
Modeling Latent Neural Dynamics with
Gaussian Process Switching Linear

Dynamical Systems
Amber Hu and Scott Linderman

Outline
• Scientific motivation

• Review of existing methods

• New modeling idea

• New inference algorithm

• Results & future work

Analyzing neural data via latent dynamics

Cunningham and Yu (2014), Vyas et al. (2020), Stine et al. (2023)

Experimental Data

Experimental
decision-making

task

High-dimensional
neural population
activity (e.g. spike
train recordings)

Trials

N
eu

ro
ns

Time

Dynamical Systems Analysis

Noisy neural data are
often adequately

described by low-d
latent variables

Rigorous analysis of
neural activity via

dynamical systems
theory

𝑑𝑥
𝑑𝑡

= 𝑓(𝑥)

Analyzing neural data via latent dynamics
Key question: How can we infer interpretable descriptions of the computations implemented by

neural population activity?

Trials

N
eu

ro
ns

Time

?

We would like statistical methods which:
• Perform dimensionality reduction while modeling temporal structure
• Can incorporate prior knowledge about the data-generating process
• Produce latent representations which are interpretable for downstream analysis

Outline
• Scientific motivation
 Inferring interpretable descriptions of latent neural dynamics

• Review of existing methods

• New modeling idea

• New inference algorithm

• Results

• Future work

Methods for inferring latent dynamics

Probabilistic state-space models:

• Linear dynamical systems (LDS)
• Switching linear dynamical systems (SLDS)
• Nonlinear, non-Gaussian SSMs

Deep learning methods:

• Sequential VAEs (e.g. LFADS)
• Neural ODEs
• Deep state-space layers

rSLDS Neural ODE

Linderman et al. (2016) Kim et al. (2021)

Why linear dynamics?
• Linear dynamics express dynamical motifs which are hypothesized to underlie various kinds of

neural computations

Vyas et al. (2020)

𝑑𝑥
𝑑𝑡

= 𝐴𝑥 + 𝑏

(Switching) linear dynamical systems

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

…

𝑥1 ∼ 𝒩(𝜇1, 𝑄1)
𝑥𝑘 ∼ 𝒩(𝐴𝑥𝑘−1 + 𝑏, 𝑄), 𝑘 = 2 …, 𝑇

𝑦𝑘 ∼ 𝒩(𝐶𝑥𝑘 + 𝑑, 𝑅), 𝑘 = 1, …, 𝑇

Linear dynamical system

continuous
states

observations

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

…

𝑧1 𝑧2 𝑧3
…

Switching linear dynamical system

continuous
states

observations

discrete
states

𝑧1 ∼ 𝐶𝑎𝑡(𝑝1), 𝑧𝑘 ∼ 𝐶𝑎𝑡(𝜋𝑧𝑘−1), 𝑘 = 2, …, 𝑇

𝑥1 ∼ 𝒩(𝜇1, 𝑄1)
𝑥𝑘 ∼ 𝒩(𝐴𝑧𝑘

𝑥𝑘−1 + 𝑏𝑧𝑘
, 𝑄𝑧𝑘), 𝑘 = 2 …, 𝑇

𝑦𝑘 ∼ 𝒩(𝐶𝑥𝑘 + 𝑑, 𝑅), 𝑘 = 1, …, 𝑇

Recurrent SLDS

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

…

𝑧1 𝑧2 𝑧3
…

rSLDS

continuous
states

observations

discrete
states

• Key idea: The linear system you are in should depend on your current location in continuous
state space

𝑝(𝑧𝑘 𝑧𝑘−1, 𝑥𝑘−1) ∝ exp(𝑤𝑇 𝑥𝑘−1 + 𝑟𝑧𝑘−1
)

Transition to next discrete state is
modeled as a multiclass logistic
regression:

This leads to linear decision boundaries
between discrete states.

