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Outline

- Revisiting Factor Analysis
- SGD on the ELBO
- Generalizing to nonlinear factor models
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Factor Analysis

Generative Model

* The generative model for factor analysis is

x, ~ N (0,1)
y, ~ N (Cx,+ d, R)

pixel 2

where x, € R” are the continuous latent
states and y, € R" are the observations.

" pixel 1
pixel N

e Contrast this with discrete mixture models.



EM Algorithm

Factor Analysis

E step: Solve for the posterior, g(x,) = p(x, | y,; )

M step: 0* = arg max
form solution too.

‘q[l()g p(x,y; 0)] has a closed



Factor Analysis
Stochastic M-step

We can approximate the ELBO with Monte Carlo,

Z(q,0) = -q@@) [log p(x,, y,; 0) — log g(x,)]

— 2 [log p(x™, y:6) —log g(x™)]  x™ = g(x)

m 1



Factor Analysis
Stochastic M-step

We can also approximate the gradient of the ELBO with Monte Carlo,
Vﬁg(qa 0) = \/6’ - (xt)[logp(xta Vis 0) — log Q(xt)]

Y Z % logp(x(m),yt, 0)] (m) < ~ q(x,)

m 1

Often, we just take one sample! l.e., set M = 1.



Factor Analysis
Revisiting the E-step

e The posterior mean in g(x,) = 4 (x,; u,, 22,) is a linear function of y,.



Factor Analysis

Amortized inference

Rather than solving for the posterior exactly for each data point, let’s treat

¢ = (W, b, 2) as shared variational parameters and learn them by stochastic
gradient ascent.

Q(xt | Vs ¢) — /V(Xt ‘ Wyt + b, Z)

Then,

Z(0, ¢) = —q(x|y;:) [logp(xt, Vi 0) —logq(x, | y;; ¢)]



Factor Analysis

Reparameterization trick

We can reparameterize x, as a function of y,, ¢», and independent noise.

x,~ N Wy, +b,2) < x, = Wyt+b+2%€t; e, ~ N(O0,])

Then,
20, ¢) =

= XV €5 P)

~¢, [lng(Xt(yt, € ),y 0) — log q(x(yy, €5 9) | ¢)]




Factor Analysis

Reparameterization gradients

After reparameterizing, we can use Monte Carlo to approximate the ELBO and its gradient
with respect to ¢,

Z0, ¢) = E, |log p(x,(vs € ), y3 0) — log q(x, (v €5 ) | yii )]
~ log p(X,, y,;0) —logg(X, | y; @)
where X, = x(y,, €; ¢) and €, ~ N (0,1).

Likewise,

VL0, ¢) %V, (logp(i, y;0) — logg(X, | y; $))

(Don’t forget that X, is a function of ¢!



Factor Analysis
Stochastic Gradient Ascent on the ELBO

Instead of coordinate ascent of the ELBO (CAVI), we can just do stochastic
gradient as cent of the ELBO,

whilile not converged:

Sample 1ndex ¢t uniformly at random

Sample € ~ 4(0,]) and compute X, =x/(y,€, Q).

Evaluate 52”(6, ¢) = logp(x,y;0) —logq(x, | y; @)

Update parameters 0 « H+aV@;§f(6’, D), ¢ — ¢+aV¢§f(«9, ¢®) and
decay step size.



Factor Analysis
ELBO Surgery

We can rearrange the ELBO in many ways,
Z,¢) = E, [log p(x, y;; 0) — log g(x,))
= E,, |logp(y, | x;60)| — KL (q(x) || p(x;; 0))

éxpected Ic;g Iikelihood \ KL tovprior

Applying the reparameterization trick,

Z0,¢) ~ E, [logp(y, | £;0)] — KL (q(x, | y: ) | p(x; 0))




Factor analysis

As a linear autoencoder

Now let’s substitute the factor analysis model. Assume R = &1 for simplicity.

Then the objective Is,
Z,¢) =E, [logp(y, | £;0)] — KL (q(x, | y;: #) | p(x; 0))
— ¢ [l()g N (y, | Cx, +d, 02])] — KL (Q(xt | Vi @) | (x5 ‘9))

—|ly, =95 =KL (g(x, | y: @) | p(x50)) + ¢
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Factor Analysis

In pictures



Variational Autoencoders (VAES)

We can generalize this approach to nonlinear factor analysis using neural
networks; a.k.a. variational autoencoders (VAES).
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Variational Autoencoders

Amortization and Approximation gaps

* When we switch to nonlinear models, the  1ogp(x)

posterior is no longer Gaussian = L
: : Approximation
approximation gap Gap
x I
» Moreover, neural network encoder may Llq"] A
not produce the best Gaussian -
approximation = amortization gap. Am"rgz)at“’"
—
 Both lead to suboptimal inference and Llal
learning.

Figure 1. Gaps 1n Inference



Conclusion

* |nstead of doing coordinate ascent on the ELBO, we can directly maximize it
with SGD.

 Jo do so, we used an amortized variational posterior as a function of the data

and variational parameters ¢. Then we used the reparameterization trick to
get Monte Carlo estimates of the ELBO and its gradients.

* This approach connects factor analysis to a linear variational autoencoder.

* The nice thing about this approach is that it generalizes to nonlinear factor
models too!



