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Agenda

• Motivating example


• Linear dynamical systems (LDS)


• Switching linear dynamical systems (SLDS)


• Results of a recent scientific study



aggression

Optogenetic activation of neurons in the hypothalamus elicits attack behavior

Lee et al. (Nature, 2014)  



Most neurons in VMHvl are tuned to intruder sex and are active during both sniffing and attack.

Miniscope imaging in VMHvl during spontaneous aggression shows mixed selectivity

Remedios, Kennedy et al. (Nature, 2019)
Karigo et al (Nature, 2021)  



Most neurons in VMHvl are tuned to intruder sex and are active during both sniffing and attack.

Miniscope imaging in VMHvl during spontaneous aggression shows mixed selectivity
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Hypothesis
An internal state of aggressiveness is encoded in the 

collective activity of neurons in the VMHvl.



Formalizing this hypothesis with a probabilistic model

:  neural population activity at time t
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activity traces a trajectory through neural state space



Low-dimensional structure in neural data

If collective activity encodes a low-dimensional state (e.g., “aggressiveness”), 
the data should lie near a low-dimensional manifold.
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:  continuous latent state (i.e., manifold coordinate)
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Low-dimensional structure in neural data

We think of neural activity as a noisy observation of a trajectory on the low-d manifold.
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We want to learn the dynamics that govern how trajectories unfold.

:  dynamics function
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Low-dimensional structure in neural data



Computation through neural dynamics
Dynamical motifs are hypothesized to underlie various forms of neural computation.
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rotational dynamics (e.g., motor control)

saddle point (e.g., winner-take-all)

point attractor (e.g., memory)

line attractor (e.g., integration)

Adapted from Vyas et al. (2020)



Computation through neural dynamics
Dynamical motifs are hypothesized to underlie various forms of neural computation.
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rotational dynamics (e.g., motor control)

saddle point (e.g., decision making)

point attractor (e.g., memory)

line attractor (e.g., evidence integration)

Methodological Question
How can we infer latent states  
and estimate their dynamics 

from neural and behavioral time series?

Adapted from Vyas et al. (2020)



Probabilistic state space models
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= latent = observed = dependency
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(e.g., neural traces)



Probabilistic state space models
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xt xt+1. . . . . .x1 xT

yTyt+1yty1

Assumptions
1. Markovian dynamics: next state is independent of 

previous states given the current state.

2. Conditionally independent observations: current 
observation is independent of others given the current state.

= latent = observed = dependency



To start, assume a linear Gaussian observation model

xt xt+1. . . . . .x1 xT

yTyt+1yty1

For now, assume a linear mapping from latent 
states to observations.

and a Gaussian noise model 

parameterized by  . 

We can relax these assumptions later.



Desiderata for selecting a dynamics model

xt xt+1. . . . . .x1 xT

yTyt+1yty1

1. Flexibility: we need a rich enough family of 
models to capture a range of neural dynamics.

2. Data efficiency: we need to fit these models to 
a limited number of noisy recordings.

3. Interpretability: we want to be able to explain 
how these dynamics support neural computation.



A spectrum of dynamics models

Highly flexible,
Generic inference,

Data intensive, 
Harder to interpret.

Limited capacity,
Specialized inference,

Data efficient, 
Easy to fit and understand.

linear  
models

Neural networks,
Gaussian processes



What can linear models do?
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A lot! E.g., the motifs from before were all 
linear models, .

Moreover, linear systems are interpretable. 

We can find analytical solutions for:
- fixed points and stability
- dynamics along eigenmodes
- posterior distribution over latent states 

(with the Kalman filter/smoother)
- optimal control (with dynamic 

programming)



Fixed points of a (continuous-time) linear dynamical system

Consider a continuous-time linear dynamical system

We can obtain a discrete-time LDS with a first-order Euler approximation,

The fixed points of the continuous-time system are where the time-derivative is zero,

If  is non-singular, then there is a unique fixed point .A x⋆ = A−1b



Dynamics along the eigenmodes

We can understand the system by studying its dynamics along each eigenmode. 

Take the eigendecomposition of ,

where the columns of  are the eigenvectors and  are the eigenvalues.

For now, assume  and let .  In terms of , the dynamics are,

A

V Λ = diag(λ1, …, λD)

b = 0 z = V−1x z



Eigenmodes with real eigenvalues produce exponential growth or decay

Since  is diagonal, this is a collection of separable, scalar linear dynamical systems,

The solution of these systems is

Since  is real-valued, its eigenvalues are either real-valued or they come in complex conjugate pairs. 

First, suppose . Then there are two cases to consider:

1.  grows exponentially, and this mode is unstable.
2.  decays exponentially, and this mode is stable.

Λ

A

λd ∈ ℝ

λd > 0 ⇒ zd(t)
λd < 0 ⇒ zd(t)



Complex eigenmodes produce oscillations

Now, consider a complex eigenvalue,  where  is the imaginary unit.

We can write the solution using Euler’s formula,

The real part of the eigenvalue determines the exponential growth or decay, and the imaginary part 
produces an oscillation.

What happens to the complex part of the state?! Remember that the eigenvalues come in complex 
conjugate pairs, and so do the corresponding eigenvectors. The complex parts cancel out when we 
map  back to . 

