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Announcements

• Course Website: https://slinderman.github.io/stats320 


• Ed: I’ll add auditors to Canvas and resync. If you’re not on Ed yet, please let 
me know.


• Lab 0 will not graded, but it should be a good warm-up.


• Lab 1 is this Friday! We will implement the model in the Spike Sorting by 
Deconvolution notes.


• Default plan is to come to this room, but stay tuned for announcements on 
Canvas/Ed!

https://slinderman.github.io/stats320


Simple Spike Sorting



• Start with a zoomed-out view of 
average voltage in relatively large time 
bins (e.g. 2ms).


• Let  be the number of channels.


• Let  be the number of 2ms time bins.


• Let  be the average voltage on 
channel  in time bin .


• At this resolution, spikes can be 
contained to a single bin.
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A simple probabilistic model



A simple probabilistic model
Assumptions

• There are  neurons. When neuron  spikes it 
produces a waveform  

• Let  denote the time 
series of spike amplitudes for neuron .


• Since neurons spike only a few times a second, 
amplitudes are mostly zero.


• Amplitudes are non-negative.


• If two neurons spike at the same, waveforms add.


• Voltage recordings have additive noise.

K k
wk = (wk,1, …, wk,N) ∈ ℝN

ak = (ak,1, …, ak,T) ∈ ℝT
+

k



A simple probabilistic model
Matrix factorization perspective

≈

W A⊤X



A simple probabilistic model
Accounting for scale invariance

• Notice that the model is invariant to rescaling.


• Multiple  by constant  and scale  by .


• We can remove this degree of freedom by forcing ; e.g., with a 
uniform prior on the unit hypersphere,





• where 

ak c > 0 wk c−1

∥wk∥2 = 1

wk ∼ Unif(𝕊N−1)

𝕊N−1 = {u : u ∈ ℝN and ∥u∥2 = 1}



A simple probabilistic model
Prior on amplitudes

• To complete the model, we place an 
exponential prior on amplitudes,





where  is the inverse-scale (aka rate) 
parameter.


• It’s pdf is 


• As we will see, this prior will lead to sparse 
estimates.

ak,t ∼ Exp(λ)

λ

Exp(x; λ) = λe−λx .

https://en.wikipedia.org/wiki/Exponential_distribution



• So far,  where  is a matrix 
of “noise.” How to model the noise?


• Simple assumption:  where





is the Gaussian or normal distribution. 


• Linear transformations of Gaussians are still Gaussian!


X = WA⊤ + E E = [[ϵn,t]]

ϵn,t ∼ 𝒩(0,σ2)

𝒩(x; μ, σ2) =
1

2πσ2
exp {−

1
2σ2

(x − μ)2}

x ∼ 𝒩(μ, σ2) ⇒ ax + b ∼ 𝒩(aμ + b, a2σ2) .

A simple probabilistic model
Noise model

https://en.wikipedia.org/wiki/Normal_distribution



A simple probabilistic model
The joint distribution

p(X, W, A) = p(X ∣ W, A) p(W) p(A)

= [
N

∏
n=1

T

∏
t=1

𝒩 (xn,t ∣
K

∑
k=1

wk,nak,t, σ2)]
× [

K

∏
k=1

Unif(wk; 𝕊N−1)] × [
K

∏
k=1

T

∏
t=1

Exp(ak,t; λ)] .

This is called semi-nonnegative matrix factorization (semi-NMF).



Fitting the model
MAP estimation by coordinate ascent

• repeat until convergence:


• for :


• Set  holding all else fixed


• Set  holding all else fixed

k = 1,…, K

wk = arg max p(X, W, A)

ak = arg max p(X, W, A)



Fitting the model
Optimizing the waveforms

Maximizing the joint probability wrt  is equivalent to maximizing the log joint probability,





 
where  is the residual.

wk

log p(X, W, A) =
N

∑
n=1

T

∑
t=1

log 𝒩 xn,t

K

∑
j=1

wj,naj,t, σ2

= −
1

2σ2

N

∑
n=1

T

∑
t=1

xn,t −
K

∑
j=1

wj,naj,t

2

+ c′ 

= −
1

2σ2

N

∑
n=1

T

∑
t=1

(rn,t − wk,nak,t)2 + c′ 

rn,t = xn,t − ∑
j≠k

wj,naj,t



Fitting the model
Optimizing the waveforms

It’s easier to solve in vector form.  Let . Then,





 
where  is the multivariate normal distribution.

rt = (r1,t, …, rN,t)

log p(X, W, A) = −
1

2σ2

T

∑
t=1

(rt − wkak,t)⊤(rt − wkak,t) + c′ 

=
T

∑
t=1

𝒩(rt; wkak,t, σ2I) + c′ 

𝒩(x; μ, Σ)



Fitting the model
The multivariate normal distribution

The multivariate normal density for  is,





 
where  is the mean and  is the 
(positive definite) covariance matrix.


