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Optogenetic activation of neurons in the hypothalamus elicits attack behavior

bulk
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Adi Nair David Anderson

Lee et al. (Nature, 2014)




Miniscope imaging in VMHVvI during spontaneous aggression shows mixed selectivity

_ . single neuron encoding
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Most neurons in VMHvI are tuned to intruder sex and are active during both sniffing and attack.

Remedios, Kennedy et al. (Nature, 2019)
Karigo et al (Nature, 202 1)



Miniscope imaging in VMHVvI during spontaneous aggression shows mixed selectivity

Hypothesis

An internal state of aggressiveness is encoded in the
collective activity of neurons in the VMHvL.

Most attack.

Remedios, Kennedy et al. (Nature, 2019)
Karigo et al (Nature, 202 1)



neuron

100

Formalizing this hypothesis with a probabilistic model
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neural population activity at time t
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activity traces a trajectory through neural state space
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L ow-dimensional structure in neural data

If collective activity encodes a low-dimensional state (e.g., “aggressiveness”),
the data should lie near a low-dimensional manifold.
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neuron N

x; € RY : continuous latent state (i.e., manifold coordinate)



L ow-dimensional structure in neural data

We think of neural activity as a noisy observation of a trajectory on the low-d manifold.

‘neuron]

neuron 2
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neuron N

x; € RY : continuous latent state (i.e., manifold coordinate)



L ow-dimensional structure in neural data

We want to learn the dynamics that govern how trajectories unfold.

f:RY — RP : dynamics function
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Dynamical motifs are hypothesized to underlie various forms of neural computation.

continuous state dim 2
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Computation through neural dynamics
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point attractor (e.g., memory)
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Adapted from Vyas et al. (2020)



Computation through neural dynamics

Dynamical motifs are hypothesized to underlie various forms of neural computation.

rotational dynamics (e.g., motor control) point attractor (e.g., memory)
x

o~ - <« ¥

Methodological Question

How can we infer latent states
and estimate their dynamics
from neural and behavioral time series!?
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Probabilistic state space models

dynamics
function

latent
emission ‘
function

observed data
neuron] (e.g., neural traces)

O — |atent O = observed — = dependency
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Probabilistic state space models

Assumptions
|. Markovian dynamics: next state is independent of
~ previous states given the current state.
O
@ 2. Conditionally independent observations: current
nd  observation is independent of others given the current state.
neuron N

O — |atent O = observed —» = dependency



To start, assume a linear Gaussian observation model

For now, assume a linear mapping from latent
states to observations.

glx) =Cx+d
and a Gaussian noise model
ye | T, 9 ~ N(g(ae), R)
parameterized by Oops = (C, d, R).

We can relax these assumptions later.



Desiderata for selecting a dynamics model

|. Flexibility: we need a rich enough family of
models to capture a range of neural dynamics.
OO OREO
2. Data efficiency: we need to fit these models to

a limited number of noisy recordings.

3. Interpretability: we want to be able to explain
how these dynamics support neural computation.



Limited capacity,
Specialized inference,
Data efficient,

Easy to fit and understand.

linear
models

A spectrum of dynamics models

Highly flexible,
Generic inference,
Data intensive,
Harder to interpret.

Neural networks,
Gaussian processes



rotational dynamics (e.g., motor control)

continuous state dim 2
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What can linear models do?

point attractor (e.ge., memory)
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A lot! E.g., the motifs from before were all
linear models, f(x) = Ax + b.

Moreover, linear systems are interpretable.

We can find analytical solutions for:

fixed points and stability

dynamics along eigenmodes

posterior distribution over latent states
(with the Kalman filter/smoother)
optimal control (with dynamic
programming)



Fixed points of a (continuous-time) linear dynamical system

Consider a continuous=-time linear dynamical system

dx
— =A b
@ ot

We can obtain a discrete=time LDS with a first-order Euler approximation,

Lit+s — Lt -+ 5(14513‘75 -+ b)

The fixed points of the continuous-time system are where the time-derivative is zero,

{x: Ax = —b}

If A is non-singular, then there is a unique fixed point x* = A~'b.



Dynamics along the eigenmodes

We can understand the system by studying its dynamics along each eigenmode.
Take the eigendecomposition of A,
A=VAV™!
where the columns of V are the eigenvectors and A = diag(4,, ..., 4,) are the eigenvalues.

For now,assume b = 0 and let z = V™ !x. In terms of z, the dynamics are,

dz |, yda
dt dt
=V VAV 12

= Az.



Eisenmodes with real eigenvalues produce exponential growth or decay

Since A is diagonal, this is a collection of separable, scalar linear dynamical systems,

dzd

rd oy
a

The solution of these systems is
2q(t) = z4(0)e?!

Since A is real-valued, its eigenvalues are either real-valued or they come in complex conjugate pairs.
First, suppose 4, € R.Then there are two cases to consider:

. 4,> 0= z,(f) grows exponentially, and this mode is unstable.
2. 1,<0= z,/(r) decays exponentially, and this mode is stable.



Complex eigenmodes produce oscillations

Now, consider a complex eigenvalue, 4, = Re[4,] + jIm[4,] where j is the imaginary unit.

We can write the solution using Euler’s formula,

= zg(0)eRePdlt [eos(Im[Ag]t) + 7 sin(Im[Ag]t)]

The real part of the eigenvalue determines the exponential growth or decay, and the imaginary part
produces an oscillation.

