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“The brain is worthy of study because It Is
In charge of behavior”

Datta, Anderson, Branson, Perona, and Leifer. Computational Neuroethology: A Call to Action. Neuron 2019.



Burgess et al (Cell Rep., 2017)



Ethology

The study of (natural) behavior

 Hypothesis: “exposing the structure of
behavior...will yield insights into how the brain
creates behavior.” Datta et al.

e Structure: how behavior in the natural
environment is built from components and
organized over time in response to ecologically
relevant stimuli.

 Natural behavior:
* Exploring new environments
* Foraging for food
* Finding shelter
 |dentifying mates

Nikolaas Tihbergen
Nobel Prize in Physiology or Medicine 1973
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Yilmaz and Meister (Curr. Bio., 2013)


https://www.youtube.com/watch?v=59W4DqW8lQY

Computational (Neuro)Ethology

Quantifying natural behavior (and
relating it to neural activity)

* Leveraging advances in computer vision

and machine learning to extract
behavioral features of interest from raw
data.

 Modeling the dynamics of 3D pose as a

function of sensory input and internal state.

 Decomposing behavior into stereotyped
components and behavioral motifs.

* Correlating behavioral motifs with large
scale neural recordings.

 |dentifying causal relationships between
neural activity and motor output.
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Datta et al (Neuron, 2019)



Johnson et al (Curr. Bio. 2020
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Johnson et al (Curr. Bio. 2020)
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CAPTURE: Marshall et al (Neuron, 2020
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Machado et al (eLife. 2015)



DeeplLabCut: Mathis et al. (Nat Neuro 2018
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OpenMonkeyStudio: Bala et al (Nature Comm., 202C



Femur-tibia joint angle (Rad)
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DeepFly3D: Gunel et al (eLife, 2019)
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SLEAP: Pereira et al (2021)



Agenda

1. Basics of markerless pose tracking
2. Pose tracking with CNNs
3. Structured prediction and triangulation



Basic pose tracking

Turn it into a supervised learning problem

 Extract patches from the video frames
and label them as positive or negative
examples of a key point (e.g. paw).

paw

* Train a binary classifier (logistic
regression, SVM, neural network, etc.)
to predict key point or not.

not
paw

* At test time, classify each patch in the
image and then pick the most likely
keypoint location(s). (More on how
later.)




Basic pose tracking

Mathematical formulation

» Let P, and P, be the height and width,

respectively, of the patch (in pixels). n
» N denote the number of patches paw
. x_ € R"»"v denote the n-th patch. -
- vy, € 10,1} denote whether or not the ! _—
patch Is an instance of the key point. | oaw
. w € R'7""» denote the weights of our -

model.



Basic pose tracking

Via logistic regression

Assume
-

p(yn ‘ Xna W) — Bern(yn ‘ G(W Xn)) u
paw

where -

a
o(a) =

L+ e _—

.
IS the logistic function. paw




The Bernoull distribution

) The Bernoulli distribution

The Bernoulli distribution is a distribution over binary variables y € {0, 1} with
probability p € [O, 1}. Its pmf can be written as,

Bern(y; p) = p¥ (1 —p)' ™



The logistic function
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Basic pose tracking

Maximum likelihood estimation

Z(w) = —logp(y | w, X)



Basic pose tracking
Calculating the gradient

VZ(w) =



Basic pose tracking

The negative log likelihood is convex

 The Hessian is positive semi-definite

. V2L (W) =



Gradient descent

Let w denote our initial setting of the weights. Gradient descent is an iterative algorithm
that produces a sequence of weights wq, w1y, ... that (under certain conditions)

converges to a local optimum of the objective. Since the objective is convex, all local
optima are global optima. The idea Is straightforward, on each iteration we update the

weights by taking a step in the direction of the gradient,
W, .1 — W; — a,-VE(w,-,)

where a; € R is the learning rate (aka step size) on iteration z, and V.L(w;) is the
gradient of the objective evaluated at the current weights w;.



