Machine Learning Methods
for Neural Data Analysis

Demixing and Deconvolving Calcium Imaging Data

Scott Linderman STATS 220/320 (NBIO220, CS339N,).



Agenda

1. Optical physiology
2. Constrained Non-negative Matrix Factorization (CNMF)



Recap
Electrophysiology

So far, we’ve study electrophysiological
(“ephys”) recordings with tetrodes and
high density probes.

The raw data is a multidimensional
time series of voltage measurements,
one for each recording site on the probe.

When neurons near the probe fire an
action potential, it registers a spike In
the voltage on nearby channels.

Typical recordings detect spikes from
O(100) neurons.
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Recap

Electrophysiology Limitations

e [t’s hard to detect neurons that fire

rarely and produce low amplitude
EAPSs.

 More generally, you only detect cells
that happen to be close to the
narrow probe.

* No cell-type specificity.

* |n particular, ephys does not
leverage our powerful genetic
toolkits for certain model organisms.
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Genetic tools

Cre driver lines in mice

Data detailing transgene expression in Cre and other driver lines for adult and developing brain. Experiments include colorimetric in situ hybridization, fluorescent in situ hybridization and
other histological methods.

LneName |Eampleimage |Expression Pattern Summary

A930038C07Rik-Tg1-Cre ‘ T : Widespread expression of reporter gene throughout the brain. Enriched in restricted populations within the olfactory areas, piriform cortex, hippocampus, and

. . . ' cerebellum. Adult Cre expression abserved in restricted populations of striatum, layer 5 neocartex, hypothalamus, pons and medulla. This is different fram the
Allen Institute for Brain Science A930038CQO7Rik gene itself which is specifically expressed in layer 1.
A930038C0/Rik-Tg4-Cre -_ fana o 34 %38 _ Scattered populations within cortical layers 4 and 5, septum, thalamus, and midbrain. In the cortex, unlike A930038C07Rik which is specifically expressed in layer 1, Cre-
Allen Institute for Brain Science g /~ directed reporter expression is found enriched in a scattered population of cells in layer 5.

A

Adcyapl-2A-Cre : g | A8 g2 Cre expression is enriched in restricted populations within the clfactory areas, hippocampus, striatum, thalamus, midbrain, pons, and medulla. Expression is scattered
Allen Institute for Brain Science ‘ ¥ | TR within the isocortex and hypothalamus. Reporter expression is widespread.

Agrp-IRES-Cre

Bradford Lowell . ’é&” ,

Enriched in the arcuate nucleus of the hypothalamus.

Avp-IRES2-Cre Gl
: Expressed in restricted populations within the hypothalamus.
Allen Institute for Brain Sclence

https://connectivity.brain-map.org/transgenic
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Genetically encoded indicators of neural activity
How can we make cells fluoresce only when they spike?

1. Look for a side effect of spiking.
Engineer a protein that fluoresces when that side effect is detected.

Modify the DNA of (subsets of) neurons to produce that protein.

W DN

Use a microscope to measure fluorescence in the genetically modified
organism.



Genetically encoded calcium indicators (GECIs)

When neurons spike, voltage gated calcium o °.Ca® _
channels (VGCCs) open and allow a rapid

influx of calcium ions (Ca2+). nfux o deprolonatir
10ms 0.8/1.8s
Genetically encoded calcium indicators — —
(GEClIs) like GCaMP bind to these calcium = 20/~70 ms
ions and become fluorescent. 28 i
The increased fluorescence decays as the : ° 4
calcium unbinds, producing a transient
fluorescence indicative of neural spiking. g @ 2
8 5 A pKa>T 8 5 |\ PKa>7 §5 |pKa<7

Using driver lines, GECls can be targeted to &£ \/\ g5 \/\ g < \/\
specific cell types. R e i [ <& L

400 450 500 550 400 450 500 550 400 450 500 550

Wavelength (nm) Wavelength (nm) Wavelength (nm)

In some cases, multiple GECls with different
fluorescence wavelengths can be encoded
simultaneously in different subpopulations.