What happens to the complex part of the state?! Remember that the eigenvalues come in complex
conjugate pairs, and so do the corresponding eigenvectors. The complex parts cancel out when we
map z(¢) back to x(?).



Linear dynamical system phase portraits as a function of the eigenvalues

Eigenvalues Phase portrait Stability
.o >_</~ node
1 stable
I @ focus
o /<Z {\} saddle unstable
PR %—% node
I unstable
I @ focus

http://wpage.unina.it/p.maffettone/Lezione01PLM.pdf



Linear dynamical system phase portraits as a function of the trace and determinant of A

Poincaré Diagram: Classification of Phase Portaits in the (det A, Tr A)-plane
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What can't linear models do?

Still, most computations require nonlinear dynamics.

ring attractor (e.g., head direction)

bistability (e.g., decision making)
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Key idea: nonlinear dynamics can often be approximated as piecewise-linear

Indeed, that’s often how we analyze nonlinear dynamical systems!

ring attractor (e.g., head direction)

bistability (e.g., decision making)
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Limited capacity,
Specialized inference,
Data efficient,

Easy to fit and understand.

linear
models

A spectrum of dynamics models

switching
linear dynamical
systems (SLDS)

Highly flexible,
Generic inference,
Data intensive,
Harder to interpret.

Neural networks,
Gaussian processes



Switching linear dynamical systems (SLDS)

Different linear dynamics
In each discrete state

@ ° 0‘@ e dynamics

Ti11 matrices Lt

— -+ noise

o | | | o 0 | | | #

— -+ noise

Ackerson and Fu (1970)

Chang and Athans (1978)
Hamilton (1990)

Ghahramani and Hinton (1996)

*Note: here 7 is a discrete latent variable! Murphy (1998)
Fox et al (2009)



Switching linear dynamical systems (SLDS)

@
- O =0

—

State-dependent
switching probabilities

transition matrix
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Ackerson and Fu (1970)

Chang and Athans (1978)
Hamilton (1990)

Ghahramani and Hinton (1996)
Murphy (1998)

Fox et al (2009)



Problem:in an SLDS, discrete state transitions are independent of location!

ring attractor (e.g., head direction)

bistability (e.g., decision making)
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Recurrent switching linear dynamical systems (rSLDS)

Linderman et al. (AISTATS, 2017)
Zoltowski, Pillow, & Linderman (2020)
...and now many more



Recurrent SLDS partition continuous state space into regions with linear dynamics
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A spectrum of dynamics models

Limited capacity, Higholy .ﬂexible,
Specialized inference, Generic inference,

Data efficient, ) Dcc;ta mtgns:v;:,
arder to interpret.
Easy to fit and understand. rSLDS

linear switching Neural networks,

models linear dynamical Gaussian processes
systems (SLDS)



rSLDS analysis reveals line attractor-like dynamics in VMHVvI
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rSLDS analysis reveals line attractor-like dynamics in VMHVvI
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rSLDS analysis reveals line attractor-like dynamics in VMHVvI

neural microendoscopic 07\ enters dynamics maltrices
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Importantly, this is not true of all hypothalamic nuclel, e.g., MPOA.

Nair et al. (Cell, 2023)



Dynamical systems explain individual differences in aggressiveness

aggression

aggressiveness
fraction of time
spent attacking (%)

sniffing

dom. mount | |

attack aggressive 0 100
escalation time constant of

line attractor dimension (s)

stability of attractor

faster decay

(-

aggression

the stability of the attractor is enhanced in mice that are more aggressive

Nair et al. (Cell, 2023)



Are these dynamics intrinsic to VMHvI or a read-out of an upstream region!

No study has causally demonstrated the existence of intrinsic line attractor dynamics in mammalils.

AmitVinograd
4 i '

sniffing
dom. mount

attack aggressive
escalation

Vinograd, Nair et al. (Nature, 2024)



How can we gain access to the line attractor for perturbation?

2-photon holographic
activation

line attractor
neurons

“dream experiment”

Unfortunately, head-fixation results in loss of attack behavior.

Vinograd, Nair et al. (Nature, 2024)



How can we gain access to the line attractor for perturbation?

VMHVvVI-Esr1 neurons are also active during observation of aggression
(Yang et al., Cell 2023)



How can we gain access to the line attractor for perturbation?
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Vinograd, Nair et al. (Nature, 2024)



Closed-loop perturbation of dynamics in VMHvI

If the attractor is intrinsic  if is not intrinsic
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Activation of x4 neurons should lead to integration if the line attractor is intrinsic.

Vinograd, Nair et al. (Nature, 2024)



Closed-loop perturbation of dynamics in VMHvI

neural imaging online dynamical
- modeling
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Holographic on-manifold activation® of line-attractor aligned x4 neurons leads to integration.

*Note: this requires fitting an rSLDS online, during the session, to design the perturbation.

Vinograd, Nair et al. (Nature, 2024)



Closed-loop perturbation of dynamics in VMHvI

neural imaging online dynamical
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Note: this requires fitting an rSLDS online, during the session, to design the perturbation.

Vinograd, Nair et al. (Nature, 2024)



Closed-loop perturbation of dynamics in VMHvI
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Do these attractor dynamics generalize to other internal state computations!?

VMHvVI shows attractor dynamics in female mice during mating, but only in proestrus.

Liu, Nair et al. (Nature, 2024)