When , we call it a spherical Gaussian 
distribution.

x ∈ ℝD

𝒩(x; μ, Σ) = (2π)− D
2 |Σ |− 1

2 exp {−
1
2

(x − μ)⊤Σ−1(x − μ)}
μ ∈ ℝD Σ ∈ ℝD×D

⪰0

Σ = σ2I

https://en.wikipedia.org/wiki/Multivariate_normal_distribution



Fitting the model
Optimizing the waveforms

Returning to the optimization





 
Note:  by the constraint .

log p(X, W, A) =
T

∑
t=1

𝒩(rt; wkak,t, σ2I) + c′ 

= −
1

2σ2

T

∑
t=1

(rt − wkak,t)⊤(rt − wkak,t) + c′ 

=
1
σ2

T

∑
t=1 (r⊤

t wkak,t −
a2

k,t

2
w⊤

k wk) + c′ ′ 

w⊤
k wk = 1 wk ∈ 𝕊N−1



Fitting the model
Optimizing the waveforms




 
where  is the matrix of residuals with columns .

w⋆
k = arg max

wk∈𝕊N−1 (
T

∑
t=1

ak,trt)
⊤

wk

= arg max
wk∈𝕊N−1 ⟨

T

∑
t=1

ak,trt, wk⟩
= arg max

wk∈𝕊N−1
⟨Rak, wk⟩

∝ Rak .

R ∈ ℝN×T [r1, …, rT]



Fitting the model
Optimizing the amplitudes

As a function of , the log joint probability is,





This is a quadratic optimization subject to a non-negativity constraint.


ak,t

log p(X, W, A) =
r⊤

t wkak,t

σ2
−

a2
k,t

2σ2
− λak,t + c′ 



Fitting the model
Generic solution

Assume . Solve





α > 0

arg max
x≥0

f(x) = −
α
2

x2 + βx + γ,



Fitting the model
Optimizing the amplitudes

By pattern matching to our problem, we have





, is the projection of the residual onto the waveform for neuron .


 the threshold that projection must exceed to designate a spike in 
amplitude.

a⋆
k,t = max {0, σ2 ( r⊤

t wk

σ2
− λ)} = max {0, r⊤

t wk − λσ2}

r⊤
t wk k

λσ2



The final algorithm
MAP estimation by coordinate ascent

• repeat until convergence:


• for :


• Compute the residual 


• Set 


• Set 


Note: You don't have to recompute the residual from scratch each iteration.

k = 1,…, K

R = X − ∑
j≠k

wja⊤
j

wk ∝ Rak

ak = max{0, R⊤wk − λσ2}



Conclusion

• We developed a basic spike sorting model that was good for building 
intuition, but not very practical.


• We derived a coordinate ascent algorithm for maximum a posteriori (MAP) 
inference, and that involved solving constrained optimization problems (over 
the unit sphere and the non-negative reals). 


• Next time: you’ll implement the algorithm in lab! You’ll learn a bit of PyTorch 
for implementing the convolutions and cross-correlations, then test it out on 
the GPU.



Further reading
• Simple Spike Sorting and Spike Sorting by Deconvolution course notes.


• Convolution and cross-correlation:


• Chapter 9 of The Deep Learning Book (deeplearningbook.org/contents/
convnets.html)


• Start reading up on PyTorch convolutions! https://pytorch.org/docs/stable/
generated/torch.nn.functional.conv1d.html 


• Spike sorting:


• Pachitariu, Marius, Shashwat Sridhar, and Carsen Stringer. "Solving the spike 
sorting problem with Kilosort." bioRxiv (2023).


• The model we presented is a slightly modified version of Kilosort

http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html

