Machine Learning Methods
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Demixing and Deconvolving Calcium Imaging Data
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Announcements

 Lab 1 due tomorrow at midnight.
 Please upload just the pdf on Gradescope.
* Please add a short paragraph at the end about author contributions
* Please see Ed discussion for minor errata on Problems 2e and 3c.

 |Lab 2 will be released tomorrow evening so you can read through it before the
lab on Friday.

 [eam assignments will be announced tomorrow night as well.



Agenda

1. Optical physiology
2. Constrained Non-negative Matrix Factorization (CNMF)



Recap
Electrophysiology

So far, we’ve study electrophysiological
(“ephys”) recordings with high density
probes.

The raw data is a multidimensional
time series of voltage measurements,
one for each recording site on the probe.

When neurons near the probe fire an
action potential, it registers a spike In
the voltage on nearby channels.

Typical recordings detect spikes from
O(100) neurons.
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Recap

Electrophysiology Limitations

e [t’s hard to detect neurons that fire

rarely and produce low amplitude
EAPSs.

 More generally, you only pick up
cells that happen to be close to the
narrow probe.

* No cell-type specificity.

* |n particular, ephys does not
leverage our powerful genetic
toolkits for certain model organisms.
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Genetic tools

Cre driver lines in mice

Data detailing transgene expression in Cre and other driver lines for adult and developing brain. Experiments include colorimetric in situ hybridization, fluorescent in situ hybridization and
other histological methods.

Example Image Expression Pattern Summary

A930038C07Rik-Tg1-Cre AT Widespread expression of reporter gene throughout the brain. Enriched in restricted populations within the olfactory areas, piriform cortex, hippocampus, and
cerebellum. Adult Cre expression observed in restricted populations of striatum, layer 5 neocortex, hypothalamus, pons and medulla. This is different from the

Allen Institute for Brain Science A930038C07Rik gene itself which is specifically expressed in layer 1.

A930038C0O7Rik-Tg4-Cre Scattered populations within cortical layers 4 and 5, septum, thalamus, and midbrain. In the cortex, unlike AS30038C07Rik which is specifically expressed in layer 1, Cre-

directed reporter expression is found enriched in a scattered population of cells in layer 5.

I
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Allen Institute for Brain Science

Adcyap1-2A-Cre A | S Cre expression is enriched in restricted populations within the olfactory areas, hippocampus, striatum, thalamus, midbrain, pons, and medulla. Expression is scattered
Allen Institute for Brain Science PaEvdaget i b within the isocortex and hypothalamus. Reporter expression is widespread.

Agrp-IRES-Cre
Enriched in the arcuate nucleus of the hypothalamus.
Bradford Lowell

xﬁég?

Avp-IRES2-Cre R
1Y Expressed in restricted populations within the hypothalamus.
Allen Institute for Brain Science

https://connectivity.brain-map.org/transgenic
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Genetically encoded indicators of neural activity
How can we make cells fluoresce only when they spike?

1. Look for a side effect of spiking.
Engineer a protein that fluoresces when that side effect is detected.

Modify the DNA of (subsets of) neurons to produce that protein.

W DN

Use a microscope to measure fluorescence in the genetically modified
organism.



Genetically encoded calcium indicators (GECIs)

When neurons spike, voltage gated calcium o °.Ca® _
channels (VGCCs) open and allow a rapid

influx of calcium ions (Ca2+). nfux o deprolonatir
10ms 0.8/1.8s
Genetically encoded calcium indicators — —
(GEClIs) like GCaMP bind to these calcium = 20/~70 ms
ions and become fluorescent. 28 i
The increased fluorescence decays as the : ° 4
calcium unbinds, producing a transient
fluorescence indicative of neural spiking. g @ 2
8 5 A pKa>T 8 5 |\ PKa>7 §5 |pKa<7

Using driver lines, GECls can be targeted to &£ \/\ g5 \/\ g < \/\
specific cell types. R e i [ <& L

400 450 500 550 400 450 500 550 400 450 500 550

Wavelength (nm) Wavelength (nm) Wavelength (nm)

In some cases, multiple GECls with different
fluorescence wavelengths can be encoded
simultaneously in different subpopulations.

