
Machine Learning Methods
for Neural Data Analysis

Sequential VAEs

Scott Linderman STATS 220/320 (NBIO220, CS339N).

Announcements

• In class project presentations next Friday (3/17).

• ~6 minutes per presentation.

• I will set up a dropbox/drive folder where you can upload your
presentations in advance, just in case we have technical difficulties.

• Next Monday (3/13) we will have a guest lecture by Prof. Russ
Poldrack (Stanford Psychology), a world expert in fMRI data analysis.

• There will not be a zoom link — please attend in person.

We can generalize this approach to nonlinear factor analysis using neural
networks; a.k.a. variational autoencoders (VAEs).

Variational Autoencoders (VAEs)

Variational Autoencoders
ELBO Surgery

We can rearrange the ELBO in many ways,

Applying the reparameterization trick,

ℒ(θ, ϕ) = 𝔼q(xt) [log p(xt, yt; θ) − log q(xt)]
= 𝔼q(xt) [log p(yt ∣ xt; θ)]

expected log likelihood

− KL (q(xt) ∥ p(xt; θ))
KL to prior

ℒ(θ, ϕ) ≈ 𝔼ϵt [log p(yt ∣ ̂xt; θ)] − KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ))

Under a Gaussian model

ℒ(θ, ϕ) = 𝔼ϵt [log p(yt ∣ ̂xt; θ)] − KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ))
= −

1
2σ2

∥yt − ̂yt∥2
2

reconstruction loss

− KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ)) + c

Variational Autoencoders
ELBO Surgery

Variational Autoencoders
Amortization and Approximation gaps

• When we switch to nonlinear models, the
posterior is no longer Gaussian
approximation gap

• Moreover, neural network encoder may
not produce the best Gaussian
approximation amortization gap.

• Both lead to suboptimal inference and
learning.

⇒

⇒

Sequential VAEs

VAEs for time series data

• In neuroscience, we’re often interested in sequential data .

• For example, neural spike trains or behavioral time series.

• We could model each time point an an independent observation,

where is a neural network with weights , as in a VAE.

• Can we do better?

y1:T = (y1, …, yT)

xt ∼ 𝒩(0,I) yt ∼ 𝒩(f(xt; θ), σ2I)

f(x; θ) θ

Sequential VAEs

• We could incorporate temporal dependencies into the prior. E.g., via an linear dynamical system
prior,

.

• More generally, we could have a nonlinear dynamical system,

.

where are the parameters of a neural network.

• For example, could be a recurrent neural network.

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ Axt−1 + b, Q)

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ h(xt−1; θ), Q)

θ

h(x; θ)

Stochastic RNNs
LFADS: Latent Factor Analysis for Dynamical Systems

• LFADS uses a recurrent neural
network (the generator) to
model nonlinear dynamics of
neural activity.

• In the basic model, the RNN
has deterministic dynamics
with a random initial
condition.

• The RNN state is mapped
through a GLM to obtain firing
rates for a Poisson model.

Pandarinath et al (2018)

Stochastic RNNs
LFADS: Latent Factor Analysis for Dynamical Systems

• LFADS learns accurate
single-trial firing rates and
achieves state-of-the-art
decoding performance on
monkey reaching tasks
(Recall Lab 6).

Pandarinath et al (2018)

Sequential VAEs
Stochastic dynamics vs stochastic inputs

• LFADS uses a slightly different formulation of the prior.

• Instead of having stochastic dynamics,

.

It uses stochastic inputs with deterministic dynamics.

.

• This is just a reparameterization. It implies a distribution on , but that distribution
could be quite complex since is nonlinear.

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ h(xt−1; θ), Q)

x0 ∼ 𝒩(∣ 0,Q1) ut
𝗂𝗂𝖽∼ 𝒩(0,I) xt = h(xt−1, ut; θ)

x0:T
h

Stochastic RNNs
LFADS: Latent Factor Analysis for Dynamical Systems

• The inferred inputs can
suggest the presence,
identity, and timing of
unexpected changes in the
dynamics.

• For example, in trials where
the cursor was randomly
perturbed to the right or
left, inputs capture
corresponding changes in
neural activity.

