Machine Learning Methods

for Neural Data Analysis
Spike Sorting by Deconvolution

Scott Linderman STATS 220/320 (NBIO220, CS339N). Winter 2023.



Announcements

| ab 1 due Thursday, 11:59pm.

* Author contributions: Please add a short paragraph at the end of your lab describing if/how you
divided the work. E.gQ.

* Alice, Bob, and Chuck worked through Part 1 in class, and then met twice more to finish the
remainder of the lab as a group.

e Alice, Bob, and Chuck worked through Part 1 in class. Alice took the lead on Part 2, then Bob
finished Parts 3 and 4. Chunk completed Part 5. All three met to discuss and check their
solutions, and then combine them into a single report.

* Please feel free to ask (and answer!) questions on Ed. Don’t share code solutions directly, but
hints and clarifications are fine.

* | will try to post future labs and team assignments further in advance.



Spike Sorting by Deconvolution



Improving upon the simple model

Our simple model was a good warm-
up, but downsampling to 2ms bins
Isn’t very practical.

In reality, the average voltage over a

spike can be ~ 0, so you might miss
spikes altogether!

Next, we’ll extend the simple model
with a more realistic one using
convolutions.

The resulting model will be very similar
to Kilosort [Pachitariu et al., 2023]
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10,000ft view

* ldea: each time a neuron spikes,
it adds a scaled copy of its
template to the measured

voltage.

 Formally, we model the data as a
sum of convolutions of
templates and amplitudes for
each neuron, plus noise.
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Convolution

In one dimension

amplitude a
« Convolution is an operation that takes in a signal a(?) é
and a filter w(#) and outputs : ’
y(©) = la ®w](®) = |a(t — )w(7)dr. . , — ,

 |n discrete time this l:ggcomes,

Y= la®@w], = Z A gWy

d=—o0
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» Causal filters are constrained so that w, = 0 for d < 0.
Then y, is only influenced by a;...

0 10 20 30 40 50 0 2(;0 400 6C')O 8(;0 1000
* Our filters will also have bounded support so that delay d time t

wy; = 0ford > D. Then y, is only influenced by a,_p,, ;.-

* In our case, the signal is the time series of spike
amplitudes, and the filter is the waveform template.
Every time there’s a spike, we plop down a scaled
template.



Convolution

With multiple output channels

amplitude a

 WWe need to convolve the
amplitude signal with multiple

neurons n

filters in parallel, one for each wl | ey

channel of the voltage recording.
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e (’'m going to index d from 1,..., D because
the notation is a bit simpler.)



Convolution

With multiple input & output channels

* Finally, we need to sum
convolutions of multiple input
signals, one for each neuron in
the model.

X=A®W

by which we mean

— Z Zakt dWknd

k=1 d=1
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Cross-Correlation

In one dimension

* Cross-correlation essentially goes in reverse.

* In signal processing, the cross-correlation is a sliding
dot product of data y(7) and template w(¢), which
produces a new function [y % w](?).

* For discrete time, real-valued inputs,

[y % w], = Z YirdWa:

 With a change of variables, we see that cross-
correlation is equwalent to convolution with a time-

reversed filter w

[y *x w], = Z)’t dwd—[Y®W]t

* (Note: the definition of cross-correlation is not unique.

This definition is consistent with np.correlate but
opposite of Wikipedia.)
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Cross-Correlation

With multiple channels

amplitude a

 As before, we can extend this
definition to handle multiple

neurons n

Channels Wi | I data y I

N o
[Y * ‘RI]ZL — Z Z yn,t+dwn,d. % g :Q\/ V_’v\/_’:/—/\—{/// _://—-\
=l d=-co —~— R
 The cross-correlation measures the —_ ]
similarity of the data and the delay d time

template at each point in time.

e The auto-correlation is the cross-
correlation of a signal with itself.



Cross-Correlation

With multiple input & output channels

As before, we can extend this
definition to handle multiple channels

[Y % W],

LY x W, ],

Y % Wy,

N
anl Z:;O:_OO yn,t——dwl,n,d

N
anl 221_06 yn,t+dWK,n,d
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Convolution and Cross-Correlation in Pytorch

PyTorch (and other deep learning libraries)
have fast, GPU-backed implementations of
convolutions.