Linderman et al. (2016), Zoltowski et al. (2020)

Example: Dynamics of aggression
Experimental setup • In neuroscience, there is considerable interest

in understanding latent dynamics underlying
animal behavior

• Dataset: Calcium imaging of ventromedial
hypothalamus neurons during aggressive
behavior in mice

• Nair et al. fit a rSLDS with 4 linear regimes to
the data

• rSLDS learns dynamics that form an
“approximate line attractor” corresponding to an
aggressive behavioral state

• Progression along the line attractor was
correlated with the escalation of aggressive
behavior, suggesting that it may encode an
aggressive internal state

Nair et al. (2023)

A closer look at rSLDS

A few limitations of rSLDS:

• Often produces dynamics which transition
sharply at regime boundaries

• Models dynamics as a stochastic mixture of
linear systems at every time step

• Does not explicitly provide estimates of
posterior uncertainty over inferred dynamics

• How confident is the model in finding an
approximate line attractor?

rSLDS: dynamics and latents

Outline
• Scientific motivation
 Inferring interpretable descriptions of latent neural dynamics

• Review of existing methods

 SLDS models decompose nonlinear dynamics into simpler components, but with some shortcomings

• New modeling idea

• New inference algorithm

• Results

• Future work

A new modeling idea
We propose a new model, the Gaussian process switching linear dynamical system (gpSLDS), which

maintains the interpretability of rSLDS while addressing some of its drawbacks.

✓ Decomposes nonlinear dynamics into interpretable piecewise linear components
✓ Prior distribution on dynamics allows for posterior uncertainty estimates
✓ Smoothly transitioning dynamics at linear regime boundaries
✓ Produces a single set of dynamics instead of relying on discrete switching variables

f1(x), f2(x) ∼ GP(0,K(⋅ , ⋅))

GP-SDE framework

𝑑𝒙 = 𝒇(𝒙)𝑑𝑡 + 𝚺1/2d𝐰

irregularly sampled
Gaussian observations

𝑦𝑛(𝑡𝑖) ∼ 𝒩(𝑐𝑇
𝑛 𝑥(𝑡𝑖) + 𝑑𝑛, 𝑟)

Poisson process observations
𝑦𝑛(𝑡) ∼ 𝒫𝒫(𝑔(𝑐𝑇

𝑛 𝑥(𝑡) + 𝑑𝑛))
𝑔 :ℝ → ℝ+

affine mapping to
high-d space

We propose a novel GP kernel to encode
interpretable (“smooth piecewise linear”)

structure into the dynamics prior

GP dynamics flow field latent SDE trajectory

Gaussian processes
• Gaussian processes are distributions on

functions . (We can
generalize to other domains as well.)

• Equivalently, a GP is a continuous set of
random variables ; i.e., a
stochastic process.

• The defining property of GPs is that the
function values at any finite collection of
points are jointly Gaussian.

f : ℝD ↦ ℝ

{f(x) : x ∈ ℝD}

Gaussian processes
• We say if

for all finite subsets of points .

• Here, is the mean function and is the covariance
function, or kernel.

• The covariance matrix obtained by applying the covariance function to each pair of data
points above is called the Gram matrix.

• The covariance function must be positive definite; i.e. the Gram matrix must be positive
definite for any subset of points.

f ∼ GP(μ(⋅), K(⋅ , ⋅))

f(x1)
⋮

f(xN)
∼ 𝒩

μ(x1)
⋮

μ(xN)
,

K(x1, x1)⋯K(x1, xN)
⋮ ⋮

K(xN, x1)⋯K(xN, xN)

{x1, …, xN} ⊂ ℝD

μ : ℝD → ℝ K : ℝD × ℝD → ℝ

Kernel functions
• The choice of kernel allows for a wide range of prior distributions on functions.

• You can even add or multiply 
kernels to make new ones.

See https://www.cs.toronto.edu/~duvenaud/cookbook/

GP prior on linear functions
•
• When is a linear kernel, we get a distribution over

linear functions

f(⋅) ∼ GP(0,K(⋅ , ⋅))
K(⋅ , ⋅)

K𝗅𝗂𝗇(x, x′￼) = (x − c)⊤M(x′￼− c) + σ2
0

Intercept
hyperparameter

Slope variance
hyperparameter

Global variance
hyperparameter

f : ℝD ↦ ℝD

fd ∼ GP(0,K𝗅𝗂𝗇(⋅ , ⋅)), d = 1,…, D

Random linear 2D functions

• This is equivalent to the Bayesian linear regression model,

 𝑓(𝒙) = 𝒙𝑇𝜷 + 𝛽0

(𝜷, 𝛽0)𝑇 ∼ 𝒩(𝟎, (𝑴 −𝑴𝒄
−𝒄𝑇𝑴 𝒄𝑇𝒄 + 𝜎2

0))

𝑥

Random linear 1D functions

𝑓(𝑥)

𝑓(𝑥)

GP prior on piecewise constant functions
• Let be a partition of (𝒜1, …, 𝒜𝐽) ℝ𝐾 .