Lin, Michael Z., and Mark J. Schnitzer. 2016. “Genetically Encoded Indicators of Neuronal Activity.” Nature Neuroscience 19 (9): 1142-53.



Genetically encoded voltage indicators (GEVIs)

Calcium is an indirect measure of
spiking. Genetically encoded voltage
indicators modulate fluorescence as a
function of membrane potential.

Lots of designs: fusing voltage sensing
domains (e.g. from voltage-gated ion
channels) to fluorescent proteins;
harnessing natural opsins from
microbes or algae.

GECIs are much more established, but
great progress in GEVIs has been made
IN recent years.

Lin, Michael Z.,

a ArcLightQ239/
Bongwoori

b ASAP1

and Mark J. Schnitzer. 2016. “Genetically Encoded Indicators of Neuronal Activity.” Nature Neuroscience 19 (9): 1142-53.



Microscopy

* EXpressing the genetically encoded
indicator is only half the battle.

 You still need to stimulate the cells

with a light source and measure the
resulting fluorescence.

WWW.inScopix.com

° Ag ai n ) th e re are I Ots Of ap p ro aC h eS : Spinning Disk Confocal Microscope Designs
Wlde_fleld Imaglng, 2-ph0ton P ",‘fn o Light Source @ —Eyepiece

Input

@@ —Emission Filter e
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microscopy, laser scanning and D THET R oo
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Svoboda and Yasuda. Neuron, 2006.


http://www.inscopix.com

2 photon calcium imaging

t=0.000s



2 photon calcium imaging
Over 10,000 cells

Pachitariu et al, bioRxiv 2017
Stringer et al, Nature 2019



 Modern packages like Suite2P and CalmAn
go through a few key steps to extract
fluorescence traces.

* The key challenges are:
* Correcting for motion artifacts.

» Separating overlapping cells.

* Accounting for background fluorescence.

* Deconvolving spikes from fluorescence
traces.

Suite2P

Data analysis pipelines for 2P imaging

CalmAn
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achitariu et al, bioRxiv 2017
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Giovanucci et al, eLife 2017



Init template Frame

Motion correction ° i
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* The brain is squishy and it moves in T IE
non-rigid ways in 3D during b )
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* A variety of non-rigid motion correction
algorithms have been proposed:
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Pnevmatikakis and Giovannucci, 2017.



 Modern packages like Suite2P and CalmAn
go through a few key steps to extract
fluorescence traces.

* The key challenges are:
* Correcting for motion artifacts.

* Separating overlapping cells.

* Accounting for background fluorescence.

* Deconvolving spikes from fluorescence
traces.

CNMF

Data analysis pipelines for 2P imaging

Suite2P

CalmAn
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Constrained Non-negative Matrix
Factorization (CNMF)

Pnevmatikakis et al, Neuron 2016.



CNMF

 Model the motion corrected
movie as a superposition of
fluorescence traces from multiple
neurons, plus background.

 \We can pose this as another

COnVOIUtiOnaI matriX faCtOrizatiOn Fm Component 1 Component 2
problem.

Neuropil

 Punchline: it's nearly the same
as what we did for spike sorting!



Constants

e Let 1 denote the number of
frames Iin the movie.

unravel

e

Pixels

» N denote the number of pixels.

Frames

« D denote the duration (in
frames) of a calcium spike.

Frames

« K denote the (unknown) number

of neurons that generated the
spikes.



Data and Latent Variables

e Data:

Neurons
E }

e Let X € R denote the motion W, W, W,
corrected and unraveled video.