What they call convolution is actually
cross-correlation!

But remember, we can always get convolution
by cross-correlating with the flipped filter.

For discrete time signals, you have to play
with padding to handle edge effects.

By default, these functions operate on mini-

batches of inputs, so you need to add an
extra leading dimension to your signal.

There are lots of other options to read about
(strides, dilations, groups), but we won'’t use
them this week.

toxch.nn.functional.convld(input, weight, bias=None, stride=1, padding=0,
dilation=1, groups=1) — Tensor

Applies a 1D convolution over an input signal composed of several input planes.
This operator supports TensorFloat32.

See Convid for details and output shape.

In some circumstances when using the CUDA backend with CuDNN, this operator may select a
nondeterministic algorithm to increase performance. If this is undesirable, you can try to make
the operation deterministic (potentially at a performance cost) by setting
torch.backends.cudnn.deterministic = True.Please see the notes on Reproducibility for
background.

Parameters

« input - input tensor of shape (minibatch, in_channels, iW)

 weight - filters of shape (out_channels, n_channels kW)

groups

« bias - optional bias of shape (out_channels) . Default: None

» stride - the stride of the convolving kernel. Can be a single number or a one-element
tuple (sW,). Default: 1

» padding - implicit paddings on both sides of the input. Can be a single number or a
one-element tuple (padW,). Default: 0

 dilation - the spacing between kernel elements. Can be a single number or a one-
element tuple (dW,). Default: 1

« groups - split input into groups, in_channels should be divisible by the number of

groups. Default: 1




Spike sorting by deconvolution



Probabilistic Model

Likelihood

 Assume each spike is a noisy, scaled
version of the template of the neuron

that generated it.
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Probabilistic Model

Prior on spike amplitudes

pdf of exponential distribution

 Assume the spike amplitudes are drawn froman | A=05
exponential distribution. 1.25 = :\\: 1 r
&, ~ Exp(2) o
g-j/ 0.75
* This simple prior will lead to sparse amplitudes, 050 |
but it does not encode any dependencies
between time steps. 0.25 1 \
 |deally, we would also like to prohibit two spikes O’OOO " > 3 y -
within D samples of each other. v

e We’ll use a heuristic solution In this week’s lab.

https://en.wikipedia.org/wiki/Exponential_distribution



Probabilistic Model

Scale invariance via Frobenius norm constraint

 What is the generalization of the unit-norm
constraint w, € S,,_, to matrices?

. Assume the matrix W, € R"* has unit
Frobenius norm ||W ||z = 1.

— — —




Probabilistic Model

Aside: The Frobenius norm and the SVD

» The Frobenius norm is the £, norm of the

flattened matrix,

N D 7
W2 =YY w2, = vec(W)Tvec(W) = [[vec(W)|I3 -

n=1 d=1 N

e \We can also write it as a trace,

— — —

| W= \ TI'(WTW)

* Orinterms of the singular values,

Wil = lIsll,




Probabilistic Model

Scale invariance via Frobenius norm constraint

 What is the generalization of the unit-norm
constraint w, € S,,_, to matrices?

. Assume the matrix W, € R"* has unit
Frobenius norm ||W ||z = 1.

* This Is equivalent to constraining the singular
values to be normalized |[s, ||, = 1.
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Probabilistic Model

Low-rank constraint

* This view suggests a further assumption:
constraint the rank of the templates as well.

* |f we constrain it to be rank 1 (i.e., only one
nonzero singular value), then

T
W, =wyv,

where u, € S,,_, is the spatial footprint and
vV, € S;_; is the temporal profile.
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MAP estimation



Maximum a posteriori estimation

Coordinate ascent

o Initialize templates W and set A = 0.

 |terate until convergence:
e Forneuronk =1,..., K:

a. Optimize amplitudes a, for neuron k.

b. Optimize templates W, for neuron k.

[In each case, maximize log joint probability wrt one variable, holding others
fixed.]