Newton’s Method

* We can obtain faster convergence rates using second-order methods.

 Approximate the objective with a second-order Taylor approximation around
the current weights,

W) LwW)+(w—-w) VL(W)+ %(W - w) V°ZL(W)(w—Ww,).

e Exercise: show that the minimum iIs obtained at
W, =W+ VZw) ' VZ&W).



Computational complexity

 What is the (time) complexity of gradient descent and Newton’s method?

* Quasi-Newton methods like BFGS sidestep the Hessian calculation and
Inversion.

o SGD (with momentum) uses mini-batches of data and rolling averages of the
gradient to achieve faster convergence.

 Adagrad, RMSProp, and Adam tune the learning rates as they go.



Pose tracking with convolutional
neural networks



Basic pose tracking

As a one-layer convolutional neural network

* Instead of working with patches, let’s work with
images directly.

e Let X, € RI#*Fw denote an image (height Py,
width Py)

. Let Y € {0,1}#*"windicate the location(s) of
the keypoint.

e The 2D cross-correlation X, * W; is a sliding dot
product of weights across all P, X P, patches in
the image. It produces a P X Py, output.

¢ |In PyTorch, it’s implemented by the F.conv2d
function and the Conv2D layer.




Basic pose tracking

Feature learning in CNNs

* This simple model assumes key
points can be detected with a linear
classifier using raw pixels as inputs.

* \We can perform nonlinear
classification by encoding each pixel
with a vector of features.

» Rather than handcrafting these
features, learn them from the datal

-~
.-.-

Subsampling Convolutions Subsampling Fully connected

https://en.wikipedia.org/wiki/Convolutional_neural_network



Transfer Learning

* |dea: rather than handcrafting features or
learning them from scratch, use a pre-
trained network for a related task.

« Example: use the features of a deep
neural network for image classification.

 Reroute the output of an intermediate
layer to a new loss function.

* Optionally, fine tune the weights in the
early layers via stochastic gradient
descent on the new loss.

 With good starting features, you only
need a few training examples to
perform animal pose estimation.
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Deep Residual Networks
(resnet-50)

34-layer residual

Transfer Learning
In DeepLabCut, etc.

Stacked Hourglass Networks

 DLC repurposes state-of-the-art
deep networks for human pose
detection.

 DLC starts with a residual network
(resnet-50) and adds =l
“d | t. I,, | . [ 3. ::256 Fig. 3. An illustrati [ a single “} rlass” fule. Each box in the fi ' corre-
econvolutional” layers, as In _— e i o e ot

[

across the whole hourglass.

De_eper_Cut for human pose g Newell et al (2016)

estimation. =

» SLEAP starts with “stacked e, b
hourglass networks” for human = 23,64

POSE estimation. ‘ - | 1x1, 256

: relu

256-d

He et al (2015)



Transfer Learning

Data augmentation

» | abeling data is tedious.

* ldea: Make the most of each
training example by making
alterations your classifier should
be robust to.

 EQg a cropped, rotated, and
scaled paw is still a paw. A

partially occluded paw is still a
paw.




Structured prediction



Structured prediction

How do we aggregate key point probabilities for each pixel?

Bayesian formulation with efficient MAP inference

f P =a1~g11211 ( Z ,J ({;, 1 Z Ing;(1,1; ]) .
1 (.rr,_;.-z'j’)&r v; eV

Optimal configuration '

Part-to-part term

Image to part term

Felzenswalb & Huttenlocher. Pictorial Structures for Object Recognition (2004)
Felzenswalb & Huttenlocher. Efficient matching of pictorial structures (2005)

Slide credit: Talmo Pereira



Structured prediction

How do we aggregate key point probabilities for each pixel?
pairwise
per part

unaries

p(r knee‘l r wrist) p(r knee | r elbow)

Pishchulin, Insafutdinov, Tang, Andres, Andriluka, Gehler, & Schiele. DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation (2015)
Insafutdinov, Pishchulin, Andres, Andriluka & Schiele. DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model (2016)

Slide credit: Talmo Pereira



3D Pose estimation

Projective geometry

e How can we estimate 3D pose from
multiple 2D camera views?