• Define as the one-hot feature vector:𝜋(𝒙)

𝜋(𝒙) = (𝕀[𝒙 ∈ 𝒜1], …, 𝕀[𝒙 ∈ 𝒜𝐽])
𝑇

• The product between entries of this one-hot vector defines
a “partition kernel”:

 which yields piecewise constant functions of the form,

𝑘(𝑗)
𝑝𝑎𝑟𝑡(𝒙, 𝒙′￼) = 𝜋𝑗(𝒙)𝜋𝑗(𝒙′￼)

f (x) = cj where x ∈ 𝒜j

𝒜1: {𝒙 ∈ ℝ2 | 𝑥2
1 + 𝑥2

2 ≤ 4}

Sample from GPs with
partition kernels

𝑘(1)
𝑝𝑎𝑟𝑡(𝒙, 𝒙′￼)

𝑘(2)
𝑝𝑎𝑟𝑡(𝒙, 𝒙′￼)

GP prior on piecewise constant functions
• Let be a partition of (𝒜1, …, 𝒜𝐽) ℝ𝐾 .

• Define as the one-hot feature vector:𝜋(𝒙)

𝜋(𝒙) = (𝕀[𝒙 ∈ 𝒜1], …, 𝕀[𝒙 ∈ 𝒜𝐽])
𝑇

• The product between entries of this one-hot vector defines
a “partition kernel”:

 which yields piecewise constant functions.

𝑘(𝑗)
𝑝𝑎𝑟𝑡(𝒙, 𝒙′￼) = 𝜋𝑗(𝒙)𝜋𝑗(𝒙′￼)

• Now suppose varies smoothly. Then
samples from a GP with this kernel are smoothly-
interpolating piecewise constant functions.

𝜋(𝒙) ∈ Δ𝐽

𝒜1: {𝒙 ∈ ℝ2 | 𝑥2
1 + 𝑥2

2 ≤ 4}

Sample from GPs with
smooth partition kernels

𝑘(1)
𝑝𝑎𝑟𝑡(𝒙, 𝒙′￼)

𝑘(2)
𝑝𝑎𝑟𝑡(𝒙, 𝒙′￼)

gpSLDS: Smooth, piecewise linear dynamics

𝑘𝑠𝑠𝑙(𝒙, 𝒙′￼) =
𝐽

∑
𝑗=1

𝜅(𝑗)
𝑙𝑖𝑛 (𝒙, 𝒙′￼)𝜅(𝑗)

𝑝𝑎𝑟𝑡(𝒙, 𝒙′￼)

Our “smoothly switching linear” kernel is a weighted sum of linear
kernels, with weights determined by the partition kernel.

We parametrize the partition weights via a multiclass
logistic regression:

𝜋1(𝒙)𝑘(1)
𝑙𝑖𝑛 (⋅ , ⋅)

𝜋
1 (𝒙)

𝑓𝑑(𝒙) ∼ 𝒢𝒫(0, 𝑘𝑠𝑠𝑙(⋅ , ⋅))
𝑑𝒙 = 𝒇(𝒙)𝑑𝑡 + 𝚺1/2d𝐰

𝜋(𝒙)

𝑘(2)
𝑙𝑖𝑛 (⋅ , ⋅)

𝜋(𝒙) = (𝜋1(𝒙)…𝜋𝐽(𝒙))𝑇 = softmax(𝑾𝝓(𝒙)/𝜏)

Balancing interpretability and flexibility:
✓ Interpretable composition of GP

kernels
✓ Piecewise linear dynamics
✓ Smooth dynamics at boundaries

Outline
• Scientific motivation
 Inferring interpretable descriptions of latent neural dynamics

