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Agenda

• EM for Gaussian LDS

• The Kalman filter and smoother

• Variational EM (vEM) for SLDS

• Coordinate Ascent VI (CAVI)



Probabilistic state space models
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Gaussian Linear Dynamical Systems (LDS)
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A Gaussian LDS has linear Gaussian 
dynamics,

parameterized by , 

and linear Gaussian emissions,

parameterized by .

xt+1 ∼ 𝒩(Axt + b, Q)

θ𝖽𝗒𝗇 = (A, b, Q)

yt ∼ 𝒩(Cxt + d, R)

θ𝗈𝖻𝗌 = (C, d, R)



What can linear models do?
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continuous state dim 1 continuous state dim 1

rotational dynamics (e.g., motor control)

saddle point (e.g., winner-take-all)

point attractor (e.g., memory)

line attractor (e.g., integration)

A lot! E.g., the motifs from before were all 
linear models, .

Moreover, linear systems are interpretable. 

We can find analytical solutions for:
- fixed points and stability
- dynamics along eigenmodes
- posterior distribution over latent states 

(with the Kalman filter/smoother)
- optimal control (with dynamic 

programming)



Expectation-Maximization for Gaussian LDS
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How can we “fit” an LDS? Like other latent variable 
models, we can use EM!

E-step: Compute the posterior distribution over 
latent states,

.

(Really, we only need expected sufficient statistics.)

M-step: Update the parameters,

,

by maximizing the expected log probability.

q(x1:T) ← p(x1:T ∣ y1:T; θ)

θ ← arg max
θ

𝔼q [log p(x1:T, y1:T; θ)]



Message passing in probabilistic state space models

Recall our message passing algorithm for hidden Markov models.  The same recursive algorithm applies (in 
theory) to any state space model, but the sums are replaced with integrals,

where the forward and backward messages are defined recursively

The initial conditions are  and .    

p(xt ∣ y1:T) ∝ ∫ dx1⋯∫ dxt−1 ∫ dxt+1⋯∫ dxT p(x1:T, y1:T)

= αt(xt) p(yt ∣ xt) βt(xt)

αt(xt) = ∫ p(xt ∣ xt−1) p(yt−1 ∣ xt−1) αt−1(xt−1)dxt−1

βt(xt) = ∫ p(xt+1 ∣ xt) p(yt+1 ∣ xt+1) βt+1(xt+1)dxt+1

α1(x1) = p(x1) βT(xT) ∝ 1



Computing the forward messages with the Kalman filter

Consider a linear dynamical system (LDS) with Gaussian emissions,

To derive the forward message, make the inductive hypothesis that .  Then,

Since the integrand is a product of linear Gaussian terms, the result is a Gaussian of the hypothesized form!

This algorithm is called the Kalman filter, and it is one of the most important algorithms in signal processing.

p(y1:T, x1:T) = 𝒩(x1 ∣ m, Q)
T

∏
t=2

𝒩(xt ∣ Axt−1 + b, Q)
T

∏
t=1

𝒩(yt ∣ Cxt + d, R)

αt(xt) ∝ 𝒩(xt ∣ μt|t−1, Σt|t−1)

αt+1(xt+1) = ∫ p(xt+1 ∣ xt) p(yt ∣ xt) αt(xt) dxt

= ∫ 𝒩(xt+1 ∣ Axt + b, Q) 𝒩(yt ∣ Cxt + d, R) 𝒩(xt ∣ μt|t−1, Σt|t−1) dxt



Computing expected sufficient statistics under the posterior

The Kalman smoother combines the forward messages with a backward pass to compute the posterior marginals.

Since the model is constructed with linear Gaussian dependencies, the posterior marginals are all Gaussian 
distributions. 

The Kalman smoother returns several expected sufficient statistics under the posterior:

• Posterior means,   

• Posterior covariances,  

• Posterior cross-covariances,  

• From the first two, we can also compute 

where  is the posterior distribution.

𝔼q[xt]
Covq[xt]

𝔼q[xtx⊤
t+1]

𝔼q[xtx⊤
t ]

q(x1:T) = p(x1:T ∣ y1:T; θ)



The M-step for a Gaussian LDS

The M-step for a Gaussian LDS solves for parameters that maximize the expected log joint probability,

where .  These updates only require the expected sufficient statistics. 