* Projective geometry makes far away
objects appear smaller.

Jo 2 Je() \
fo(X) = %(u,v)T where (u,v,w)T — A. 7+ b,

Y,
L y2

/

Modlfied from wikipedia.org




3D Pose estimation
Model 0: Bayesian triangulation of 3D pose from 2D observations

time ¢

3D keypoint @
Ttk ™ N(Cli't_Lk, 772]) location

2
c ™ C ] 1
Yt k, N(f (xt,k) W ) D
observations

T time steps
K keypoints
C cameras



3D Pose estimation

Triangulation In the presence of measurement noise

* Projective geometry makes far away objects
appear smaller.

* Qutliers in 2D estimates can severely affect 3D
triangulation.

* [ypical approaches: outlier |
O J
/ \\
* More data g N\
. NG
¥y

 Temporal constraints
* Median filtering (DLC-3D) / RANSAC \ /

e Robust noise models Modlified from wikipedia.org




Model 1: Robust Bayesian triangulation of 3D pose from 2D observations

* Projective geometry makes far away
objects appear smaller.

* Qutliers in 2D estimates can severely — time
affect 3D triangulation. 3D keypoint @
- Typical approaches: location
— More data :
| outliers and
— Temporal constraints observations

— Median filtering (DLC-3D) / RANSAC
— Robust noise models



Triangulation in the presence of measurement noise

* Projective geometry makes far away
objects appear smaller.

* Outliers in 2D estimates can severely —
affect 3D triangulation. S

» Typical approaches:

— More data S
._'?'
— Temporal constraints 2\ o}
— Median filtering (DLC-3D) / RANSAC % PR\ r =

— Robust noise models
— Spatial constraints



A probabilistic view of spatial constraints

 Common approach:

p(x) o< | [N (lzr = zriyll; prs 071) S




A probabilistic view of spatial constraints

* Common approach:

p(x) o< | [N (lzr = zriyll; prs 071) S
* Alternative: 0
e ©®
UL ™~ Umf(Sg) Ob. ‘ .\I
ok | uk ~ N(Zr(k) + prtk, o*1) 'f -

* Are these equivalent?




Model 2: Incorporating distance priors on keypoint configurations

direction
from parent

3D keypoint
location

outliers and
observations




Why stop at distances? Poses involve correlated directions!
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GIMBAL.: Capturing correlations in direction vectors with pose states
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GIMBAL vyields posterior distributions on 3D pose given 2D estimates
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Structured priors improve 3D pose estimates

Table 1: Mean position error (MPE) averaged over all
keypoints, for different pose estimation models. Calculated
with unmodified predictions (raw) and after applying rigid
Procrustes analysis (RPA). Units: mm.

DLC-3D DANNCE GIMBAL

Raw 11.41 9.25 8.01
RPA 11.17 7.38 6.88

Table 2: Same as Table 1, with results for special submodels

of GIMBAL.
MO M1l M2 GIMBAL
Raw | 14.96 10.71 9.65 8.01
RPA | 14.07 10.43 &8.97 6.88
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Structured priors improve 3D pose estimates
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Conclusion

* Precise behavior quantifications are critical for understanding how neural
activity relates to behavioral output.

 Markerless pose tracking methods have made it much easier to obtain such
quantifications.

 Convolutional neural networks are naturally suited to this task.

* With transfer learning, we can leverage state-of-the-art deep networks for
image classification to warm-start pose tracking.

 We can triangulate 3D pose from 2D images using projecting geometry and
spatiotemporal priors.
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