• Review of existing methods

 SLDS models decompose nonlinear dynamics into simpler components, but with some shortcomings

• New modeling idea

 gpSLDS uses a novel kernel for a prior on smoothly switching piecewise-linear dynamics

• New inference algorithm

• Results

• Future work

Inference and learning for GP-SDE
• Prior on latent states is nonlinear and non-Gaussian due to
• We build off a variational EM framework first proposed by Archambeau et al. (2007), Titsias

(2009), and Duncker et al. (2019) to infer and learn kernel hyperparameters

𝒙(𝑡) 𝑓(⋅)

𝒙, 𝒇 𝜃

𝑞(𝒙, 𝒇, 𝒖) = 𝑞(𝒙)∏
𝑘

𝑝(𝑓𝑘 𝑢𝑘, 𝜃)𝑞(𝑢𝑘)

Latent SDE trajectory:
Gaussian Markov process

𝑞(𝒙): 𝑑𝒙 = (−𝑨(𝑡)𝒙 + 𝒃(𝑡))𝑑𝑡 + 𝚺1/2𝑑𝒘
𝒙0 ∼ 𝒩(𝒎0, 𝑺0)

Gaussian process dynamics:
Sparse approx. with inducing variables

𝑞(𝒇) = ∫ 𝑝(𝒇 𝒖, 𝜽)𝑞(𝒖)𝑑𝒖

𝑁(𝒖𝑘 |𝒎𝑘
𝒖 , 𝑺𝑘

𝒖)

x

 observations
 latent trajectories
 dynamics
 inducing points
 kernel params (partition & smoothness)

𝒚 :
𝒙 :
𝒇 :
𝒖 :
𝜃 :

Variational Inference and Learning
• The evidence lower bound (ELBO) of the model is

• We use a variational family of Gaussian Markov processes,

where is a standard -dimensional Brownian motion.

• On any discrete grid of points, is jointly Gaussian,

where are the natural parameters.

• Goal: find and to maximize the ELBO.

ℒ[q, θ] = 𝔼q(x)[log p(y ∣ x)] − 𝔼q(f) [KL(q(x) ∥ p(x ∣ f))] −
D

∑
d=1

KL(q(ud) ∥ p(ud ∣ θ))

q(x) : dx = (−Ax + b)dt + Σ1/2dW
W(t) D

q(x0:T)

q(x0:T ∣ η) ∝ exp {−
1
2

T

∑
t=0

x⊤
t Jtxt −

T−1

∑
t=0

x⊤
t+1Ltxt +

T

∑
t=0

x⊤
t ht}

η = {Jt, Lt, ht}

η θ

 observations
 latent trajectories
 dynamics
 inducing points
 kernel params (partition & smoothness)

𝒚 :
𝒙 :
𝒇 :
𝒖 :
𝜃 :

Variational Inference and Learning
 observations
 latent trajectories
 dynamics
 inducing points
 kernel params (partition & smoothness)

𝒚 :
𝒙 :
𝒇 :
𝒖 :
𝜃 :

ℎ!
ℎ"

ℎ#
…

"!
""

"#

…

#!

##$"

…

…

#!%

##$"%

$ %!:# = ''(%!:#|*, ,)

Inferred latent state posterior

marginalize
./(%!:#)

marginalize & discretize

Prior process and observations Variational natural parameters

* ,

 observations
 latent trajectories
 dynamics
 inducing points
 kernel params (partition & smoothness)

𝒚 :
𝒙 :
𝒇 :
𝒖 :
𝜃 :

Natural Gradient Ascent
• Rather than simply performing (stochastic) gradient ascent on the ELBO, we can obtain faster rates of

convergence with natural gradient ascent.

• Let denote the Fisher information matrix.

• The natural gradient ascent update is,

• If we used the identity matrix instead of the Fisher information matrix, we would recover the standard
gradient ascent step. The difference is that the natural gradient step accounts for the curvature of the ELBO.