For example, to update the dynamics matrix (assuming  for simplicity) we find,

θ ← arg max
θ

𝔼q [log p(x1:T, y1:T; θ)]

q(x1:T) = p(x1:T ∣ y1:T; θ𝗈𝗅𝖽)

b = 0

A ← arg max
A

𝔼q [
T−1

∑
t=1

log 𝒩(xt+1 ∣ Axt, Q)]
= arg min

A

T−1

∑
t=1

𝔼q [(xt+1 − Axt)⊤Q−1(xt+1 − Axt)]

= (
T−1

∑
t=1

𝔼q[xt+1x⊤
t ]) (

T−1

∑
t=1

𝔼q[xtx⊤
t ])

−1

.
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• EM for Gaussian LDS
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• Variational EM (vEM) for SLDS

• Coordinate Ascent VI (CAVI)



Switching linear dynamical systems (SLDS)
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Exact EM for a Gaussian SLDS

E-step: Update the posterior over latent variables,

.

M-step: Update the parameters,

As before, we only need certain expectations under ,

Unfortunately, computing the posterior expectations is a lot harder now!

q(z, x) ← p(z, x ∣ y, θ) =
p(z, x, y ∣ θ)

p(y ∣ θ)

θ ← arg max𝔼q(z,x) [log p(z, x, y ∣ θ)]

q

𝔼q(z,x) [𝕀[zt = k]], 𝔼q(z,x) [𝕀[zt = k]xt], 𝔼q(z,x) [𝕀[zt = k]xtx⊤
t ], 𝔼q(z,x) [𝕀[zt = k]xtx⊤

t+1],



Naively applying the message passing recursions for and SLDS

We can think of the SLDS as a hybrid state space model.

Let  denote the hybrid discrete & continuous latent state.ht = (zt, xt)

= latent = observed = dependency

Observations yTyt+1yty1

Continuous 
Latent States xt xt+1. . . . . .x1 xT

Discrete
Latent States . . . . . . zTzt+1ztz1

h1 ht ht+1 hT



Naively applying the message passing recursions for and SLDS

We can think of the SLDS as a hybrid state space model.

Let  denote the hybrid discrete & continuous latent state.

The messages are mixtures of Gaussians, 

The last message,  has  mixture components!

ht = (zt, xt)

αt(zt, xt) = ∑
zt−1

∫ p(xt, zt ∣ xt−1, zt−1) p(yt ∣ xt, zt) αt−1(zt−1, xt−1) dxt−1

αT(hT) KT

Observations yTyt+1yty1

Hybrid 
Discrete & Continuous 

Latent States
. . . . . .h1 ht ht+1 hT



Variational Inference

Since the exact posterior is intractable, let’s 
try to approximate it instead. 

One way to do so is with variational inference: 
Find an approximate posterior, , that is as close as 
possible to the true posterior, . 

We constrain  to belong to a variational 
family of simple distributions, .

We typically measure closeness with the Kullback-
Leibler (KL) divergence.

The KL divergence is zero iff .

Question: what if  is unconstrained, i.e., the set of all 
distributions?

q(z, x)
p(z, x ∣ y)

q(z, x)
𝒬

q = p

𝒬

p(z, x ∣ y)

DKL(q ∥ p)

𝒬

q 𝗂𝗇𝗂𝗍(z, x)

q⋆(z, x)



Kullback-Leibler (KL) Divergence

The Kullback-Leibler (KL) divergence is a 
measure of how dissimilar two distributions are.

It has several nice properties:

• The KL is divergence is non-negative.

• It is zero iff .

But it is not a distance!  In particular, it is not 
symmetric,

DKL(q ∥ p) = 𝔼q(x) [log
q(x)
p(x) ]

q = p

DKL(q ∥ p) ≠ DKL(p ∥ q)

p(z, x ∣ y)

DKL(q ∥ p)

𝒬

q 𝗂𝗇𝗂𝗍(z, x)

q⋆(z, x)



Kullback-Leibler (KL) Divergence

Bishop Ch 10.

Example: minimizing the KL divergence between a single Gaussian and a mixture of Gaussians.



