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Outline

- Revisiting Factor Analysis

- SGD on the ELBO

- Generalizing to nonlinear factor models 



Factor Analysis
A component of SLDS

• Recall Lab 8: 
Mixture of Factor 
Analyzers and 
SLDS.


• The model 
assumed data live 
near a low 
dimensional 
manifold (a plane).
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Factor Analysis
Generative Model

• The generative model for factor analysis is  




where  are the continuous latent 
states and  are the observations.


• Contrast this with discrete mixture models.

xt ∼ 𝒩(0,I)
yt ∼ 𝒩(Cxt + d, R)

xt ∈ ℝD

yt ∈ ℝN



Factor Analysis
EM Algorithm

E step: Solve for the posterior, 


M step:  has a closed 
form solution too.

q(xt) = p(xt ∣ yt; θ)

θ⋆ = arg max 𝔼q[log p(x, y; θ)]



Factor Analysis
Stochastic M-step

We can approximate the ELBO with Monte Carlo,


ℒ(q, θ) = 𝔼q(xt)[log p(xt, yt; θ) − log q(xt)]

≈
1
M

M

∑
m=1

[log p(x(m)
t , yt; θ) − log q(x(m)

t )] x(m)
t

𝗂𝗂𝖽∼ q(xt)



Factor Analysis
Stochastic M-step

We can also approximate the gradient of the ELBO with Monte Carlo,





Often, we just take one sample! I.e., set .

∇θℒ(q, θ) = ∇θ𝔼q(xt)[log p(xt, yt; θ) − log q(xt)]

≈
1
M

M

∑
m=1

[∇θlog p(x(m)
t , yt; θ)] x(m)

t
𝗂𝗂𝖽∼ q(xt)

M = 1



Factor Analysis
Revisiting the E-step

• The posterior mean in  is a linear function of .q(xt) = 𝒩(xt; μt, Σt) yt



Factor Analysis
Amortized inference

Rather than solving for the posterior exactly for each data point, let’s treat 
 as shared variational parameters and learn them by stochastic 

gradient ascent.





Then,


ϕ = (W, b, Σ)

q(xt ∣ yt; ϕ) = 𝒩(xt ∣ Wyt + b, Σ)

ℒ(θ, ϕ) = 𝔼q(xt∣yt;ϕ) [log p(xt, yt; θ) − log q(xt ∣ yt; ϕ)]



Factor Analysis
Reparameterization trick

We can reparameterize  as a function of , , and independent noise.





Then,


xt yt ϕ

xt ∼ 𝒩(Wyt + b, Σ) ⟺ xt = Wyt + b + Σ1
2ϵt; ϵt ∼ 𝒩(0,I)

= xt(yt, ϵt; ϕ)

ℒ(θ, ϕ) = 𝔼ϵt [log p(xt(yt, ϵt; ϕ), yt; θ) − log q(xt(yt, ϵt; ϕ) ∣ yt; ϕ)]



Factor Analysis
Reparameterization gradients

After reparameterizing, we can use Monte Carlo to approximate the ELBO and its gradient 
with respect to ,





where  and . 


Likewise,





(Don’t forget that  is a function of !

ϕ

ℒ(θ, ϕ) = 𝔼ϵt [log p(xt(yt, ϵt; ϕ), yt; θ) − log q(xt(yt, ϵt; ϕ) ∣ yt; ϕ)]
≈ log p( ̂xt, yt; θ) − log q( ̂xt ∣ yt; ϕ)

̂xt = xt(yt, ϵt; ϕ) ϵt ∼ 𝒩(0,I)

∇ϕℒ(θ, ϕ) ≈ ∇ϕ(log p( ̂xt, yt; θ) − log q( ̂xt ∣ yt; ϕ))
̂xt ϕ



Factor Analysis
Stochastic Gradient Ascent on the ELBO

Instead of coordinate ascent of the ELBO (CAVI), we can just do stochastic 
gradient as cent of the ELBO,


while not converged: 

Sample index  uniformly at random 

Sample  and compute . 

Evaluate  

Update parameters ,  and 
decay step size.

t

ϵt ∼ 𝒩(0,I) ̂xt = xt(yt, ϵt, ϕ)

ℒ̂(θ, ϕ) = log p( ̂xt, yt; θ) − log q( ̂xt ∣ yt; ϕ)

θ ← θ + α∇θℒ̂(θ, ϕ) ϕ ← ϕ + α∇ϕℒ̂(θ, ϕ)



Factor Analysis
ELBO Surgery

We can rearrange the ELBO in many ways,





Applying the reparameterization trick,


ℒ(θ, ϕ) = 𝔼q(xt) [log p(xt, yt; θ) − log q(xt)]
= 𝔼q(xt) [log p(yt ∣ xt; θ)]

expected log likelihood

− KL (q(xt) ∥ p(xt; θ))
KL to prior

ℒ(θ, ϕ) ≈ 𝔼ϵt [log p(yt ∣ ̂xt; θ)] − KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ))



Factor analysis
As a linear autoencoder

Now let’s substitute the factor analysis model. Assume  for simplicity. 


Then the objective is,


R = σ2I

ℒ(θ, ϕ) = 𝔼ϵt [log p(yt ∣ ̂xt; θ)] − KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ))
= 𝔼ϵt [log 𝒩(yt ∣ C ̂xt + d, σ2I)] − KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ))
= −

1
2σ2

∥yt − ̂yt∥2
2

reconstruction loss

− KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ)) + c



Factor analysis
As a linear autoencoder

Now let’s substitute the factor analysis model. Assume  for simplicity. 


Then the objective is,
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1
2σ2

∥yt − ̂yt∥2
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reconstruction loss
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Factor Analysis
In pictures



We can generalize this approach to nonlinear factor analysis using neural 
networks; a.k.a. variational autoencoders (VAEs).


Variational Autoencoders (VAEs)



Variational Autoencoders
Amortization and Approximation gaps

• When we switch to nonlinear models, the 
posterior is no longer Gaussian  
approximation gap


• Moreover, neural network encoder may 
not produce the best Gaussian 
approximation  amortization gap. 


• Both lead to suboptimal inference and 
learning.

⇒

⇒



Conclusion

• Instead of doing coordinate ascent on the ELBO, we can directly maximize it 
with SGD.


• To do so, we used an amortized variational posterior as a function of the data 
and variational parameters . Then we used the reparameterization trick to 
get Monte Carlo estimates of the ELBO and its gradients.


• This approach connects factor analysis to a linear variational autoencoder.


• The nice thing about this approach is that it generalizes to nonlinear factor 
models too!

ϕ