 Latent Variables:

Pixels
Pixels

. Let A € R*! denote the time series
of spike amplitudes for each neuron.

e Parameters:

Delay Delay Delay Frames

. Let W € RAX¥*D denote the array of
calcium responses for each neuron.



Probabilistic Model
Likelihood

Like last week, assume each spike induces a scaled calcium response in the video.

T K
pX 1AW =]]¥ (x Y [a, ® W1, + ugey, 021)

=1 k=1

Frames Component 1 Component 2 Neuropil



Calcium response model

 Assume the calcium responses factor into
spatial and temporal components.

I
W, =wyv,

 Spatial factor u, specifies which pixels
correspond to neuron k.

* Constrain the temporal components to be
exponential decays.

Vg = e—d/z'

* Time constant of the decay is a function of
the indicator; O(100ms).



Calcium response model

Then

[a, @ W], = wla, @ v;], = uey,

where
D D
A _ _ —d/t
¢ = [ ® Vil = 2 U —adVkd = 2 A 1—q®

is the calcium trace of neuron k




Recursive formulation

The calcium response can be written recursively, thanks to the
exponential response:

D
— —d/t
Ckp = 2 A 1—d€

d=0
t—1

— —d/t
= Oy T Z O 1—d€
d=1

=2

_ —(d+1)/7
= Gyt Z i 1—(d+1)€
d=0

_ Y
=+ e e,

Equivalently, a, , = ¢; , — e‘l/fck i1

(Note, we took D — oo and zero-padded a, on the left.)



Recursive formulation

In matrix form,

1

—1/7
ak — GCk G — € y 1
e 't 1




Prior on calcium traces
Via a prior on amplitudes

Suppose q; , ~ ExXp(4), as in the spike
sorting model.

We can derive the probability of ¢, using the
change of measure formula,

p(c;) =

da,
dc

T
—1/7 .

I IExp(ck,t —e Ck,t_l,/l)

=1

T
B |G| HEXP(Ck,t — € _mck,t—l; A)
=1



Prior on calcium traces
Via a prior on amplitudes

Since G is lower triangular, its determinant
IS the product of its diagonal; i.e. 1.

Thus,

I
p(ey) = | [ Exple, — e, 1:2)
=1

It's just the probabillities of the “jumps” q; ,.



Optimizing the calcium traces

Following the same steps as last week, we end up with the following
objective for optimizing the calcium traces:

Z(¢) = ——=lleg — ﬂkuz + A Z (th _1/TCk,t_1),

262
=1

where
-
#,=Ru;

IS the residual projected onto the spatial factor for this neuron.



Optimizing the calcium traces

More compactly,

1
— |l — 13 +AZ (ce,— € Ve,

(@) = 262
r—1

= — 2_02”Ck —ﬂkH% + MGl

We still have that pesky hyperparameter A...



Optimizing the calcium traces

Dual formulation

Maximizing Z£(¢,) is equivalent to solving the following convex optimization problem,

¢, =argmin, ||Ge¢yll; subjectto |lc,—pyll, <0, Geg >0,

k

for some threshold 6.

Crt — Hit

Under the model, ¢, , — py , ~ N (0, %), and Zpy = ~ N (0, 1).

0]

|z]|, is the norm of a vector of iid Gaussians. It follows a chi (y) distribution.

Idea: for large T, the chi distribution concentrates around ﬁ Sosetd = (1 + G)Gﬁ.

How to get 6?7 We can estimate the noise at each pixel by high-pass filtering the data, then
standardize the data by dividing by the noise standard deviation so that in our model 6 = 1.



CVXPy

 CVXPY is a powerful library for
convex optimization in Python,
based on the CVX package
from Grant and Boyd.

* |t’s ideally suited to solving
these types of problems.

* |f you want to learn more, take
Prof. Boyd’s course, EE364,
and read his book!

Stephen Boyd and
Lieven Vandenberghe

convex
Optimization

Navigation

Install

Quick search

Go

Version selector

Choose version here |

Welcome to CVXPY 1.3

Convex optimization, for everyone.