Coordinate Ascent Variational Inference (CAVI) with a Mean Field Posterior

The mean-field approximation to the 
posterior treats the variables as independent,

 

With this variational family, we can solve for  by 
coordinate ascent. For example,

where

.

If  is otherwise unconstrained, the optimal 
coordinate update is to set .

𝒬𝖬𝖥 = {q : q(z, x) = q(z) q(x)}

q⋆

q(z) ← arg min KL(q(z) ∥ p̃(z))

p̃(z) ∝ exp {𝔼q(x) [log p(z, x, y; θ)]}
q(z)

q(z) ← p̃(z)

p(z, x ∣ y)

DKL(q ∥ p)

𝒬

q 𝗂𝗇𝗂𝗍(z, x)

q⋆(z, x)



Coordinate Ascent Variational Inference (CAVI) for a Gaussian SLDS

For a Gaussian SLDS,  takes the form of a posterior distribution under an HMM,

where 

 

is the (expected) log likelihood associated with state . 

p̃(z)

p̃(z) ∝ exp {𝔼q(x) [log p(z, x, y)]}
∝ exp {𝔼q(x) [log p(z1) +

T

∑
t=2

log p(zt ∣ zt−1) + log p(x1 ∣ z1) +
T

∑
t=2

log p(xt ∣ xt−1, zt)]}
∝ p(z1)

T

∏
t=2

p(zt ∣ zt−1)
T

∏
t=1

elt(zt)

lt(zt) = 𝔼q(x) [log p(xt ∣ xt−1, zt)] = 𝔼q(x) [log 𝒩(xt ∣ Azt
xt−1 + bzt

, Qzt
)]

zt



Constraining the form of the factors

Sometimes, we further constrain the functional form of the variational factors. 

For example, we could constrain the posterior over  to be a delta function on 

Then updating  amounts to finding the mode of ,

Since  is the posterior of an HMM, we can find the mode with the Viterbi algorithm. 

z z⋆

q(z) = δz⋆(z)

q(z) p̃(z)

q(z) = arg min
q

DKL(q(z) ∥ p̃(z)) ⟺ z⋆ = arg max
z

p̃(z)

p̃(z)



Coordinate Ascent Variational Inference (CAVI) for a Gaussian SLDS

By symmetry,  takes the form of a posterior distribution under an LDS,

This expression simplifies nicely when you work with the natural parameters of the Gaussian distribution.

Of course, when , this expression simplifies even further,

.

When  is otherwise unconstrained, the optimal update is to set .

p̃(x)

p̃(x) ∝ exp {𝔼q(z) [log p(z, x, y)]}
∝ exp {𝔼q(z) [log p(x1 ∣ z1) +

T

∑
t=2

log p(xt ∣ xt−1, zt) +
T

∑
t=1

log p(yt ∣ xt)]}

q(z) = δz⋆(z)

p̃(x) ∝ p(x1 ∣ z⋆
1 )

T

∏
t=2

p(xt ∣ xt−1, z⋆
t )

T

∏
t=1

p(yt ∣ xt)

q(x) q(x) ← p̃(x)



Variational EM for a Gaussian SLDS

Variational E-step: Approximate the posterior over latent variables,

 
using a variational family of our choice (e.g., a mean field family). 

Now, the expectations under  are tractable,

M-step: Update the parameters,

For a Gaussian SLDS, these updates admit closed form solutions.

q(z, x) ← arg min
𝒬

DKL(q(z, x) ∥ p(z, x ∣ y; θ))

q

𝔼q(z,x) [𝕀[zt = k]], 𝔼q(z,x) [𝕀[zt = k]xt], 𝔼q(z,x) [𝕀[zt = k]xtx⊤
t ], 𝔼q(z,x) [𝕀[zt = k]xtx⊤

t+1],

θ ← arg max 𝔼q(z,x) [log p(z, x, y ∣ θ)]



Conclusion

• Switching LDS combine ARHMMs and LDS to get the best of both worlds.

• They approximate nonlinear dynamical systems by switching between linear dynamical states.

• However, posterior inference is harder because the posterior has exponentially many modes.

• Variational EM is a natural generalization of EM to more complex latent variable models like this: 

• Simply replace the E-step with a variational approximation. 
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