
Machine Learning Methods 
for Neural Data Analysis 

Sequential VAEs

Scott Linderman STATS 220/320 (NBIO220, CS339N).



Announcements

• In class project presentations next Friday (3/17).


• ~6 minutes per presentation.


• I will set up a dropbox/drive folder where you can upload your 
presentations in advance, just in case we have technical difficulties. 


• Next Monday (3/13) we will have a guest lecture by Prof. Russ 
Poldrack (Stanford Psychology), a world expert in fMRI data analysis.


• There will not be a zoom link — please attend in person.



We can generalize this approach to nonlinear factor analysis using neural 
networks; a.k.a. variational autoencoders (VAEs).


Variational Autoencoders (VAEs)



Variational Autoencoders
ELBO Surgery

We can rearrange the ELBO in many ways,





Applying the reparameterization trick,


ℒ(θ, ϕ) = 𝔼q(xt) [log p(xt, yt; θ) − log q(xt)]
= 𝔼q(xt) [log p(yt ∣ xt; θ)]

expected log likelihood

− KL (q(xt) ∥ p(xt; θ))
KL to prior

ℒ(θ, ϕ) ≈ 𝔼ϵt [log p(yt ∣ ̂xt; θ)] − KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ))



Under a Gaussian model


ℒ(θ, ϕ) = 𝔼ϵt [log p(yt ∣ ̂xt; θ)] − KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ))
= −

1
2σ2

∥yt − ̂yt∥2
2

reconstruction loss

− KL (q(xt ∣ yt; ϕ) ∥ p(xt; θ)) + c

Variational Autoencoders
ELBO Surgery



Variational Autoencoders
Amortization and Approximation gaps

• When we switch to nonlinear models, the 
posterior is no longer Gaussian  
approximation gap


• Moreover, neural network encoder may 
not produce the best Gaussian 
approximation  amortization gap. 


• Both lead to suboptimal inference and 
learning.

⇒

⇒



Sequential VAEs



VAEs for time series data

• In neuroscience, we’re often interested in sequential data .  

• For example, neural spike trains or behavioral time series.


• We could model each time point an an independent observation,





where  is a neural network with weights , as in a VAE.


• Can we do better?

y1:T = (y1, …, yT)

xt ∼ 𝒩(0,I) yt ∼ 𝒩( f(xt; θ), σ2I)

f(x; θ) θ



Sequential VAEs

• We could incorporate temporal dependencies into the prior. E.g., via an linear dynamical system 
prior,


.


• More generally, we could have a nonlinear dynamical system,


.


where  are the parameters of a neural network. 


• For example,  could be a recurrent neural network.

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ Axt−1 + b, Q)

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ h(xt−1; θ), Q)

θ

h(x; θ)



Stochastic RNNs
LFADS: Latent Factor Analysis for Dynamical Systems

• LFADS uses a recurrent neural 
network (the generator) to 
model nonlinear dynamics of 
neural activity. 


• In the basic model, the RNN 
has deterministic dynamics 
with a random initial 
condition. 

• The RNN state is mapped 
through a GLM to obtain firing 
rates for a Poisson model.

Pandarinath et al (2018)



Stochastic RNNs
LFADS: Latent Factor Analysis for Dynamical Systems

• LFADS learns accurate 
single-trial firing rates and 
achieves state-of-the-art 
decoding performance on 
monkey reaching tasks 
(Recall Lab 6).

Pandarinath et al (2018)



Sequential VAEs
Stochastic dynamics vs stochastic inputs

• LFADS uses a slightly different formulation of the prior. 


• Instead of having stochastic dynamics,


.


It uses stochastic inputs with deterministic dynamics.


.


• This is just a reparameterization. It implies a distribution on , but that distribution 
could be quite complex since  is nonlinear.

p(x1:T) = 𝒩(x1 ∣ 0,Q1)
T

∏
t=2

𝒩(xt ∣ h(xt−1; θ), Q)

x0 ∼ 𝒩( ∣ 0,Q1) ut
𝗂𝗂𝖽∼ 𝒩(0,I) xt = h(xt−1, ut; θ)

x0:T
h



Stochastic RNNs
LFADS: Latent Factor Analysis for Dynamical Systems

• The inferred inputs can 
suggest the presence, 
identity, and timing of 
unexpected changes in the 
dynamics.


