
Machine Learning Methods
for Neural Data Analysis

Lecture 4: Spike Sorting

Scott Linderman STATS 220/320 (NBIO220, CS339N). Winter 2023.

Announcements

• Course Website: https://slinderman.github.io/stats320

• Ed: I’ll add auditors to Canvas and resync. If you’re not on Ed yet, please let
me know.

• Lab 0 will not graded, but it should be a good warm-up.

• Lab 1 is this Friday! We will implement the model in the Spike Sorting by
Deconvolution notes.

• Default plan is to come to this room, but stay tuned for announcements on
Canvas/Ed!

https://slinderman.github.io/stats320

Simple Spike Sorting

• Start with a zoomed-out view of
average voltage in relatively large time
bins (e.g. 2ms).

• Let be the number of channels.

• Let be the number of 2ms time bins.

• Let be the average voltage on
channel in time bin .

• At this resolution, spikes can be
contained to a single bin.

N

T

xn,t
n t

A simple probabilistic model

A simple probabilistic model
Assumptions

• There are neurons. When neuron spikes it
produces a waveform

• Let denote the time
series of spike amplitudes for neuron .

• Since neurons spike only a few times a second,
amplitudes are mostly zero.

• Amplitudes are non-negative.

• If two neurons spike at the same, waveforms add.

• Voltage recordings have additive noise.

K k
wk = (wk,1, …, wk,N) ∈ ℝN

ak = (ak,1, …, ak,T) ∈ ℝT
+

k

A simple probabilistic model
Matrix factorization perspective

≈

W A⊤X

A simple probabilistic model
Accounting for scale invariance

• Notice that the model is invariant to rescaling.

• Multiple by constant and scale by .

• We can remove this degree of freedom by forcing ; e.g., with a
uniform prior on the unit hypersphere,

• where

ak c > 0 wk c−1

∥wk∥2 = 1

wk ∼ Unif(𝕊N−1)

𝕊N−1 = {u : u ∈ ℝN and ∥u∥2 = 1}

A simple probabilistic model
Prior on amplitudes

• To complete the model, we place an
exponential prior on amplitudes,

where is the inverse-scale (aka rate)
parameter.

• It’s pdf is

• As we will see, this prior will lead to sparse
estimates.

ak,t ∼ Exp(λ)

λ

Exp(x; λ) = λe−λx .

https://en.wikipedia.org/wiki/Exponential_distribution

• So far, where is a matrix
of “noise.” How to model the noise?

• Simple assumption: where

is the Gaussian or normal distribution.

• Linear transformations of Gaussians are still Gaussian!

X = WA⊤ + E E = [[ϵn,t]]

ϵn,t ∼ 𝒩(0,σ2)

𝒩(x; μ, σ2) =
1

2πσ2
exp {−

1
2σ2

(x − μ)2}

x ∼ 𝒩(μ, σ2) ⇒ ax + b ∼ 𝒩(aμ + b, a2σ2) .

A simple probabilistic model
Noise model

https://en.wikipedia.org/wiki/Normal_distribution

A simple probabilistic model
The joint distribution

p(X, W, A) = p(X ∣ W, A) p(W) p(A)

= [
N

∏
n=1

T

∏
t=1

𝒩 (xn,t ∣
K

∑
k=1

wk,nak,t, σ2)]
× [

K

∏
k=1

Unif(wk; 𝕊N−1)] × [
K

∏
k=1

T

∏
t=1

Exp(ak,t; λ)] .

This is called semi-nonnegative matrix factorization (semi-NMF).

Fitting the model
MAP estimation by coordinate ascent

• repeat until convergence:

• for :

• Set holding all else fixed

• Set holding all else fixed

k = 1,…, K

wk = arg max p(X, W, A)

ak = arg max p(X, W, A)

Fitting the model
Optimizing the waveforms

Maximizing the joint probability wrt is equivalent to maximizing the log joint probability,

 
where is the residual.

wk

log p(X, W, A) =
N

∑
n=1

T

∑
t=1

log 𝒩 xn,t

K

∑
j=1

wj,naj,t, σ2

= −
1

2σ2

N

∑
n=1

T

∑
t=1

xn,t −
K

∑
j=1

wj,naj,t

2

+ c′

= −
1

2σ2

N

∑
n=1

T

∑
t=1

(rn,t − wk,nak,t)2 + c′

rn,t = xn,t − ∑
j≠k

wj,naj,t

Fitting the model
Optimizing the waveforms

It’s easier to solve in vector form. Let . Then,

 
where is the multivariate normal distribution.

