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Announcements

• Lab 1 due Thursday, 11:59pm.


• Author contributions: Please add a short paragraph at the end of your lab describing if/how you 
divided the work. E.g.


• Alice, Bob, and Chuck worked through Part 1 in class, and then met twice more to finish the 
remainder of the lab as a group.  

• Alice, Bob, and Chuck worked through Part 1 in class. Alice took the lead on Part 2, then Bob 
finished Parts 3 and 4. Chunk completed Part 5. All three met to discuss and check their 
solutions, and then combine them into a single report.  

• Please feel free to ask (and answer!) questions on Ed. Don’t share code solutions directly, but 
hints and clarifications are fine.


• I will try to post future labs and team assignments further in advance.  



Spike Sorting by Deconvolution



• Our simple model was a good warm-
up, but downsampling to 2ms bins 
isn’t very practical.


• In reality, the average voltage over a 
spike can be , so you might miss 
spikes altogether! 


• Next, we’ll extend the simple model 
with a more realistic one using 
convolutions.


• The resulting model will be very similar 
to Kilosort [Pachitariu et al., 2023]

≈ 0

Improving upon the simple model



10,000ft view

• Idea: each time a neuron spikes, 
it adds a scaled copy of its 
template to the measured 
voltage. 

• Formally, we model the data as a 
sum of convolutions of 
templates and amplitudes for 
each neuron, plus noise.



In one dimension

• Convolution is an operation that takes in a signal  
and a filter  and outputs 

    .


• In discrete time this becomes, 

    


• Causal filters are constrained so that  for . 
Then  is only influenced by . 


• Our filters will also have bounded support so that 
 for . Then  is only influenced by .


• In our case, the signal is the time series of spike 
amplitudes, and the filter is the waveform template. 
Every time there’s a spike, we plop down a scaled 
template.

a(t)
w(t)

y(t) = [a ⊛ w](t) = ∫ a(t − τ)w(τ) dτ

yt = [a ⊛ w]t =
∞

∑
d=−∞

at−dwd

wd = 0 d < 0
yt a1:t

wd = 0 d ≥ D yt at−D+1:t

Convolution



With multiple output channels

• We need to convolve the 
amplitude signal with multiple 
filters in parallel, one for each 
channel of the voltage recording. 
 
    




• (I’m going to index  from  because 
the notation is a bit simpler.)

yt =
[a ⊛ w1]t

⋮
[a ⊛ wN]t

=
∑D

d=1 at−dw1,d

⋮
∑D

d=1 at−dwN,d

d 1,…, D

Convolution



With multiple input & output channels

• Finally, we need to sum 
convolutions of multiple input 
signals, one for each neuron in 
the model. 
 
     
 
by which we mean 
 

   .

X = A ⊛ W

xn,t =
K

∑
k=1

D

∑
d=1

ak,t−dwk,n,d

Convolution



In one dimension

• Cross-correlation essentially goes in reverse.


• In signal processing, the cross-correlation is a sliding 
dot product of data  and template , which 
produces a new function .


• For discrete time, real-valued inputs, 
 

    .


• With a change of variables, we see that cross-
correlation is equivalent to convolution with a time-
reversed filter : 

    .


• (Note: the definition of cross-correlation is not unique. 
This definition is consistent with np.correlate but 
opposite of Wikipedia.)

y(t) w(t)
[y ⋆ w](t)

[y ⋆ w]t =
∞

∑
d=−∞

yt+dwd

w
[y ⋆ w]t =

−∞

∑
d=∞

yt−dw−d = [y ⊛ w]t

Cross-Correlation



With multiple channels

• As before, we can extend this 
definition to handle multiple 
channels 
 

    .


• The cross-correlation measures the 
similarity of the data and the 
template at each point in time.


• The auto-correlation is the cross-
correlation of a signal with itself.

[Y ⋆ W]t =
N

∑
n=1

∞

∑
d=−∞

yn,t+dwn,d

Cross-Correlation



With multiple input & output channels

As before, we can extend this 
definition to handle multiple channels 

[Y ⋆ W]t =
[Y ⋆ W1]t

⋮
[Y ⋆ WK]t

=
∑N

n=1 ∑∞
d=−∞ yn,t+dw1,n,d

⋮
∑N

n=1 ∑∞
d=−∞ yn,t+dwK,n,d

Cross-Correlation



• PyTorch (and other deep learning libraries) 
have fast, GPU-backed implementations of 
convolutions.


• What they call convolution is actually 
cross-correlation!


• But remember, we can always get convolution 
by cross-correlating with the flipped filter.


• For discrete time signals, you have to play 
with padding to handle edge effects.


