
Machine Learning Methods
for Neural Data Analysis

Spike Sorting by Deconvolution

Scott Linderman STATS 220/320 (NBIO220, CS339N). Winter 2023.

Announcements

• Lab 1 due Thursday, 11:59pm.

• Author contributions: Please add a short paragraph at the end of your lab describing if/how you
divided the work. E.g.

• Alice, Bob, and Chuck worked through Part 1 in class, and then met twice more to finish the
remainder of the lab as a group.

• Alice, Bob, and Chuck worked through Part 1 in class. Alice took the lead on Part 2, then Bob
finished Parts 3 and 4. Chunk completed Part 5. All three met to discuss and check their
solutions, and then combine them into a single report.

• Please feel free to ask (and answer!) questions on Ed. Don’t share code solutions directly, but
hints and clarifications are fine.

• I will try to post future labs and team assignments further in advance.

Spike Sorting by Deconvolution

• Our simple model was a good warm-
up, but downsampling to 2ms bins
isn’t very practical.

• In reality, the average voltage over a
spike can be , so you might miss
spikes altogether!

• Next, we’ll extend the simple model
with a more realistic one using
convolutions.

• The resulting model will be very similar
to Kilosort [Pachitariu et al., 2023]

≈ 0

Improving upon the simple model

10,000ft view

• Idea: each time a neuron spikes,
it adds a scaled copy of its
template to the measured
voltage.

• Formally, we model the data as a
sum of convolutions of
templates and amplitudes for
each neuron, plus noise.

In one dimension

• Convolution is an operation that takes in a signal
and a filter and outputs 

 .

• In discrete time this becomes, 

• Causal filters are constrained so that for .
Then is only influenced by .

• Our filters will also have bounded support so that
 for . Then is only influenced by .

• In our case, the signal is the time series of spike
amplitudes, and the filter is the waveform template.
Every time there’s a spike, we plop down a scaled
template.

a(t)
w(t)

y(t) = [a ⊛ w](t) = ∫ a(t − τ)w(τ) dτ

yt = [a ⊛ w]t =
∞

∑
d=−∞

at−dwd

wd = 0 d < 0
yt a1:t

wd = 0 d ≥ D yt at−D+1:t

Convolution

With multiple output channels

• We need to convolve the
amplitude signal with multiple
filters in parallel, one for each
channel of the voltage recording. 
 

• (I’m going to index from because
the notation is a bit simpler.)

yt =
[a ⊛ w1]t

⋮
[a ⊛ wN]t

=
∑D

d=1 at−dw1,d

⋮
∑D

d=1 at−dwN,d

d 1,…, D

Convolution

With multiple input & output channels

• Finally, we need to sum
convolutions of multiple input
signals, one for each neuron in
the model. 
 
  
 
by which we mean 
 

 .

X = A ⊛ W

xn,t =
K

∑
k=1

D

∑
d=1

ak,t−dwk,n,d

Convolution

In one dimension

• Cross-correlation essentially goes in reverse.

• In signal processing, the cross-correlation is a sliding
dot product of data and template , which
produces a new function .

• For discrete time, real-valued inputs, 
 

 .

• With a change of variables, we see that cross-
correlation is equivalent to convolution with a time-
reversed filter : 

 .

• (Note: the definition of cross-correlation is not unique.
This definition is consistent with np.correlate but
opposite of Wikipedia.)

y(t) w(t)
[y ⋆ w](t)

[y ⋆ w]t =
∞

∑
d=−∞

yt+dwd

w
[y ⋆ w]t =

−∞

∑
d=∞

yt−dw−d = [y ⊛ w]t

Cross-Correlation

With multiple channels

• As before, we can extend this
definition to handle multiple
channels 
 

 .

• The cross-correlation measures the
similarity of the data and the
template at each point in time.

• The auto-correlation is the cross-
correlation of a signal with itself.

[Y ⋆ W]t =
N

∑
n=1

∞

∑
d=−∞

yn,t+dwn,d

Cross-Correlation

With multiple input & output channels

As before, we can extend this
definition to handle multiple channels 

[Y ⋆ W]t =
[Y ⋆ W1]t

⋮
[Y ⋆ WK]t

=
∑N

n=1 ∑∞
d=−∞ yn,t+dw1,n,d

⋮
∑N

n=1 ∑∞
d=−∞ yn,t+dwK,n,d

Cross-Correlation

• PyTorch (and other deep learning libraries)
have fast, GPU-backed implementations of
convolutions.

• What they call convolution is actually
cross-correlation!

• But remember, we can always get convolution
by cross-correlating with the flipped filter.

• For discrete time signals, you have to play
with padding to handle edge effects.

