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Nonlinear models for time series data

• In neuroscience, we’re often interested in sequential data . 
E.g., neural spike trains or behavioral time series.


• We could model each time point an an independent observation,





where  is a latent state, and   is a neural network with weights  that 
maps latent states to observations.


• This captures nonlinear relationships between  and , but how do we model 
dynamics over time?

y1:T = (y1, …, yT)

xt ∼ 𝒩(0,I) yt ∼ 𝒩( f(xt; θ), σ2I)

xt f(x; θ) θ

xt yt



Nonlinear state space models

• We could incorporate temporal dependencies into the prior. E.g., via an linear dynamical system 
prior,


.


• More generally, we could have a nonlinear dynamical system,


.


where  are the parameters of a neural network. 


• For example,  could be a recurrent neural network.

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ Axt−1 + b, Q)

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ h(xt−1; θ), Q)

θ

h(x; θ)



LFADS: Latent Factor Analysis for Dynamical Systems
A Stochastic RNN model

• LFADS uses a recurrent neural 
network (the generator) to 
model nonlinear dynamics of 
neural activity. 


• In the basic model, the RNN 
has deterministic dynamics 
with a random initial 
condition. 

• The RNN state is mapped 
through a GLM to obtain firing 
rates for a Poisson model.

Pandarinath et al (2018)



• LFADS learns accurate 
single-trial firing rates and 
achieves excellent 
decoding performance on 
monkey reaching tasks 
(Recall Lab 5).

Pandarinath et al (2018)

LFADS: Latent Factor Analysis for Dynamical Systems
A Stochastic RNN model



The LFADS Generator
Stochastic dynamics vs stochastic inputs

• LFADS uses a slightly different formulation of the prior. 


• Instead of having stochastic dynamics,


.


It uses stochastic inputs with deterministic dynamics.


.


• This is just a reparameterization. It implies a distribution on , but that distribution 
could be quite complex since  is nonlinear.

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ h(xt−1; θ), Q)

x0 ∼ 𝒩( ∣ 0,Q1) ut
𝗂𝗂𝖽∼ 𝒩(0,I) xt = h(xt−1, ut; θ)

x0:T
h



Inferred Inputs

• The inferred inputs can 
suggest the presence, 
identity, and timing of 
unexpected changes in the 
dynamics.


• For example, in trials where 
the cursor was randomly 
perturbed to the right or 
left, inputs capture 
corresponding changes in 
neural activity.

Pandarinath et al (2018)

The LFADS Generator



Reparameterizing the latent state

We can unwind the recursion to write the state at 
time  as a deterministic function of the initial 
condition and the inputs up to time ,


t
t

xt = h(xt−1, ut, θ)
= h(h(xt−2, ut−1, θ), ut, θ)
= h(⋯h(h(x0, u1, θ), u2, θ)⋯)
≜ ht(x0, u1:t, θ)

The LFADS Generator



“Vanilla” RNNs

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recurrent Neural Networks



Vanishing and Exploding Gradients

• To optimize the ELBO, we’ll need derivatives of the state with respect to the initial state,





• In a vanilla RNN, , then,





• Multiplying a bunch of these matrices together leads to vanishing or exploding gradients, 
depending on the eigenvalues of .

∂xt

∂x0
=

∂
∂xt−1

h(xt−1, ut, θ) ⋅
∂xt−1

∂x0

=
t

∏
s=1

∂
∂xs−1

h(st−1, us, θ)

h(x, u) = tanh(Wx + Bu)
∂
∂x

h(x, ut, θ) = diag(sech2(Wx + But)) W

W

Recurrent Neural Networks



Recurrent Neural Networks
Long Short-Term Memory (LSTM) networks 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Recurrent Neural Networks
Gated Recurrent Units (GRUs)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



The emission model

• The output is modeled as a (typically simple) function 
of the latent state,





where, e.g.,


.

yt ∼ Po(f(xt))

f(xt) = exp {Cxt + d}

The LFADS Generator



Joint distribution

• Assume the initial condition and inputs have 
standard normal priors. 


• The joint distribution is,


p(x0, u1:T, y1:T ∣ θ) = 𝒩(x0 ∣ 0,I)
T

∏
t=1

𝒩(ut ∣ 0,I) Po(yt ∣ f(xt))

= 𝒩(x0 ∣ 0,I)
T

∏
t=1

𝒩(ut ∣ 0,I) Po(yt ∣ f(ht(x0, u1:t, θ)))

The LFADS Generator



Poisson LDS as a special case of LFADS

• We can view the Poisson LDS (c.f. Macke et al, 
2011) as a special case of LFADS with a linear 
generator. 
 

xt ∼ 𝒩(Axt−1 + b, Q) xt = h(xt−1, ut, θ)
h(xt−1, ut, θ) = Axt−1 + b + Q1/2ut

⟺ ut ∼ 𝒩(0, I)
yt ∼ Po(f(xt)) yt ∼ Po(f(xt))

Ax + b + Q1/2u

The LFADS Generator



Variational EM

• How to learn the parameters  and infer the latent 
variables ?


• Variational EM: 


• E step: Approximate the posterior with,





• M step: Find parameters that maximize the ELBO


θ
x0, u1:T

q(x0, u1:T) ≈ p(x0, u1:T ∣ y1:T, θ)

ℒ[q, θ] = 𝔼q(x0,u1:T) [log p(x0, u1:T, y1:T) − log q(x0, u1:T)]

Learning and Inference in LFADS



Variational Approximation

• Let’s assume a Gaussian form for each factor,





• This approximation is parameterized by variational parameters .