Pandarinath et al (2018)

Stochastic RNNs
The LFADS probabilistic model

• We can unwind the recursion to write the state at
time as a deterministic function of the initial
condition and the inputs up to time ,

t
t

xt = h(xt−1, ut, θ)
= h(h(xt−2, ut−1, θ), ut, θ)
= h(⋯h(h(x0, u1, θ), u2, θ)⋯)
≜ ht(x0, u1:t, θ)

Sequential VAEs
“Vanilla” RNNs

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Stochastic RNNs
The LFADS probabilistic model

• To optimize the ELBO, we’ll need derivatives of the state with respect to the inputs,

• In a vanilla RNN, where is an element-wise
nonlinearity like or . Then,

• Multiplying a bunch of these matrices together leads to vanishing gradients.

∂xt

∂x0
=

∂
∂xt−1

h(xt−1, ut, θ) ⋅
∂xt−1

∂x0

h(x, u) = g(Wx + Bu) g(⋅)
tanh relu

∂
∂xt−1

h(xt−1, ut, θ) = diag(g′ (Wxt−1 + But)) W

Sequential VAEs
Long Short-Term Memory (LSTM) networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sequential VAEs
Gated Recurrent Units (GRUs)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Stochastic RNNs
The LFADS probabilistic model

• The output is modeled as a (typically simple) function
of the latent state,

where, e.g.,

.

yt ∼ Po(f(xt))

f(xt) = exp {Cxt + d}

Stochastic RNNs
The LFADS probabilistic model

• Assume the initial condition and inputs have
standard normal priors.

• The joint distribution is,

p(x0, u1:T, y1:T ∣ θ) = 𝒩(x0 ∣ 0,I)
T

∏
t=1

𝒩(ut ∣ 0,I) Po(yt ∣ f(xt))

= 𝒩(x0 ∣ 0,I)
T

∏
t=1

𝒩(ut ∣ 0,I) Po(yt ∣ f(ht(x0, u1:t, θ)))

Stochastic RNNs
Poisson LDS as a special case of LFADS

• We can view the Poisson LDS (c.f. Macke et al,
2011) as a special case of LFADS with a linear
generator. 
 

xt ∼ 𝒩(Axt−1 + b, Q) xt = h(xt−1, ut, θ)
h(xt−1, ut, θ) = Axt−1 + b + Q1/2ut

⟺ ut ∼ 𝒩(0, I)
yt ∼ Po(f(xt)) yt ∼ Po(f(xt))

Ax + b + Q1/2u

Stochastic RNNs
LFADS learning and inference

• How to learn the parameters and infer the latent
variables ?

• Variational EM:

• E step: Approximate the posterior with,

• M step: Find parameters that maximize the ELBO

θ
x0, u1:T

q(x0, u1:T) ≈ p(x0, u1:T ∣ y1:T, θ)

ℒ[q, θ] = 𝔼q(x0,u1:T) [log p(x0, u1:T, y1:T) − log q(x0, u1:T)]

Stochastic RNNs
LFADS learning and inference

• Let’s assume a Gaussian form for each factor,

• This approximation is parameterized by variational parameters .

• Let denote the ELBO as a function of the
variational and generative model parameters.

q(x0, u1:T; λ) = 𝒩(x0 ∣ μ̃0, Σ̃0)
T

∏
t=1

𝒩(ut ∣ μ̃t, Σ̃t)

λ ≜ {μ̃t, Σ̃t}T
t=0

ℒ(λ, θ) = ℒ[q(x0, u1:T; λ), θ]

Stochastic RNNs
LFADS learning and inference

ELBO Surgery*: we can rewrite the ELBO as,

ℒ(λ, Θ) = 𝔼q(x0,u1:T,λ) [log p(x0, u1:T) + log p(y1:T ∣ x0, u1:T, Θ) − log q(x0, u1:T; λ)]

= 𝔼q(x0,u1:T,λ) [log p(y1:T ∣ x0, u1:T, Θ) − log
q(x0; λ)
p(x0)

−
T

∑
t=1

log
q(ut; λ)
p(ut)]

= 𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, Θ)]
expected log likelihood

− KL(q(x0; λ) ∥ p(x0)) −
T

∑
t=1

KL(q(ut; λ) ∥ p(ut))

KL to the prior

*For more ways of rewriting the ELBO, see Johnson and Hoffman (2017)

Stochastic RNNs
LFADS learning and inference: gradients wrt θ

Gradient ascent on the ELBO:

Since the generative parameters don’t appear in , we can pull the gradient inside the
expectation and compute it with automatic differentiation for any .