Lin, Michael Z., and Mark J. Schnitzer. 2016. “Genetically Encoded Indicators of Neuronal Activity.” Nature Neuroscience 19 (9): 1142-53.



Genetically encoded voltage indicators (GEVIs)

» Calcium is an indirect measure of
spiking. Genetically encoded voltage
indicators modulate fluorescence as a
function of membrane potential.

* Lots of designs: fusing voltage sensing
domains (e.g. from voltage-gated ion
channels) to fluorescent proteins;
harnessing natural opsins from
microbes or algae.

 GECIs are much more established, but
great progress in GEVIs has been made
IN recent years.
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Microscopy

* EXpressing the genetically encoded
indicator is only half the battle.

 You still need to stimulate the cells

with a light source and measure the
resulting fluorescence.

WWW.inScopix.com

* Again, there are lots of approaches:

Spinning Disk Confocal Microscope Designs

wide-field imaging, 2-photon I S =
microscopy, laser scanning and TN A -
spinning disk confocal microscopy, S—
miniaturized GRIN lenses, fiber sy
photometry. gt

(a) eroacape @EESR—Specimen  (p)

http://zeiss-campus.magnet.fsu.edu/articles/spinningdisk/introduction.html

Svoboda and Yasuda. Neuron, 2006.


http://www.inscopix.com

2 photon calcium imaging

t=0.000s



2 photon calcium imaging
Over 10,000 cells

Pachitariu et al, bioRxiv 2017
Stringer et al, Nature 2019



Data analysis pipelines for 2P imaging

 Modern packages like Suite2P and CalmAn
go through a few key steps to extract
fluorescence traces.

* The key challenges are:

Correcting for motion artifacts.
Separating overlapping cells.
Accounting for background fluorescence.

Deconvolving spikes from fluorescence
traces.

Suite2P

10 min/plane 10 min/1,000 cells 1 min/1,000 cells

40 mins/2h

1min
. L .
.s..._,.a‘.ﬂ_s-»Ju‘-N‘.Jv Wttt
- - - - .

.......

Pachitariu et al, bioRxiv 2017

CalmAn
a
MOTION SOURCE
MOVIE |— | -ORRECTION SEPARATION —*  DECONVOLUTION
b C
- o |
2% |100% AF/F

Giovanucci et al, eLife 2017



m -
Motion correction ° ‘
reference image difference with frame

 The brain is squishy and it moves in 5
non-rigid ways in 3D during b ’
eXperl m entS . | patchs upsawpledpatches

* A variety of non-rigid motion correction
algorithms have been proposed:

* NoRMCorre (Pnevmatikakis and

patch size overlap

GIOvannUCCI, 201 7), Used |n = m.ertge al!thlecor;‘ectec:!aatches

Cal mAn . ;:3 é (center weig?lting image bIen?:ling)
« Phase correlation + kriging 5

(Pachitariu et al, 2017) used In S 5

Suite2P.

Pnevmatikakis and Giovannucci, 2017.



Data analysis pipelines for 2P imaging

Suite2P

 Modern packages like Suite2P and CalmAn
go through a few key steps to extract
fluorescence traces.

(& 1 min

a L
. It M e A w‘_._-‘..‘-\."‘ -
- - .

R e e

* The key challenges are:

hAud AL\

* Correcting for motion artifacts. o e achitaris ot al, bioRiy 2017
CalmAn

* Separating overlapping cells.

MOTION SOURCE

|
MOVIE '— | oRRecTION |~ sEpaRATION —  DECONVOLUTION

* Accounting for background fluorescence. b

* Deconvolving spikes from fluorescence
traces.

|100% AF/F
CNMF

Giovanucci et al, eLife 2017



Constrained Non-negative Matrix
Factorization (CNMF)

Pnevmatikakis et al, Neuron 2016.



CNMF

 Model the motion corrected
movie as a superposition of
fluorescence traces from multiple
neurons, plus background.

 \We can pose this as another

COnVOIUtiOnaI matriX faCtOrizatiOn Fm Component 1 Component 2
problem.