CVXPY is an open source Python-embedded modeling language for convex optimization
problems. It lets you express your problem in a natural way that follows the math,
rather than in the restrictive standard form required by solvers.

For example, the following code solves a least-squares problem with box constraints:

import cvxpy as cp
import numpy as np

# Problem data.

m = 30

n = 20

np.random.seed(1)

A = np.random.randn(m, n)
b = np.random. randn(m)

# Construct the problem.

X = cp.Variable(n)

objective = cp.Minimize(cp.sum_squares(A @ x — b))
constraints = [0 <= x, x <= 1]

prob = cp.Problem(objective, constraints)

# The optimal objective value is returned by “prob.solve() .
result = prob.solve()

# The optimal value for x is stored in "x.value .
print(x.value)

# The optimal Lagrange multiplier for a constraint is stored in
# “constraint.dual value .

print(constraints[0].dual_value)



Miscellanea

* We typically constrain the spatial
factors to be non-negative too,
unlike in spike sorting.

* \We need to account for background
fluorescence from out-of-focus
cells.

* Typically, assume rank-1 or spatially
smooth background. See notes.

* As always, preprocessing is
important for finding candidate
neurons and characterizing noise.
More on this in the lab.

Raw data

Background

CNMF-E; Zhou et al, eLife 20:




Eaw Data 2 . Inferred Activity

Mean Residual Buffer Denoised Data

Frame = 201

OnACID; Giovanucci et al, NIPS 2017. Mesoscope data from A. Tolias lab



Raw data (Raw-BG) X 8 Residual X 8
g .-

Background Denoised X 8 Demixed
| . ime: 0.10 second

CNMF-E; Zhou et al, eLife 2018. Very different background model required for 1p data



Conclusion

* Optical physiology offers a powerful and complementary toolkit for
measuring neural activity in genetically defined cells.

 Methods for extracting calcium fluorescence traces are very similar to those
for spike sorting. It’s all convolutional matrix factorization with constraints.

e |f we have an estimate of the noise, we can use it to set hyper parameters
(i.e. thresholds) automatically.

 Next time: we’ll dive deeper into the deconvolution problem of inferring spike
times and amplitudes from calcium traces.



Further reading

* Lin, Michael Z., and Mark J. Schnitzer. 2016. “Genetically Encoded Indicators of Neuronal Activity.”
Nature Neuroscience 19 (9): 1142-58.

 Pnevmatikakis EA, Soudry D, Gao Y, et al. Simultaneous Denoising, Deconvolution, and Demixing
of Calcium Imaging Data. Neuron. 2016;89(2):285-299. doi:10.1016/j.neuron.2015.11.037

* Pachitariu, Marius, Carsen Stringer, Mario Dipoppa, Sylvia Schroder, L. Federico Rossi, Henry
Dalgleish, Matteo Carandini, and Kenneth D. Harris. 2017. “Suite2p: Beyond 10,000 Neurons with
Standard Two-Photon Microscopy.” Cold Spring Harbor Laboratory. https://doi.org/
10.1101/061507.

 /Zhou, Pengcheng, Shanna L. Resendez, Jose Rodriguez-Romaguera, Jessica C. Jimenez, Shay Q.
Neufeld, Andrea Giovannucci, Johannes Friedrich, et al. 2018. “Efficient and Accurate Extraction of
in Vivo Calcium Signals from Microendoscopic Video Data.” eLife 7 (February): e28728.

* Giovannucci, Andrea, Johannes Friedrich, Pat Gunn, Jeremie Kalfon, Brandon L. Brown, Sue Ann
Koay, Jiannis Taxidis, et al. 2019. “CalmAn an Open Source Tool for Scalable Calcium Imaging Data
Analysis.” eLife 8 (January). https://doi.org/10.7554/elL.ife.38173.
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