• By default, these functions operate on mini-
batches of inputs, so you need to add an
extra leading dimension to your signal.

• There are lots of other options to read about
(strides, dilations, groups), but we won’t use
them this week.

Convolution and Cross-Correlation in Pytorch

Spike sorting by deconvolution

• Assume each spike is a noisy, scaled
version of the template of the neuron
that generated it.

p(X ∣ A, W) =
T

∏
t=1

𝒩 (xt

K

∑
k=1

[ak ⊛ Wk]t, σ2I)

Probabilistic Model
Likelihood

• Assume the spike amplitudes are drawn from an
exponential distribution.

• This simple prior will lead to sparse amplitudes,
but it does not encode any dependencies
between time steps.

• Ideally, we would also like to prohibit two spikes
within samples of each other.

• We’ll use a heuristic solution in this week’s lab.

ak,t ∼ Exp(λ)

D

Probabilistic Model
Prior on spike amplitudes

pdf of exponential distribution

https://en.wikipedia.org/wiki/Exponential_distribution

• What is the generalization of the unit-norm
constraint to matrices?

• Assume the matrix has unit
Frobenius norm .

wk ∈ 𝕊N−1

Wk ∈ ℝN×D

∥Wk∥F = 1

Probabilistic Model
Scale invariance via Frobenius norm constraint

=Wk Uk

diag(sk)

V⊤
k

• The Frobenius norm is the norm of the
flattened matrix,

• We can also write it as a trace,

• Or in terms of the singular values,

ℓ2

∥W∥2
F =

N

∑
n=1

D

∑
d=1

w2
n,d = vec(W)⊤vec(W) = ∥vec(W)∥2

2

∥W∥F = Tr(W⊤W)

∥W∥F = ∥s∥2

Probabilistic Model
Aside: The Frobenius norm and the SVD

=Wk Uk

diag(sk)

V⊤
k

• What is the generalization of the unit-norm
constraint to matrices?

• Assume the matrix has unit
Frobenius norm .

• This is equivalent to constraining the singular
values to be normalized .

wk ∈ 𝕊N−1

Wk ∈ ℝN×D

∥Wk∥F = 1

∥sk∥2 = 1

Probabilistic Model
Scale invariance via Frobenius norm constraint

=Wk Uk

diag(sk)

V⊤
k

• This view suggests a further assumption:
constraint the rank of the templates as well.

• If we constrain it to be rank 1 (i.e., only one
nonzero singular value), then

where is the spatial footprint and
 is the temporal profile.

Wk = ukv⊤
k

uk ∈ 𝕊N−1
vk ∈ 𝕊D−1

Probabilistic Model
Low-rank constraint

=Wk

uk v⊤
k

MAP estimation

Maximum a posteriori estimation
Coordinate ascent

• Initialize templates and set .

• Iterate until convergence:

• For neuron :

a. Optimize amplitudes for neuron .

b. Optimize templates for neuron .

[In each case, maximize log joint probability wrt one variable, holding others
fixed.]

W A = 0

k = 1,…, K

ak k

Wk k

Maximum a posteriori estimation
Optimizing the amplitudes

As a function of ,

 

where is the residual for neuron
, defined as

ak

log p(X, W, A) =
= log p(X ∣ A, W) + log p(ak; λ)

= −
1

2σ2
∥R − ak ⊛ Wk∥2

F + log p(ak) + c

R ∈ ℝN×T

n

R = X − ∑
j≠k

[aj ⊛ Wj]

Maximum a posteriori estimation
Optimizing the amplitudes

Expanding the square

 

where is the -th column of the residual .

log p(X, W, A) = −
1

2σ2
∥R − ak ⊛ Wk∥2

F + log p(ak) + c

= −
1

2σ2
∥ak ⊛ Wk∥2

F

ℒ2(ak)

+
1
σ2

⟨R, aK ⊛ Wk⟩F

ℒ1(ak)

+ log p(ak) + c .

rt ∈ ℝN t R

Maximum a posteriori estimation
Optimizing the amplitudes

Further expanding the quadratic term,

 

with equality when nonzero entries (i.e. “spikes”) of are separated by at least samples.

ℒ2(ak) = −
1

2σ2
∥ak ⊛ Wk∥2

F

= −
1

2σ2

T

∑
t=1

N

∑
n=1 (

D

∑
d=1

a2
k,t−dw2

k,n,d + 2
D

∑
d=1

d−1

∑
d′ =1

ak,t−dak,t−d′
wk,n,dwk,n,d′)

≈ −
1

2σ2

T

∑
t=1

a2
k,t∥Wk∥2

F

= −
1

2σ2

T

∑
t=1

a2
k,t

ak D

Maximum a posteriori estimation
Optimizing the amplitudes

Now take the linear term…

where is the cross-correlation of the residual and the template for neuron .