ℱ(η) = 𝔼q̄(z|η) [∇ηlog q̄(z |η)∇ηlog q̄(z |η)⊤]

η(j+1) = arg min
η

− η⊤ ∇ηℒ(η(j)) +
1
ρ

⋅
1
2

(η − η(j))⊤ℱ(η(j))(η − η(j))

≈KL(q̄(z|η(j)) ∥ q̄(z|η))

⟹ η(j+1) = η(j) + ρ[ℱ(η(j))]−1 ∇ηℒ(η(j))

Inferring posterior on dynamics
• Duncker et al. (2019) extended the original algorithm to incorporate inducing points, which allows

for tractable inference of the dynamics function

• They show that the dynamics variational distribution, , can be updated
conveniently in closed form.

• Then, after fitting the model, we can easily recover the inferred posterior on dynamics at any new
input location using Gaussian conjugacy:

𝑓(⋅) .
𝑞(𝒖𝑘) = 𝒩(𝒖𝑘 |𝒎𝑘

𝒖 , 𝑺𝑘
𝒖)

𝑥∗

 observations
 latent trajectories
 dynamics
 inducing points
 kernel params (partition & smoothness)

𝒚 :
𝒙 :
𝒇 :
𝒖 :
𝜃 :

𝑞(𝑓𝑘(𝒙∗)) = ∫ 𝑝(𝑓𝑘(𝒙∗) ∣ 𝒖𝑘, Θ) 𝑁(𝒖𝑘 ∣ 𝒎𝑘
𝒖 , , 𝑺𝑘

𝒖)𝑑𝒖𝑘

= ∫ 𝑁(𝑓𝑘(𝒙∗) ∣ 𝒌𝑥∗𝑧𝑲−1
𝑧𝑧 𝒖𝑘, 𝑘𝑥∗𝑥∗ − 𝒌𝑥∗𝑧𝑲

−1
𝑧𝑧 𝒌𝑧𝑥∗)𝑁(𝒖𝑘 ∣ 𝒎𝑘

𝒖 , 𝑺𝑘
𝒖)𝑑𝒖𝑘

= 𝑁(𝑓𝑘(𝒙∗) ∣ 𝒌𝑥∗𝑧𝑲−1
𝑧𝑧 𝒎𝑘

𝒖 , 𝑘𝑥∗𝑥∗ − 𝒌𝑥∗𝑧𝑲
−1
𝑧𝑧 𝒌𝑧𝑥∗ + 𝒌𝑥∗𝑧𝑲−1

𝑧𝑧 𝑺𝑘
𝒖𝑲−1

𝑧𝑧 𝒌𝑧𝑥∗)

An improved parameter learning objective
Learn hyperparameters by maximizing a partially optimized ELBO,Θ

 observations
 latent trajectories
 dynamics
 inducing points
 kernel params (partition & smoothness)

𝒚 :
𝒙 :
𝒇 :
𝒖 :
𝜃 :

𝚯∗ = argmax
𝚯 {max

𝑞(𝒖)
𝐿(𝑞(𝒙), 𝑞(𝒖), 𝚯)}

• The inner maximization can be performed in closed form.
• This approach can be thought of as jointly maximizing the ELBO with respect to both and

, which helps circumvent local optima during variational EM.
𝑞(𝒖)

𝚯

A new “collapsed” vEM algorithm
• Putting it all together, our collapsed vEM algorithm is:

1) Update posterior on latents using natural gradient ascent.

2) Compute new learning objective, which results after performing closed-form
maximization of the ELBO with respect to

3) Perform gradient descent on this partially optimized objective with respect to until
convergence

4) Given the new , compute the optimal .

𝑞∗(𝒙)

𝑞(𝒖)

𝚯

𝚯 𝑞∗(𝒖𝑑) = 𝒩(𝒖𝑑 |𝒎𝑢∗
𝑑 , 𝑺𝑢∗

𝑑)

 observations
 latent trajectories
 dynamics
 inducing points
 kernel params (partition & smoothness)

𝒚 :
𝒙 :
𝒇 :
𝒖 :
𝜃 :

Outline
• Scientific motivation
 Inferring interpretable descriptions of latent neural dynamics

• Review of existing methods

 SLDS models decompose nonlinear dynamics into simpler components, but with some shortcomings