• By default, these functions operate on mini-
batches of inputs, so you need to add an 
extra leading dimension to your signal.


• There are lots of other options to read about 
(strides, dilations, groups), but we won’t use 
them this week.

Convolution and Cross-Correlation in Pytorch



Spike sorting by deconvolution



• Assume each spike is a noisy, scaled 
version of the template of the neuron 
that generated it.


p(X ∣ A, W) =
T

∏
t=1

𝒩 (xt

K

∑
k=1

[ak ⊛ Wk]t, σ2I)

Probabilistic Model
Likelihood



• Assume the spike amplitudes are drawn from an 
exponential distribution.


            


• This simple prior will lead to sparse amplitudes, 
but it does not encode any dependencies 
between time steps. 


• Ideally, we would also like to prohibit two spikes 
within  samples of each other.


• We’ll use a heuristic solution in this week’s lab.

ak,t ∼ Exp(λ)

D

Probabilistic Model
Prior on spike amplitudes 

pdf of exponential distribution

https://en.wikipedia.org/wiki/Exponential_distribution



• What is the generalization of the unit-norm 
constraint  to matrices? 


• Assume the matrix  has unit 
Frobenius norm .

wk ∈ 𝕊N−1

Wk ∈ ℝN×D

∥Wk∥F = 1

Probabilistic Model
Scale invariance via Frobenius norm constraint

=Wk Uk

diag(sk)

V⊤
k



• The Frobenius norm is the  norm of the 
flattened matrix,




• We can also write it as a trace,



• Or in terms of the singular values, 

ℓ2

∥W∥2
F =

N

∑
n=1

D

∑
d=1

w2
n,d = vec(W)⊤vec(W) = ∥vec(W)∥2

2

∥W∥F = Tr(W⊤W)

∥W∥F = ∥s∥2

Probabilistic Model
Aside: The Frobenius norm and the SVD

=Wk Uk

diag(sk)

V⊤
k



• What is the generalization of the unit-norm 
constraint  to matrices? 


• Assume the matrix  has unit 
Frobenius norm .


• This is equivalent to constraining the singular 
values to be normalized .

wk ∈ 𝕊N−1

Wk ∈ ℝN×D

∥Wk∥F = 1

∥sk∥2 = 1

Probabilistic Model
Scale invariance via Frobenius norm constraint

=Wk Uk

diag(sk)

V⊤
k



• This view suggests a further assumption: 
constraint the rank of the templates as well.


• If we constrain it to be rank 1 (i.e., only one 
nonzero singular value), then 





where  is the spatial footprint and 
 is the temporal profile.

Wk = ukv⊤
k

uk ∈ 𝕊N−1
vk ∈ 𝕊D−1

Probabilistic Model
Low-rank constraint

=Wk

uk v⊤
k



MAP estimation



Maximum a posteriori estimation
Coordinate ascent

• Initialize templates  and set .


• Iterate until convergence:


• For neuron :


a. Optimize amplitudes  for neuron .


b. Optimize templates  for neuron .


[In each case, maximize log joint probability wrt one variable, holding others 
fixed.]

W A = 0

k = 1,…, K

ak k

Wk k



Maximum a posteriori estimation
Optimizing the amplitudes

As a function of ,   


 

where  is the residual for neuron 
, defined as


ak

log p(X, W, A) =
= log p(X ∣ A, W) + log p(ak; λ)

= −
1

2σ2
∥R − ak ⊛ Wk∥2

F + log p(ak) + c

R ∈ ℝN×T

n

R = X − ∑
j≠k

[aj ⊛ Wj]



Maximum a posteriori estimation
Optimizing the amplitudes

Expanding the square   


 

where  is the -th column of the residual .

log p(X, W, A) = −
1

2σ2
∥R − ak ⊛ Wk∥2

F + log p(ak) + c

= −
1

2σ2
∥ak ⊛ Wk∥2

F

ℒ2(ak)

+
1
σ2

⟨R, aK ⊛ Wk⟩F

ℒ1(ak)

+ log p(ak) + c .

rt ∈ ℝN t R



Maximum a posteriori estimation
Optimizing the amplitudes

Further expanding the quadratic term,


 

with equality when nonzero entries (i.e. “spikes”) of  are separated by at least  samples.

ℒ2(ak) = −
1

2σ2
∥ak ⊛ Wk∥2

F

= −
1

2σ2

T

∑
t=1

N

∑
n=1 (

D

∑
d=1

a2
k,t−dw2

k,n,d + 2
D

∑
d=1

d−1

∑
d′ =1

ak,t−dak,t−d′ 
wk,n,dwk,n,d′ )

≈ −
1

2σ2

T

∑
t=1

a2
k,t∥Wk∥2

F

= −
1

2σ2

T

∑
t=1

a2
k,t

ak D



Maximum a posteriori estimation
Optimizing the amplitudes

Now take the linear term…





where is the cross-correlation of the residual and the template for neuron .

