what?

Peri-stimulus time histogram (PSTH)

e Peri-stimulus time histogram rate = average over several runs

(PSTH) What did the response (single neuron, repeated runs)

look like following (or surrounding) input

each stimulus presentation? st run | I | "spike density

2nd | | | In PlSTlH

 PSTH = conditional distribution of | | P =75 Mk Ay

spike train (y,, ;) given stimulus NN bt '
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Kistler et al. Neuronal Dynamics




You’ve got spikes. Now what?

Cross-correlation function

» Cross-correlation function (CCF):  ° o ".:0.ce o0
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Pillow et al (Nature, 2008)



* A good model should
recapitulate these
statistics of the data.

You’ve got spikes. Now what?
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Retinal circuits




Retinal circuits

Basic architecture

Incoming light stimulates photoreceptors
(rods and cones) at the back of the eye.

Rods and cones trigger an intermediate
layer of bipolar cells and amacrine cells.

Activity in these intermediate cells is
pooled by retinal ganglion cells (RGCs).

RGCs send action potentials down the
optic nerve to the rest of the brain.

The optic nerve innervates the lateral
geniculate nucleus (LGN) of the
thalamus and primary visual cortex (V1)

Ganglion Cells

Bipolar Cells Rod and Cone Cells

http://visionmagazineonline.co.za/2018/04/01/why-retinal-ganglion-cells-are-important-in-glaucoma/



Retinal circuits
Types of RGCs

LED

* RGCs have been subdivided into dozens of PN DN DY DY Do Dom Dy D Dom Dm pem g
types based on their morphology and their I I ¢ \ : ' I ‘ ' . : :

response properties. e ———— OO
I i o S s s S ey e S s S = S o
 To first approximation, two main types: ON and Ji e : : : :
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their receptive field. S N \
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* Lots of heterogeneity; e.qg. direction selective -
cells, transient and sustained responses, local e | v
© o

edge detectors...

Sanes and Masland (Ann. Rev. Neuro., 2014)



Retinal circuits

encoding

Stimulus RGC output

Wl 1 1él I
398 ¢ 990

 Key question: How are visual
stimuli encoded in the output of
these retinal circuits?




Generalized linear models of
RGC responses




Encoding models of RGC responses

Basic linear-nonlinear-Poisson (LNP) model

Linear-Nonlinear-Poisson (LNP) model

stimulus filter
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In statistics, we call this a generalized linear model (GLM).

Slides from Jonathan Pillo



Encoding models of RGC responses

First things first: Linear models

« Let Y € N denote an integer-valued random variable; e.g. a spike count.

» Let X € R? be a p-dimensional feature vector.

» Linear regression estimates the conditional expectation p(X) 2 E[Y | X] via
a linear function /i = ,BTX, where f# € R? is a vector of regression weights.

» Then, we could assume a Gaussian noise model ¥ ~ N(,BTX, 02).
 Question: What are some shortcomings of this model for spikes?

https://tinyurl.com/stats220apr23




Encoding models of RGC responses

Generalized linear models

* Generalized linear models address these shortcomings with a simple tweak:
. Let 7(X) = B X be a linear predictor defined by parameter 3, which we will estimate.

» Map the predictor through a monotonic, continuous, non-linear mean function g( - ) : R — ., where
A is the space of conditional expectations of Y.

 E.g. If Y € N is a non-negative integer its expectations lie in /#/ = R_, so we might take g(a) = e“.
« The inverse of the mean function, g_l . M — R, is called the link function.

 Finally, plug the conditional expectation into a conditional distribution of Y given X.
+ E.g. Y | X ~ Po(g(n(X))

* (Generally, we assume the conditional distribution is a member of the exponential family.



Encoding models of RGC responses

Generalized linear models

e Let X € RI*Fr*Pw genote a stimulus movie and Y € NY*! denote the
resulting spike train.

« Define a Poisson GLM to predict (encode) neural responses given the past D
frames of stimulus.



Encoding models

Generalized linear models

Stimulus Filter Weights Firing Rates Neural Recording
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Slides from Jonathan Pillo



Encoding models of RGC responses

Adding coupling between neurons

a  Coupled spiking model e Incoming coupling filters
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Structured Prior Distributions



Encoding models of RGC responses
Separately modeling the coupling sparsity and weights
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Encoding models of RGC responses

Latent variable models for networks

Independent Stochastic Latent
Edge Model Block Model (SBM) Distance Model

Types or
Features

Z

None Type{ B.© } Location R”

Adjacency
Models

A

Weight
Models

Hoff (NeurlPS, 2007)



Example: a synthetic retina

Latent variables: types & locations. Adjacency: distance-dependent. Weights: type-dependent.
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Application to real primate retina data

Inferring locations Inferring cell types Model comparison
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Encoding models of RGC responses

Going deeper

responses

v Uwh N
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N\ convolution

convolution
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8 subunits 16 subunits

Figure 1: A schematic of the model architecture. The stimulus was convolved with 8 learned
spatiotemporal filters whose activations were rectified. The second convolutional layer then projected
the activity of these subunits through spatial filters onto 16 subunit types, whose activity was linearly
combined and passed through a final soft rectifying nonlinearity to yield the predicted response.

Mclintosh et al (NeurlPS, 2016



Conclusion

 Encoding models predict the conditional distribution of neural responses to
sensory stimuli.

 Note, however, that we could have done the same thing by conditioning on
(lagged) motor outputs instead.

 Generalized linear models are an effective means of modeling these
conditional distributions.

 Deep neural networks, €.9. CNNs, essentially add multiple nonlinear layers
to obtain features for estimating the conditional mean, rather than assuming
its linear in the stimulus.
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