Neuropil

 Punchline: it's nearly the same
as what we did for spike sorting!



Constants

e Let 1 denote the number of
frames Iin the movie.

unravel

e

Pixels

» N denote the number of pixels.

Frames

« D denote the duration (in
frames) of a calcium spike.

Frames

« K denote the (unknown) number

of neurons that generated the
spikes.



Data and Model Parameters

Neurons
E }

e Data:
e Let X € R denote the motion W, W, W,
corrected and unraveled video.
e Parameters: ) )
e LetA €[ IfXT denote the time . .
series of spike amplitudes for each
neuron.
Delay Delay Delay Frames

. Let W € R¥VXDP denote the array
of calcium responses for each
neuron.



Probabilistic Model
Likelihood

Like last time, assume each spike induces a scaled calcium response in the video.

T K
pX 1AW =]]¥ (x Y [a, ® W1, + ugey, 021)

=1 k=1

Frames Component 1 Component 2 Neuropil



Calcium response model

 Assume the calcium responses factor into
spatial and temporal components.

I
W, =wyv,

 Spatial factor u, specifies which pixels
correspond to neuron k.

* Constrain the temporal components to be
exponential decays.

Vg = e—d/z'

* Time constant of the decay is a function of
the indicator; O(100ms).



Calcium response model

Then

[a, @ W], = wla, @ v;], = uey,

where
D D
A _ _ —d/t
¢ = [ ® Vil = 2 U —adVkd = 2 A 1—q®

is the calcium trace of neuron k




Background model

Unlike last time, here we will
explicitly model background

activity.

Assume the background neuropill
has its own spatial footprint u, and

time-varying intensity ¢, € | L

Neuropil



Probabilistic Model

Likelihood in terms of footprints and calcium traces

Putting it all together, the likelihood in terms of footprints and calcium traces is,

K
pX | U,C) = HH/V ( Z Uy o Crr T U 1 Co 1o 02>

n=1 r=1 k=1

1 T2
= 5 2HX—UC |5 + const
o

Frames Component 1 Component 2 Neuropil



Recursive formulation

The calcium response can be written recursively,
thanks to the exponential response:

D
— —d/t
Chy = Z i t—a€

d=0

_ —1/7
=yt e " Crys

(Technically, we assumed D > 7.)

Equivalently, a, , = ¢, — e_l/fck i—1-



Recursive formulation

In matrix form,

1

=1/t

U = Gck G = ) —1/’:1 1
— €




Prior on calcium traces
Via a prior on amplitudes

Note that ¢, and a, are in 1:1 correspondence.

A prior on amplitudes is a prior on calcium
traces.

Suppose q; , ~ EXp(4), as in the spike sorting
model. Equivalently,

T
p(¢y) = HEXP(Ck,t —e ey, 15 4)
=1

(Technically, this relies on change of measure
formula and the fact that |G| = 1.)



Optimizing the calcium traces

Consider the log likelihood as a function of ¢;, and define the residual R = X — Z ujch — u,c, with columns r,

j#k

T
logp(X | U,C) = ) log /(x| wc . 0°T)

=1

1

20?

T
.
Z (r, —wcr ) (X, — wcy )
=1

T
1
T T 2 T
> 2 (r, 1, — r, e, + o U, uy)
=1

1

20?

T
T 2
=1

where we used the fact that uguk = 1.



Optimizing the calcium traces

Completing the square and simplifying, the log likelihood (up to an additive
constant) is,

|
logp(X | U,C) = — —|lc, — w5
202

where
-
#,=Ru;

IS the residual projected onto the spatial factor for this neuron.



Optimizing the calcium traces

Finally, add the prior log probability to obtain the following objective for
optimizing the calcium trace of neuron k, holding everything else fixed:

i T
2 —1
(e == lleg—mll3 +4 ), (e — eV,
=1
where
.
H. =Ry

IS the residual projected onto the spatial factor for this neuron.