rt = (r1,t, …, rN,t)

log p(X, W, A) = −
1

2σ2

T

∑
t=1

(rt − wkak,t)⊤(rt − wkak,t) + c′

=
T

∑
t=1

𝒩(rt; wkak,t, σ2I) + c′

𝒩(x; μ, Σ)

Fitting the model
The multivariate normal distribution

The multivariate normal density for is,

 
where is the mean and is the
(positive definite) covariance matrix.

When , we call it a spherical Gaussian
distribution.

x ∈ ℝD

𝒩(x; μ, Σ) = (2π)− D
2 |Σ |− 1

2 exp {−
1
2

(x − μ)⊤Σ−1(x − μ)}
μ ∈ ℝD Σ ∈ ℝD×D

⪰0

Σ = σ2I

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

Fitting the model
Optimizing the waveforms

Returning to the optimization

 
Note: by the constraint .

log p(X, W, A) =
T

∑
t=1

𝒩(rt; wkak,t, σ2I) + c′

= −
1

2σ2

T

∑
t=1

(rt − wkak,t)⊤(rt − wkak,t) + c′

=
1
σ2

T

∑
t=1 (r⊤

t wkak,t −
a2

k,t

2
w⊤

k wk) + c′ ′

w⊤
k wk = 1 wk ∈ 𝕊N−1

Fitting the model
Optimizing the waveforms

 
where is the matrix of residuals with columns .

w⋆
k = arg max

wk∈𝕊N−1 (
T

∑
t=1

ak,trt)
⊤

wk

= arg max
wk∈𝕊N−1 ⟨

T

∑
t=1

ak,trt, wk⟩
= arg max

wk∈𝕊N−1
⟨Rak, wk⟩

∝ Rak .

R ∈ ℝN×T [r1, …, rT]

Fitting the model
Optimizing the amplitudes

As a function of , the log joint probability is,

This is a quadratic optimization subject to a non-negativity constraint.

ak,t

log p(X, W, A) =
r⊤

t wkak,t

σ2
−

a2
k,t

2σ2
− λak,t + c′

Fitting the model
Generic solution

Assume . Solve

α > 0

arg max
x≥0

f(x) = −
α
2

x2 + βx + γ,

Fitting the model
Optimizing the amplitudes

By pattern matching to our problem, we have

, is the projection of the residual onto the waveform for neuron .

 the threshold that projection must exceed to designate a spike in
amplitude.

a⋆
k,t = max {0, σ2 (r⊤

t wk

σ2
− λ)} = max {0, r⊤

t wk − λσ2}

r⊤
t wk k

λσ2

The final algorithm
MAP estimation by coordinate ascent

• repeat until convergence:

• for :

• Compute the residual

• Set

• Set

Note: You don't have to recompute the residual from scratch each iteration.

k = 1,…, K

R = X − ∑
j≠k

wja⊤
j

wk ∝ Rak

ak = max{0, R⊤wk − λσ2}

Conclusion

• We developed a basic spike sorting model that was good for building
intuition, but not very practical.

• We derived a coordinate ascent algorithm for maximum a posteriori (MAP)
inference, and that involved solving constrained optimization problems (over
the unit sphere and the non-negative reals).

• Next time: you’ll implement the algorithm in lab! You’ll learn a bit of PyTorch
for implementing the convolutions and cross-correlations, then test it out on
the GPU.

Further reading
• Simple Spike Sorting and Spike Sorting by Deconvolution course notes.

• Convolution and cross-correlation:

• Chapter 9 of The Deep Learning Book (deeplearningbook.org/contents/
convnets.html)

• Start reading up on PyTorch convolutions! https://pytorch.org/docs/stable/
generated/torch.nn.functional.conv1d.html

• Spike sorting:

• Pachitariu, Marius, Shashwat Sridhar, and Carsen Stringer. "Solving the spike
sorting problem with Kilosort." bioRxiv (2023).

• The model we presented is a slightly modified version of Kilosort

http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html