Then approximate the expectation with Monte Carlo:

.

∇θℒ(λ, θ) = 𝔼q(x0,u1:T,λ) [
T

∑
t=1

∇θlog p(yt ∣ x0, u1:t, θ)]
q

x0, u1:t, θ

∇Θℒ(λ, θ) ≈
1
M

M

∑
m=1 [

T

∑
t=1

∇Θlog p(yt ∣ x(m)
0 , u(m)

1:t , θ)] x(m)
0 ∼ q(x0; λ), u(m)

t ∼ q(ut; λ)

Stochastic RNNs
LFADS learning and inference: the “reparameterization trick”

The gradients with respect to the variational parameters are a bit trickier:

Note that where .

We can reparameterize the model in terms of an expectation wrt and then take the
gradient inside the expectation, as before

As before, we can approximate this with ordinary Monte Carlo.

∇λℒ(λ, θ) = ∇λ𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

x0 ∼ 𝒩(μ̃0, Σ̃0) ⟺ x0 = μ̃0 + Σ̃1/2
0 ϵ0 ϵ0 ∼ 𝒩(0,I)

ϵ0:T

∇λℒ(λ, θ) = 𝔼ϵ0:T [
T

∑
t=1

∇λlog p(yt ∣ x0(ϵ0, λ), u1(ϵ1, λ), …, ut(ϵt, λ), θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

Stochastic RNNs
LFADS learning and inference: the “reparameterization trick”

The gradients with respect to the variational parameters are a bit trickier:

Note that where .

We can reparameterize the model in terms of an expectation wrt and then take the
gradient inside the expectation, as before

As before, we can approximate this with ordinary Monte Carlo.

∇λℒ(λ, θ) = ∇λ𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

x0 ∼ 𝒩(μ̃0, Σ̃0) ⟺ x0 = μ̃0 + Σ̃1/2
0 ϵ0 ϵ0 ∼ 𝒩(0,I)

ϵ0:T

∇λℒ(λ, θ) = 𝔼ϵ0:T [
T

∑
t=1

∇λlog p(yt ∣ x0(ϵ0, λ), u1(ϵ1, λ), …, ut(ϵt, λ), θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

Stochastic RNNs
LFADS learning and inference

• Variational EM via gradient descent and the reparameterization trick,

• E step:

• Draw for , .

• Use to approximate via Monte Carlo and the
reparameterization trick.

• Update

• M step:

• Use to approximate via Monte Carlo.

• Update .

ϵ(m)
t ∼ 𝒩(0,I) t = 0,…, T s = 1,…, S

ϵ ∇λℒ(λ, θ)

λ ← λ + α∇λℒ(λ, θ)

ϵ ∇θℒ(λ, θ)

θ ← θ + α∇θℒ(λ, θ)

Stochastic RNNs
Amortized inference with encoders / recognition networks

• With large datasets, we often work on one mini-
batch at a time.

• In that setting, we need a way to quickly obtain a
decent posterior approximation for that mini-batch.

• Key idea: the optimal is a function of the data
, so let’s use a neural network to approximate

the mapping from data to variational parameters.

• This is called amortized inference.

• The learned network is called an encoder or a
recognition network.

λ
y1:T

Conclusion

• Sequential VAEs are latent variable models for time series data like neural
spike trains and behavioral pose trajectories.

• LFADS is one such example that is popular in neuroscience. It uses recurrent
neural networks to parameterize the nonlinear dynamics, and Poisson GLMs
to model the spike count observations.

• Learning and inference are much the same as in standard VAEs —we just
maximize the ELBO.

• It also uses an RNN for the recognition network / encoder, to estimate
latent variables given observations.

Further Reading

• Pandarinath, Chethan, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz,
Sergey D. Stavisky, Jonathan C. Kao, Eric M. Trautmann, et al. 2018.
“Inferring Single-Trial Neural Population Dynamics Using Sequential Auto-
Encoders.” Nature Methods 15 (10): 805–15.