λd = Re[λd] + jIm[λd] j

z(t) x(t)



http://wpage.unina.it/p.maffettone/Lezione01PLM.pdf

Linear dynamical system phase portraits as a function of the eigenvalues



https://en.wikipedia.org/wiki/Stability_theory

Linear dynamical system phase portraits as a function of the trace and determinant of A



What can't linear models do?
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Still, most computations require nonlinear dynamics.



Key idea: nonlinear dynamics can often be approximated as piecewise-linear
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Indeed, that’s often how we analyze nonlinear dynamical systems!



A spectrum of dynamics models

Highly flexible,
Generic inference,

Data intensive, 
Harder to interpret.

Limited capacity,
Specialized inference,

Data efficient, 
Easy to fit and understand.

switching
linear dynamical 
systems (SLDS)
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Switching linear dynamical systems (SLDS)

xt xt+1. . . . . .x1 xT

yTyt+1yty1

. . . . . . zTzt+1ztz1

Ackerson and Fu (1970)
Chang and Athans (1978)

Hamilton (1990)
Ghahramani and Hinton (1996)

Murphy (1998)
Fox et al (2009)

= + noise

Different linear dynamics 
in each discrete state

= + noise

= + noise

..
.

dynamics 
matrices xtxt+1

 *Note: here  is a discrete latent variable!z



Switching linear dynamical systems (SLDS)

xt xt+1. . . . . .x1 xT

yTyt+1yty1

. . . . . . zTzt+1ztz1

Ackerson and Fu (1970)
Chang and Athans (1978)

Hamilton (1990)
Ghahramani and Hinton (1996)

Murphy (1998)
Fox et al (2009)

State-dependent 
switching probabilities

transition matrix
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Problem: in an SLDS, discrete state transitions are independent of location!
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Recurrent switching linear dynamical systems (rSLDS)

xt xt+1. . . . . .x1 xT

yTyt+1yty1

. . . . . . zTzt+1ztz1

Linderman et al. (AISTATS, 2017)
Zoltowski, Pillow, & Linderman (2020)

…and now many more



Recurrent SLDS partition continuous state space into regions with linear dynamics

Linderman et al. (AISTATS, 2017)
Zoltowski, Pillow, & Linderman (2020)

…and now many more



A spectrum of dynamics models

Highly flexible,
Generic inference,

Data intensive, 
Harder to interpret.

Limited capacity,
Specialized inference,

Data efficient, 
Easy to fit and understand.

switching
linear dynamical 
systems (SLDS)

linear  
models

Neural networks,
Gaussian processes

rSLDS



rSLDS analysis reveals line attractor-like dynamics in VMHvl

Nair et al. (Cell, 2023) 



rSLDS analysis reveals line attractor-like dynamics in VMHvl

Nair et al. (Cell, 2023) 



𝜏1, . . , 𝜏𝑛

rSLDS analysis reveals line attractor-like dynamics in VMHvl

dynamics matricesdynamics matrices

time constants 
(from the eigenvalues)

Nair et al. (Cell, 2023) 

Importantly, this is not true of all hypothalamic nuclei, e.g., MPOA.



the stability of the attractor is enhanced in mice that are more aggressive

Dynamical systems explain individual differences in aggressiveness

Nair et al. (Cell, 2023) 



No study has causally demonstrated the existence of intrinsic line attractor dynamics in mammals.

Are these dynamics intrinsic to VMHvl or a read-out of an upstream region?

Amit Vinograd

Vinograd, Nair et al. (Nature, 2024) 



Unfortunately, head-fixation results in loss of attack behavior.

“dream experiment”

How can we gain access to the line attractor for perturbation?

Vinograd, Nair et al. (Nature, 2024) 



VMHvl-Esr1 neurons are also active during observation of aggression 
(Yang et al., Cell 2023)

How can we gain access to the line attractor for perturbation?



VMHvl-Esr1 neurons are show line attractor 
dynamics during observation of aggression

How can we gain access to the line attractor for perturbation?

Vinograd, Nair et al. (Nature, 2024) 



Activation of x1 neurons should lead to integration if the line attractor is intrinsic.

if is not intrinsicif the attractor is intrinsic

x1 x1

Closed-loop perturbation of dynamics in VMHvl

Vinograd, Nair et al. (Nature, 2024) 



Holographic on-manifold activation* of line-attractor aligned x1 neurons leads to integration.

n = 8 mice

Closed-loop perturbation of dynamics in VMHvl

Vinograd, Nair et al. (Nature, 2024) 

*Note: this requires fitting an rSLDS online, during the session, to design the perturbation.



n = 8 mice

Holographic off-manifold activation of line-orthogonal x2 neurons does not lead to integration.

Vinograd, Nair et al. (Nature, 2024) 

Closed-loop perturbation of dynamics in VMHvl

Note: this requires fitting an rSLDS online, during the session, to design the perturbation.



on- and off-manifold perturbations 
provide first evidence of an intrinsic 

mammalian line attractor

Vinograd, Nair et al. (Nature, 2024) 

Closed-loop perturbation of dynamics in VMHvl



Do these attractor dynamics generalize to other internal state computations?

VMHvl shows attractor dynamics in female mice during mating, but only in proestrus.
Liu, Nair et al. (Nature, 2024) 