ℒ1(ak) =
1
σ2

⟨R, ak ⊛ Wk⟩

=
1
σ2

T

∑
t=1

N

∑
n=1

rn,t[ak ⊛ wk,n]t

=
1
σ2

T

∑
t=1

N

∑
n=1

D

∑
d=1

ak,t−drn,twk,n,d

=
1
σ2

T

∑
t=1

ak,t

N

∑
n=1

D

∑
d=1

rn,t+dwk,n,d

=
1
σ2

T

∑
t=1

ak,t[R ⋆ Wk]t

[R ⋆ Wk]t k

Maximum a posteriori estimation
Optimizing the amplitudes

Putting it all together

 

which separates into a sum of quadratic objective functions for each time .

ℒ(ak) =
T

∑
t=1

[−
1

2σ2
a2

k,t +
1
σ2

μk,tak,t − λak,t] + c,

t

Maximum a posteriori estimation
Completing the square and solving for the optimal amplitudes

• Like before, the maximum, subject to non-
negativity constraints, is obtained at

• However, we also want spikes to be well-
separated; i.e. for

.

• We’ll enforce this with a simple heuristic:
use find_peaks to select local maxima
of this “score” signal.

ak,t = max {0, μk,t − σ2λ}

ak,t > 0 ⟹ ak,t+d = 0
d = 1,…, D

σ2λn

2D

Maximum a posteriori estimation
Optimizing the templates

As a function of

where

is a slice of the residual matrix (R[:,t:t+D]in code).

Wk

log p(X, A, W) =
1

2σ2

T

∑
t=1

⟨ak,tRt, Wk⟩ + c′

=
1

2σ2 ⟨
T

∑
t=1

ak,tRt, Wk⟩ + c′

Rt =
r1,t … r1,t+D

⋮ ⋮
rn,t … rn,t+D

Maximum a posteriori estimation
Optimizing the templates

We want to maximize this log joint probability over the
space of low-rank, unit-norm matrices,

The solution is to set the waveform matrix "proportional
to" the weighted sum of residual matrices by taking its
SVD and renormaling the singular values.

 where

W⋆
k = arg max

Wk∈𝕊N,D
R ⟨

T

∑
t=1

ak,tRt, Wk⟩

W⋆
k =

R

∑
r=1

s̄rurv⊤
r s̄r =

sr

∑R
r′ =1 s2

r′

.

=

T

∑
t=1

ak,tRt Uk diag(sk) V⊤
k

Renormalize the

Singular values

Keep only the top

singular vectors

K

More efficient computation
Leveraging the low-rank templates

We can compute the “scores” for amplitude updates more
efficiently by leveraging the low-rank templates,

 
In other words, we cross-correlate the projected residual.

[R ⋆ Wk]t =
N

∑
n=1

D

∑
d=1

rn,t+dwk,n,d

=
D

∑
d=1

r⊤
t+dwk,:,d

=
D

∑
d=1

r⊤
t+dUkSkvk,:,d

=
D

∑
d=1

(U⊤
k rt+d)⊤[SkV⊤

k]:,d

= [(U⊤
k R) ⋆ (SkV⊤

k)]t

=Wk

Uk diag(sk) V⊤
k

=

diag(sk) ⋅ V⊤
k

=R

U⊤
k R

Conclusion

• We developed a basic spike sorting model that was good for building intuition, but
not very practical.

• We developed a new model for the voltage in terms of a superposition of
templates convolved with spike amplitudes for each neuron.

• Along the way, we learned about convolution and cross-correlation.

• We derived a coordinate ascent algorithm for maximum a posteriori (MAP)
inference.

• Next time: you’ll implement the algorithm in lab! You’ll learn a bit of PyTorch for
implementing the convolutions and cross-correlations, then test it out on the GPU.

Further reading
• Simple Spike Sorting and Spike Sorting by Deconvolution course notes.

• Convolution and cross-correlation:

• Chapter 9 of The Deep Learning Book (deeplearningbook.org/contents/
convnets.html)

• Start reading up on PyTorch convolutions! https://pytorch.org/docs/stable/
generated/torch.nn.functional.conv1d.html

• Spike sorting:

• Pachitariu, Marius, Shashwat Sridhar, and Carsen Stringer. "Solving the spike
sorting problem with Kilosort." bioRxiv (2023).

• The model we presented is a slightly modified version of Kilosort

http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
http://deeplearningbook.org/contents/convnets.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv1d.html