Maximum a posteriori estimation
Optimizing the amplitudes

As a function of a,,

log p(X, W, A) =
= logp(X'| A, W) + log p(a;; 1)

where R € |

20%

|IR—a, ® WkH% + logp(a,) + ¢

n, defined as

NXTI
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s the residual for neuron

R=X-) [a,®W)]
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Maximum a posteriori estimation
Optimizing the amplitudes

Expanding the square

|
log p(X, W, A) = 20 —||R—a, & WkHF + logp(a,) + ¢
|
— = 2_02”ak & WkHF (R ap @ Wk>F + logp(ay) +c.

Z,(a;) Z 1(ak)
N .

is the 7-th column of the residual R.

wherer, € |



Maximum a posteriori estimation
Optimizing the amplitudes

Further expanding the quadratic term,

|
Loa) = = lla, @ Will}

{ LN D d-1
) Z Z Zakt dend+22 Zakt d%.t—dWkn,dWknd
(=1 n=1 d=1 d'=1
T
~ 2 2
~ = 2 a Wil
=1
T

=
52 k,t

with equality when nonzero entries (i.e. “spikes”) of a, are separated by at least D samples.



Maximum a posteriori estimation
Optimizing the amplitudes

amplitude a
< !r % e ye W
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where [R *x W, | is the cross-correlation of the residual and the template for neuron k.



Maximum a posteriori estimation
Optimizing the amplitudes

Putting it all together

T
1
2
Z(ay) = Z [_ A s T My Gy — /mk,t T G,
=1
which separates into a sum of quadratic objective functions for each time 7.



Maximum a posteriori estimation

Completing the square and solving for the optimal amplitudes

* | ike before, the maximum, subject to non-
negativity constraints, is obtained at

amplitude

d

a;, , = max {O, My — 02/1}

--------------

« However, we also want spikes to be well- o D "
separated; i.e. q;, > 0 = ¢q;,, ,= 0 for
d=1,....D.

o \We’ll enforce this with a simple heuristic:
use find peaks to select local maxima

of this “score” signal.



Maximum a posteriori estimation
Optimizing the templates

As a function of W

1 T
log p(X, A, W) = — D (a R W)+

=1

1 T
=55 < Z a; R, Wk> + ¢’

=1

Pl =+ Tl4D
Rt = | - :
Vot <+ ThtD

IS a slice of the residual matrix (R[:, t:t+D]in code).




Maximum a posteriori estimation

Optimizing the templates 1 |
Zak,th U, diag(s,) V,
=1
We want to maximize this log joint probability over the : — N E
space of low-rank, unit-norm matrices, 27 \
= Renormalize the
T e Singular values
* _ = .
W7 = arg max Zak,th, W, =
WkESR, =
=1 V=
The solution is to set the waveform matrix "proportional _ 5
to" the weighted sum of residual matrices by taking its s S

SVD and renormaling the singular values. tme [ms) R Keep only the top K

singular vectors

R
W,fz ZSIIVT where 5§

rer'r
r=1 \/zrlr




More efficient computation

Leveraging the low-rank templates U, diag(s) v diag(sp) - V{
N N C3 g

13

We can compute the “scores” for amplitude updates more 17

efficiently by leveraging the low-rank templates, . —
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In other words, we cross-correlate the projected residual. =

tirﬁe [s]



Conclusion

 We developed a basic spike sorting model that was good for building intuition, but
not very practical.

 We developed a new model for the voltage in terms of a superposition of
templates convolved with spike amplitudes for each neuron.

* Along the way, we learned about convolution and cross-correlation.

 We derived a coordinate ascent algorithm for maximum a posteriori (MAP)
Inference.

 Next time: you’ll implement the algorithm in lab! You'll learn a bit of PyTorch for
implementing the convolutions and cross-correlations, then test it out on the GPU.



Further reading

 Simple Spike Sorting and Spike Sorting by Deconvolution course notes.

e Convolution and cross-correlation:

 Chapter 9 of The Deep Learning Book (deeplearningbook.org/contents/
convnets.html)

o Start reading up on PyTorch convolutions! https://pytorch.org/docs/stable/
generated/torch.nn.functional.convid.html

* Spike sorting:

* Pachitariu, Marius, Shashwat Sridhar, and Carsen Stringer. "Solving the spike
sorting problem with Kilosort." bioRxiv (2023).

 The model we presented is a slightly modified version of Kilosort
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