ℒ1(ak) =
1
σ2

⟨R, ak ⊛ Wk⟩

=
1
σ2

T

∑
t=1

N

∑
n=1

rn,t[ak ⊛ wk,n]t

=
1
σ2

T

∑
t=1

N

∑
n=1

D

∑
d=1

ak,t−drn,twk,n,d

=
1
σ2

T

∑
t=1

ak,t

N

∑
n=1

D

∑
d=1

rn,t+dwk,n,d

=
1
σ2

T

∑
t=1

ak,t[R ⋆ Wk]t

[R ⋆ Wk]t k



Maximum a posteriori estimation
Optimizing the amplitudes

Putting it all together


 

which separates into a sum of quadratic objective functions for each time .

ℒ(ak) =
T

∑
t=1

[−
1

2σ2
a2

k,t +
1
σ2

μk,tak,t − λak,t] + c,

t



Maximum a posteriori estimation
Completing the square and solving for the optimal amplitudes

• Like before, the maximum, subject to non-
negativity constraints, is obtained at





• However, we also want spikes to be well-
separated; i.e.  for 

.


• We’ll enforce this with a simple heuristic: 
use find_peaks to select local maxima 
of this “score” signal.

ak,t = max {0, μk,t − σ2λ}

ak,t > 0 ⟹ ak,t+d = 0
d = 1,…, D

σ2λn

2D



Maximum a posteriori estimation
Optimizing the templates

As a function of 





where 





is a slice of the residual matrix (R[:,t:t+D]in code).

Wk

log p(X, A, W) =
1

2σ2

T

∑
t=1

⟨ak,tRt, Wk⟩ + c′ 

=
1

2σ2 ⟨
T

∑
t=1

ak,tRt, Wk⟩ + c′ 

Rt =
r1,t … r1,t+D

⋮ ⋮
rn,t … rn,t+D



Maximum a posteriori estimation
Optimizing the templates

We want to maximize this log joint probability over the 
space of low-rank, unit-norm matrices,





The solution is to set the waveform matrix "proportional 
to" the weighted sum of residual matrices by taking its 
SVD and renormaling the singular values. 


    where   

W⋆
k = arg max

Wk∈𝕊N,D
R ⟨

T

∑
t=1

ak,tRt, Wk⟩

W⋆
k =

R

∑
r=1

s̄rurv⊤
r s̄r =

sr

∑R
r′ =1 s2

r′ 

.

=

T

∑
t=1

ak,tRt Uk diag(sk) V⊤
k

Renormalize the 

Singular values

Keep only the top 

singular vectors

K



More efficient computation
Leveraging the low-rank templates 

We can compute the “scores” for amplitude updates more 
efficiently by leveraging the low-rank templates,





 
In other words, we cross-correlate the projected residual.

[R ⋆ Wk]t =
N

∑
n=1

D

∑
d=1

rn,t+dwk,n,d

=
D

∑
d=1

r⊤
t+dwk,:,d

=
D

∑
d=1

r⊤
t+dUkSkvk,:,d

=
D

∑
d=1

(U⊤
k rt+d)⊤[SkV⊤

k ]:,d

= [(U⊤
k R) ⋆ (SkV⊤

k )]t

=Wk

Uk diag(sk) V⊤
k

=

diag(sk) ⋅ V⊤
k

=R

U⊤
k R



Conclusion

• We developed a basic spike sorting model that was good for building intuition, but 
not very practical.


• We developed a new model for the voltage in terms of a superposition of 
templates convolved with spike amplitudes for each neuron.


• Along the way, we learned about convolution and cross-correlation.


• We derived a coordinate ascent algorithm for maximum a posteriori (MAP) 
inference.


• Next time: you’ll implement the algorithm in lab! You’ll learn a bit of PyTorch for 
implementing the convolutions and cross-correlations, then test it out on the GPU.



Further reading
• Simple Spike Sorting and Spike Sorting by Deconvolution course notes.


• Convolution and cross-correlation:


• Chapter 9 of The Deep Learning Book (deeplearningbook.org/contents/
convnets.html)


• Start reading up on PyTorch convolutions! https://pytorch.org/docs/stable/
generated/torch.nn.functional.conv1d.html 


• Spike sorting:


• Pachitariu, Marius, Shashwat Sridhar, and Carsen Stringer. "Solving the spike 
sorting problem with Kilosort." bioRxiv (2023).


• The model we presented is a slightly modified version of Kilosort

http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html