• For example, in trials where 
the cursor was randomly 
perturbed to the right or 
left, inputs capture 
corresponding changes in 
neural activity.

Pandarinath et al (2018)



Stochastic RNNs
The LFADS probabilistic model

• We can unwind the recursion to write the state at 
time  as a deterministic function of the initial 
condition and the inputs up to time ,


t
t

xt = h(xt−1, ut, θ)
= h(h(xt−2, ut−1, θ), ut, θ)
= h(⋯h(h(x0, u1, θ), u2, θ)⋯)
≜ ht(x0, u1:t, θ)



Sequential VAEs
“Vanilla” RNNs

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Stochastic RNNs
The LFADS probabilistic model

• To optimize the ELBO, we’ll need derivatives of the state with respect to the inputs,





• In a vanilla RNN,  where  is an element-wise 
nonlinearity like  or . Then,





• Multiplying a bunch of these matrices together leads to vanishing gradients.

∂xt

∂x0
=

∂
∂xt−1

h(xt−1, ut, θ) ⋅
∂xt−1

∂x0

h(x, u) = g(Wx + Bu) g( ⋅ )
tanh relu

∂
∂xt−1

h(xt−1, ut, θ) = diag(g′ (Wxt−1 + But)) W



Sequential VAEs
Long Short-Term Memory (LSTM) networks 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Sequential VAEs
Gated Recurrent Units (GRUs)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Stochastic RNNs
The LFADS probabilistic model

• The output is modeled as a (typically simple) function 
of the latent state,





where, e.g.,


.

yt ∼ Po(f(xt))

f(xt) = exp {Cxt + d}



Stochastic RNNs
The LFADS probabilistic model

• Assume the initial condition and inputs have 
standard normal priors. 


• The joint distribution is,


p(x0, u1:T, y1:T ∣ θ) = 𝒩(x0 ∣ 0,I)
T

∏
t=1

𝒩(ut ∣ 0,I) Po(yt ∣ f(xt))

= 𝒩(x0 ∣ 0,I)
T

∏
t=1

𝒩(ut ∣ 0,I) Po(yt ∣ f(ht(x0, u1:t, θ)))



Stochastic RNNs
Poisson LDS as a special case of LFADS

• We can view the Poisson LDS (c.f. Macke et al, 
2011) as a special case of LFADS with a linear 
generator. 
 

xt ∼ 𝒩(Axt−1 + b, Q) xt = h(xt−1, ut, θ)
h(xt−1, ut, θ) = Axt−1 + b + Q1/2ut

⟺ ut ∼ 𝒩(0, I)
yt ∼ Po(f(xt)) yt ∼ Po(f(xt))

Ax + b + Q1/2u



Stochastic RNNs
LFADS learning and inference

• How to learn the parameters  and infer the latent 
variables ?


• Variational EM: 


• E step: Approximate the posterior with,





• M step: Find parameters that maximize the ELBO


θ
x0, u1:T

q(x0, u1:T) ≈ p(x0, u1:T ∣ y1:T, θ)

ℒ[q, θ] = 𝔼q(x0,u1:T) [log p(x0, u1:T, y1:T) − log q(x0, u1:T)]



Stochastic RNNs
LFADS learning and inference

• Let’s assume a Gaussian form for each factor,





• This approximation is parameterized by variational parameters .


• Let  denote the ELBO as a function of the 
variational and generative model parameters.

q(x0, u1:T; λ) = 𝒩(x0 ∣ μ̃0, Σ̃0)
T

∏
t=1

𝒩(ut ∣ μ̃t, Σ̃t)

λ ≜ {μ̃t, Σ̃t}T
t=0

ℒ(λ, θ) = ℒ[q(x0, u1:T; λ), θ]



Stochastic RNNs
LFADS learning and inference

ELBO Surgery*: we can rewrite the ELBO as,


ℒ(λ, Θ) = 𝔼q(x0,u1:T,λ) [log p(x0, u1:T) + log p(y1:T ∣ x0, u1:T, Θ) − log q(x0, u1:T; λ)]

= 𝔼q(x0,u1:T,λ) [log p(y1:T ∣ x0, u1:T, Θ) − log
q(x0; λ)
p(x0)

−
T

∑
t=1

log
q(ut; λ)
p(ut) ]

= 𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, Θ)]
expected log likelihood

− KL(q(x0; λ) ∥ p(x0)) −
T

∑
t=1

KL(q(ut; λ) ