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Agenda

1. Optical physiology

2. Constrained Non-negative Matrix Factorization (CNMF)



• So far, we’ve study electrophysiological 
(“ephys”) recordings with tetrodes and 
high density probes. 


• The raw data is a multidimensional 
time series of voltage measurements, 
one for each recording site on the probe.


• When neurons near the probe fire an 
action potential, it registers a spike in 
the voltage on nearby channels.


• Typical recordings detect spikes from 
O(100) neurons.

Recap
Electrophysiology



• It’s hard to detect neurons that fire 
rarely and produce low amplitude 
EAPs.


• More generally, you only detect cells 
that happen to be close to the 
narrow probe. 


• No cell-type specificity.


• In particular, ephys does not 
leverage our powerful genetic 
toolkits for certain model organisms.

Recap
Electrophysiology Limitations



Genetic tools
Cre driver lines in mice

https://connectivity.brain-map.org/transgenic



Genetic tools
GAL4 lines in flies

https://www.janelia.org/node/45217



Genetically encoded indicators of neural activity
How can we make cells fluoresce only when they spike?

1. Look for a side effect of spiking.


2. Engineer a protein that fluoresces when that side effect is detected.


3. Modify the DNA of (subsets of) neurons to produce that protein.


4. Use a microscope to measure fluorescence in the genetically modified 
organism.



Genetically encoded calcium indicators (GECIs)

• When neurons spike, voltage gated calcium 
channels (VGCCs) open and allow a rapid 
influx of calcium ions (Ca2+).


• Genetically encoded calcium indicators 
(GECIs) like GCaMP bind to these calcium 
ions and become fluorescent.


• The increased fluorescence decays as the 
calcium unbinds, producing a transient 
fluorescence indicative of neural spiking.


• Using driver lines, GECIs can be targeted to 
specific cell types. 


• In some cases, multiple GECIs with different 
fluorescence wavelengths can be encoded 
simultaneously in different subpopulations.

Lin, Michael Z., and Mark J. Schnitzer. 2016. “Genetically Encoded Indicators of Neuronal Activity.” Nature Neuroscience 19 (9): 1142–53.



Genetically encoded voltage indicators (GEVIs)

• Calcium is an indirect measure of 
spiking. Genetically encoded voltage 
indicators modulate fluorescence as a 
function of membrane potential.


• Lots of designs: fusing voltage sensing 
domains (e.g. from voltage-gated ion 
channels) to fluorescent proteins; 
harnessing natural opsins from 
microbes or algae.


• GECIs are much more established, but 
great progress in GEVIs has been made 
in recent years.

Lin, Michael Z., and Mark J. Schnitzer. 2016. “Genetically Encoded Indicators of Neuronal Activity.” Nature Neuroscience 19 (9): 1142–53.



Microscopy

• Expressing the genetically encoded 
indicator is only half the battle.


• You still need to stimulate the cells 
with a light source and measure the 
resulting fluorescence.


• Again, there are lots of approaches: 
wide-field imaging, 2-photon 
microscopy, laser scanning and 
spinning disk confocal microscopy, 
miniaturized GRIN lenses, fiber 
photometry.

Silasi et al. J Neurosci Methods. 2016 

Svoboda and Yasuda. Neuron, 2006.

www.inscopix.com

http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html

http://www.inscopix.com


2 photon calcium imaging

Sue Ann Koay and David Tank 



Over 10,000 cells

Pachitariu et al, bioRxiv 2017
Stringer et al, Nature 2019

2 photon calcium imaging



Data analysis pipelines for 2P imaging

CaImAn

Suite2P

Giovanucci et al, eLife 2017

Pachitariu et al, bioRxiv 2017

• Modern packages like Suite2P and CaImAn 
go through a few key steps to extract 
fluorescence traces.


• The key challenges are:


• Correcting for motion artifacts.


• Separating overlapping cells.


• Accounting for background fluorescence.


• Deconvolving spikes from fluorescence 
traces.



• The brain is squishy and it moves in 
non-rigid ways in 3D during 
experiments. 


• A variety of non-rigid motion correction 
algorithms have been proposed:


• NoRMCorre (Pnevmatikakis and 
Giovannucci, 2017), used in 
CaImAn.


• Phase correlation + kriging 
(Pachitariu et al, 2017) used in 
Suite2P.

Motion correction

Pnevmatikakis and Giovannucci, 2017.



Data analysis pipelines for 2P imaging

CaImAn

Suite2P

Giovanucci et al, eLife 2017

Pachitariu et al, bioRxiv 2017

• Modern packages like Suite2P and CaImAn 
go through a few key steps to extract 
fluorescence traces.


• The key challenges are:


• Correcting for motion artifacts.


• Separating overlapping cells.


• Accounting for background fluorescence.


• Deconvolving spikes from fluorescence 
traces.

CNMF



Constrained Non-negative Matrix 
Factorization (CNMF) 

Pnevmatikakis et al, Neuron 2016.



• Model the motion corrected 
movie as a superposition of 
fluorescence traces from multiple 
neurons, plus background.


• We can pose this as another 
convolutional matrix factorization 
problem.


• Punchline: it’s nearly the same 
as what we did for spike sorting!

CNMF



• Let  denote the number of 
frames in the movie.


•  denote the number of pixels.


•  denote the duration (in 
frames) of a calcium spike.


•  denote the (unknown) number 
of neurons that generated the 
spikes.
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• Data: 

• Let  denote the motion 
corrected and unraveled video.


• Parameters: 

• Let  denote the time 
series of spike amplitudes for each 
neuron.


• Let  denote the array 
of calcium responses for each 
neuron.

X ∈ ℝN×T

A ∈ ℝK×T
+

W ∈ ℝK×N×D
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Like last time, assume each spike induces a scaled calcium response in the video.


p(X ∣ A, W) =
T

∏
t=1

𝒩 (xt ∣
K

∑
k=1

[ak ⊛ Wk]t + u0c0,t, σ2I)

Probabilistic Model
Likelihood



• Assume the calcium responses factor into 
spatial and temporal components.





• Spatial factor  specifies which pixels 
correspond to neuron .


• Constrain the temporal components to be 
exponential decays.





• Time constant of the decay is a function of 
the indicator; O(100ms). 

Wk = ukv⊤
k

uk
k

vk,d = e−d/τ

Calcium response model

=

v⊤
k

ukWk



Then





where





is the calcium trace of neuron 

[ak ⊛ Wk]t = uk[ak ⊛ vk]t ≜ ukck,t,

ck,t ≜ [ak ⊛ vk]t =
D

∑
d=0

ak,t−dvk,d =
D

∑
d=0

ak,t−de−d/τ

k

Calcium response model

⊛
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Unlike last time, here we will 
explicitly model background 
activity. 

Assume the background neuropil 
has its own spatial footprint  and 
time-varying intensity .


u0
c0 ∈ ℝT

Background model

1

u0

c0



Putting it all together, the likelihood in terms of footprints and calcium traces is,


p(X ∣ U, C) =
N

∏
n=1

T

∏
t=1

𝒩 (xn,t

K

∑
k=1

uk,nck,t + u0,nc0,t, σ2)
= −

1
2σ2

∥X − UC⊤∥2
F + const

Probabilistic Model
Likelihood in terms of footprints and calcium traces

1



The calcium response can be written recursively, 
thanks to the exponential response:





(Technically, we assumed .)


Equivalently, .

ck,t =
D

∑
d=0

ak,t−de−d/τ

= ak,t + e−1/τck,t−1,

D ≫ τ

ak,t = ck,t − e−1/τck,t−1

Recursive formulation

ck
ak,t {



In matrix form,


ak = Gck G =

1
−e−1/τ

−e−1/τ 1
⋱ ⋱

.

Recursive formulation

1

ck
ak,t {



Via a prior on amplitudes

Note that  and  are in 1:1 correspondence. 
A prior on amplitudes is a prior on calcium 
traces. 


Suppose , as in the spike sorting 
model. Equivalently,





(Technically, this relies on change of measure 
formula and the fact that )

ck ak

ak,t ∼ Exp(λ)

p(ck) =
T

∏
t=1

Exp(ck,t − e−1/τck,t−1; λ)

|G | = 1.

Prior on calcium traces

ck
ak,t {



Consider the log likelihood as a function of , and define the residual  with columns ,





where we used the fact that .

ck R = X − ∑
j≠k

ujc⊤
j − u0c⊤

0 rt

log p(X ∣ U, C) =
T

∑
t=1

log 𝒩(rt ∣ ukck,t, σ2I)

= −
1

2σ2

T

∑
t=1
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= −
1

2σ2

T

∑
t=1

(r⊤
t rt − r⊤
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k,tu

⊤
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1

2σ2

T
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Optimizing the calcium traces



Completing the square and simplifying, the log likelihood (up to an additive 
constant) is,





where





is the residual projected onto the spatial factor for this neuron.

log p(X ∣ U, C) = −
1

2σ2
∥ck − μk∥2

2

μk = R⊤uk

Optimizing the calcium traces



Finally, add the prior log probability to obtain the following objective for 
optimizing the calcium trace of neuron , holding everything else fixed:





where





is the residual projected onto the spatial factor for this neuron.

k

ℒ(ck) = −
1

2σ2
∥ck − μk∥2

2 + λ
T

∑
t=1

(ck,t − e−1/τck,t−1),

μk = R⊤uk

Optimizing the calcium traces



More compactly,





For .