• Let  denote the ELBO as a function of the 
variational and generative model parameters.

q(x0, u1:T; λ) = 𝒩(x0 ∣ μ̃0, Σ̃0)
T

∏
t=1

𝒩(ut ∣ μ̃t, Σ̃t)

λ ≜ {μ̃t, Σ̃t}T
t=0

ℒ(λ, θ) = ℒ[q(x0, u1:T; λ), θ]

Learning and Inference in LFADS



ELBO Surgery

ELBO Surgery*: we can rewrite the ELBO as,


ℒ(λ, Θ) = 𝔼q(x0,u1:T,λ) [log p(x0, u1:T) + log p(y1:T ∣ x0, u1:T, Θ) − log q(x0, u1:T; λ)]

= 𝔼q(x0,u1:T,λ) [log p(y1:T ∣ x0, u1:T, Θ) − log
q(x0; λ)
p(x0)

−
T

∑
t=1

log
q(ut; λ)
p(ut) ]

= 𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, Θ)]
expected log likelihood

− KL(q(x0; λ) ∥ p(x0)) −
T

∑
t=1

KL(q(ut; λ) ∥ p(ut))

KL to the prior

*For more ways of rewriting the ELBO, see Johnson and Hoffman (2017)

Learning and Inference in LFADS



Gradients wrt θ

Gradient ascent on the ELBO:





Since the generative parameters don’t appear in , we can pull the gradient inside the 
expectation and compute it with automatic differentiation for any .


Then approximate the expectation with Monte Carlo:


.

∇θℒ(λ, θ) = 𝔼q(x0,u1:T,λ) [
T

∑
t=1

∇θlog p(yt ∣ x0, u1:t, θ)]
q

x0, u1:t, θ

∇Θℒ(λ, θ) ≈
1
M

M

∑
m=1 [

T

∑
t=1

∇Θlog p(yt ∣ x(m)
0 , u(m)

1:t , θ)] x(m)
0 ∼ q(x0; λ), u(m)

t ∼ q(ut; λ)

Learning and Inference in LFADS



The “reparameterization trick”

The gradients with respect to the variational parameters are a bit trickier:




Note that  where .


We can reparameterize the model in terms of an expectation wrt  and then take the 
gradient inside the expectation, as before





As before, we can approximate this with ordinary Monte Carlo.

∇λℒ(λ, θ) = ∇λ𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

x0 ∼ 𝒩(μ̃0, Σ̃0) ⟺ x0 = μ̃0 + Σ̃1/2
0 ϵ0 ϵ0 ∼ 𝒩(0,I)

ϵ0:T

∇λℒ(λ, θ) = 𝔼ϵ0:T [
T

∑
t=1

∇λlog p(yt ∣ x0(ϵ0, λ), u1(ϵ1, λ), …, ut(ϵt, λ), θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

Learning and Inference in LFADS



The “reparameterization trick”

The gradients with respect to the variational parameters are a bit trickier:




Note that  where .


We can reparameterize the model in terms of an expectation wrt  and then take the 
gradient inside the expectation, as before





As before, we can approximate this with ordinary Monte Carlo.

∇λℒ(λ, θ) = ∇λ𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

x0 ∼ 𝒩(μ̃0, Σ̃0) ⟺ x0 = μ̃0 + Σ̃1/2
0 ϵ0 ϵ0 ∼ 𝒩(0,I)

ϵ0:T

∇λℒ(λ, θ) = 𝔼ϵ0:T [
T

∑
t=1

∇λlog p(yt ∣ x0(ϵ0, λ), u1(ϵ1, λ), …, ut(ϵt, λ), θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

Learning and Inference in LFADS



Stochastic Gradient Ascent on the ELBO

• Variational EM via gradient descent and the reparameterization trick,


• E step: 


• Draw  for , .


• Use  to approximate  via Monte Carlo and the 
reparameterization trick.


• Update 


• M step:


• Use  to approximate  via Monte Carlo.


• Update .

ϵ(m)
t ∼ 𝒩(0,I) t = 0,…, T s = 1,…, S

ϵ ∇λℒ(λ, θ)

λ ← λ + α∇λℒ(λ, θ)

ϵ ∇θℒ(λ, θ)

θ ← θ + α∇θℒ(λ, θ)

Learning and Inference in LFADS



Amortized inference with encoders / recognition networks

• With large datasets, we often work on one mini-
batch at a time.


• In that setting, we need a way to quickly obtain a 
decent posterior approximation for that mini-batch.


• Key idea: the optimal  is a function of the data 
, so let’s use a neural network to approximate 

the mapping from data to variational parameters.


• This is called amortized inference. 


• The learned network is called an encoder or a 
recognition network. 

λ⋆

y1:T

Learning and Inference in LFADS



Amortization and Approximation gaps

• When we switch to nonlinear models, the 
posterior is no longer Gaussian  
approximation gap


• Moreover, neural network encoder may 
not produce the best Gaussian 
approximation  amortization gap. 


• Both lead to suboptimal inference and 
learning.

⇒

⇒

Learning and Inference in LFADS



Conclusion

• Sequential VAEs are latent variable models for time series data like neural 
spike trains and behavioral pose trajectories.


• LFADS is one such example that is popular in neuroscience. It uses recurrent 
neural networks to parameterize the nonlinear dynamics, and Poisson GLMs 
to model the spike count observations.


• Learning and inference are much the same as in standard VAEs —we just 
maximize the ELBO. 


• It also uses an RNN for the recognition network / encoder, to estimate 
latent variables given observations.



Further Reading

• Pandarinath, Chethan, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, 
Sergey D. Stavisky, Jonathan C. Kao, Eric M. Trautmann, et al. 2018. 
“Inferring Single-Trial Neural Population Dynamics Using Sequential Auto-
Encoders.” Nature Methods 15 (10): 805–15.