Optimizing the calcium traces

More compactly,

|
Z(e) = =5 lle - ukuzmz‘,(ckt e e, )
=1
—_ o 2
= 202HCk Hills + Al[Gell.
Forc, > 0.

This is a convex optimization problem!



Optimizing the calcium traces

Dual formulation

Maximizing £’(¢;) is equivalent to solving the following dual problem,

¢, =argmin ||G¢,||; subjectto |[¢,—pll, <0, Gcg >0,
Cr

for some threshold @.



Optimizing the calcium traces

Setting the regularization hyperparameter

* In the primal form, we have a hyperparameter A; in the dual we have a threshold 6. How
should we set these?

Crt— Mt

. Under the model, ¢; , — p; , ~ N (0, 6%), and Zp s = ~ N (0, 1).

O

e ||z,]|, = 0‘1Hck — ||, is the norm of a vector of iid Gaussians. It follows a chi (y)
distribution.

o Idea: for large T, the chi distribution concentrates around ﬁ .Sosetd =(1+ G)Gﬁ .

« How to get 6? We can estimate the noise at each pixel by high-pass filtering the data, then
standardize the data by dividing by the noise standard deviation so that in our model

c=1.



CVXPy

 CVXPY is a powerful library for
convex optimization in Python,
based on the CVX package
from Grant and Boyd.

* |t’s ideally suited to solving
these types of problems.

* |f you want to learn more, take
Prof. Boyd’s course, EE364,
and read his book!

stephen Bayd and
Lieven Vandenberghe

convex
Optimization

CVXPY

C)star 4,295

Navigation
Install

User Guide
Examples

API Documentation
FAQ

Citing CVXPY
Contributing
Related Projects
Changes to CVXPY
CVXPY Short Course

License

Quick search

Go

Version selector

| Choose version here |

Welcome to CVXPY 1.3

Convex optimization, for everyone.

CVXPY is an open source Python-embedded modeling language for convex optimization
problems. It lets you express your problem in a natural way that follows the math,
rather than in the restrictive standard form required by solvers.

For example, the following code solves a least-squares problem with box constraints:

import cvxpy as cp
import numpy as np

# Problem data.

m = 30

n = 20

np.random.seed(1)

A = np.random.randn(m, n)
b = np.random.randn(m)

# Construct the problem.

X = cp.Variable(n)

objective = cp.Minimize(cp.sum_squares(A @ x — b))
constraints = [0 <= X, X <= 1]

prob = cp.Problem{(objective, constraints)

# The optimal objective value is returned by prob.solve() .
result = prob.solve()

# The optimal value for x is stored in "x.value .
print(x.value)

# The optimal Lagrange multiplier for a constraint 1s stored in
# ‘constraint.dual _value .

print(constraints[@].dual_value)



Miscellanea

* We typically constrain the spatial
factors to be non-negative too,
unlike in spike sorting.

* \We need to account for background
fluorescence from out-of-focus
cells.

* Typically, assume rank-1 or spatially
smooth background. See notes.

* As always, preprocessing is
important for finding candidate
neurons and characterizing noise.
More on this in the lab.

Raw data

Background

CNMF-E; Zhou et al, eLife 20:




Eaw Data 2 . Inferred Activity

Mean Residual Buffer Denoised Data

Frame = 201

OnACID; Giovanucci et al, NIPS 2017. Mesoscope data from A. Tolias lab



Raw data (Raw-BG) X 8 Residual X 8
g .-

Background Denoised X 8 Demixed
| . ime: 0.10 second

CNMF-E; Zhou et al, eLife 2018. Very different background model required for 1p data



Conclusion

* Optical physiology offers a powerful and complementary toolkit for
measuring neural activity in genetically defined cells.

 Methods for extracting calcium fluorescence traces are very similar to those
for spike sorting. It’s all convolutional matrix factorization with constraints.

e |f we have an estimate of the noise, we can use it to set hyper parameters
(i.e. thresholds) automatically.

 Next time: we’ll dive deeper into the deconvolution problem of inferring spike
times and amplitudes from calcium traces.
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