This is a convex optimization problem!

ℒ(ck) = −
1

2σ2
∥ck − μk∥2

2 + λ
T

∑
t=1

(ck,t − e−1/τck,t−1)

= −
1

2σ2
∥ck − μk∥2

2 + λ∥Gck∥1.

ck ≥ 0

Optimizing the calcium traces



Maximizing  is equivalent to solving the following dual problem,





for some threshold .

ℒ(ck)
̂ck = arg min

ck

∥Gck∥1 subject to  ∥ck − μk∥2 ≤ θ, GcK ≥ 0,

θ

Optimizing the calcium traces
Dual formulation



• In the primal form, we have a hyperparameter ; in the dual we have a threshold . How 
should we set these?


• Under the model, , and .


•   is the norm of a vector of iid Gaussians. It follows a chi ( ) 
distribution.


• Idea: for large , the chi distribution concentrates around . So set .


• How to get ? We can estimate the noise at each pixel by high-pass filtering the data, then 
standardize the data by dividing by the noise standard deviation so that in our model 

.

λ θ

ck,t − μk,t ∼ 𝒩(0, σ2) zk,t =
ck,t − μk,t

σ
∼ 𝒩(0, 1)

∥zk∥2 = σ−1∥ck − μk∥2 χ

T T θ = (1 + ϵ)σ T

σ

σ = 1

Optimizing the calcium traces
Setting the regularization hyperparameter



• CVXPY is a powerful library for 
convex optimization in Python, 
based on the CVX package 
from Grant and Boyd.


• It’s ideally suited to solving 
these types of problems.


• If you want to learn more, take 
Prof. Boyd’s course, EE364, 
and read his book!

CVXPy



• We typically constrain the spatial 
factors to be non-negative too, 
unlike in spike sorting. 


• We need to account for background 
fluorescence from out-of-focus 
cells. 


• Typically, assume rank-1 or spatially 
smooth background. See notes.


• As always, preprocessing is 
important for finding candidate 
neurons and characterizing noise. 
More on this in the lab.

Miscellanea 

CNMF-E; Zhou et al, eLife 2018.  Very different background model required for 1p data



OnACID; Giovanucci et al, NIPS 2017.  Mesoscope data from A. Tolias lab



CNMF-E; Zhou et al, eLife 2018.  Very different background model required for 1p data



Conclusion

• Optical physiology offers a powerful and complementary toolkit for 
measuring neural activity in genetically defined cells.


• Methods for extracting calcium fluorescence traces are very similar to those 
for spike sorting. It’s all convolutional matrix factorization with constraints.


• If we have an estimate of the noise, we can use it to set hyper parameters 
(i.e. thresholds) automatically.


• Next time: we’ll dive deeper into the deconvolution problem of inferring spike 
times and amplitudes from calcium traces.



Further reading
• Lin, Michael Z., and Mark J. Schnitzer. 2016. “Genetically Encoded Indicators of Neuronal Activity.” 

Nature Neuroscience 19 (9): 1142–53.


• Pnevmatikakis EA, Soudry D, Gao Y, et al. Simultaneous Denoising, Deconvolution, and Demixing 
of Calcium Imaging Data. Neuron. 2016;89(2):285-299. doi:10.1016/j.neuron.2015.11.037


• Pachitariu, Marius, Carsen Stringer, Mario Dipoppa, Sylvia Schröder, L. Federico Rossi, Henry 
Dalgleish, Matteo Carandini, and Kenneth D. Harris. 2017. “Suite2p: Beyond 10,000 Neurons with 
Standard Two-Photon Microscopy.” Cold Spring Harbor Laboratory. https://doi.org/
10.1101/061507.


• Zhou, Pengcheng, Shanna L. Resendez, Jose Rodriguez-Romaguera, Jessica C. Jimenez, Shay Q. 
Neufeld, Andrea Giovannucci, Johannes Friedrich, et al. 2018. “Efficient and Accurate Extraction of 
in Vivo Calcium Signals from Microendoscopic Video Data.” eLife 7 (February): e28728.


• Giovannucci, Andrea, Johannes Friedrich, Pat Gunn, Jérémie Kalfon, Brandon L. Brown, Sue Ann 
Koay, Jiannis Taxidis, et al. 2019. “CaImAn an Open Source Tool for Scalable Calcium Imaging Data 
Analysis.” eLife 8 (January). https://doi.org/10.7554/eLife.38173.

https://doi.org/10.1101/061507
https://doi.org/10.1101/061507