• New modeling idea

 gpSLDS uses a novel kernel for a prior on piecewise-linear dynamics

• New inference algorithm

 We developed a natural gradient ascent algorithm for GP-SDEs called “SING”

• Results

• Future work

Synthetic example: 2 rotation systems

𝑥1

• 2 linear rotation systems that combine smoothly at
• 30 trials of Poisson process observations from 50 output dimensions (“neurons”)

𝑥1 = 0

Synthetic example: 2 rotation systems

𝑥1

• The gpSLDS more accurately recovers the true latent trajectories, rotation dynamics, and
decision boundaries compared to competing methods

Synthetic example: 2 rotation systems

𝑥1

• The gpSLDS more accurately recovers the true latent trajectories, rotation dynamics, and
decision boundaries compared to competing methods

Synthetic example: 2 rotation systems

𝑥1

• The gpSLDS produces smooth simulated dynamics that match the true dynamics, and
expresses uncertainty directly in function space

• By contrast, the rSLDS expresses uncertainty by oscillating between the two linear systems,
producing uninterpretable dynamics

Synthetic examples: natural gradient ascent is
much faster

𝑥1

Observations

time
ob

s. i
nd

ex

Gaussian obs.

B

!!

! "

True latents & dynamicsA Inference convergence

iteration

RM
SE

 of
 la

ten
ts

D

Poisson countsob
s. i

nd
ex

time

F

iteration

RM
SE

 of
 la

ten
ts

H

!!

! "

E

Poisson rate

Inferred latents

time

C

! !
",
! "
(")

time

G

! !
",
! "
(t)

Synthetic examples: Gaussian process posterior
captures uncertainty about the dynamics function

𝑥1

dy
na

m
ics

 R
M

SE

True latents & dynamics

lat
en

t R
M

SE

! !

A GP drift post. mean & varianceB
! !

C

!"!" Δ#

dy
na

m
ics

 R
M

SE

iteration iteration

D E

SING VDP Neural-SDE Polynomial basisGP

Revisiting dynamics of aggression

𝑥1

• We use the gpSLDS to revisit the analyses of Nair et al. (2023), which applied rSLDS models to
calcium imaging recorded during aggression in mice

• Both methods infer similar latent trajectories and plausible flow fields
• Further, the gpSLDS can allow us to precisely identify the approximate line attractor, and more

generally to estimate model confidence in dynamics

Revisiting dynamics of aggression

𝑥1

• We also revisited the data from Vinograd, Nair et al (2024).

B

time (s)

ne
ur

on

A

time (s)

ne
ur

on
inp

ut
s

D

Δ" Δ"

ex
pe

cte
d

LL

ite

rs
to

 co
nv

er
ge

E

seconds simulated forward

pr
ed

ict
ive

 #
!

Δ" = 0.1 Δ" = 0.06

C
Inferred latents and dynamics

$"

$!

prob. of slow point

Intruder 1 enters Intruder 2 enters Reconstructed activity

Δ%
%

Δ%
%

Revisiting dynamics of aggression

𝑥1

• We also revisited the data from Vinograd, Nair et al (2024).

!!

! "

gpSLDS most likely set of dynamicsA

!!
! "

gpSLDS inferred posterior varianceB

Outline
• Scientific motivation
 Inferring interpretable descriptions of latent neural dynamics
• Review of existing methods

 SLDS models decompose nonlinear dynamics into simpler components, but with some shortcomings
• New modeling idea
 gpSLDS uses a novel kernel for a prior on piecewise-linear dynamics

• New inference algorithm

 We developed a natural gradient ascent algorithm for GP-SDEs called “SING”

• Results

 gpSLDS recovers generative parameters on synthetic data and finds key dynamical structures in real data
• Conclusion

Future directions

𝑥1

A couple things we are working on now…

• Extending the gpSLDS model to time-varying dynamics

• Continuing collaborations with experimentalists to apply our method to new neuroscience
datasets

Thanks!

𝑥1

The GP-SLDS was presented at NeurIPS ’24, and we recently submitted SING to NeurIPS ’25.

Find more at:

• Paper 📃 : https://arxiv.org/abs/2408.03330

• Code 👩💻 : https://github.com/lindermanlab/gpslds

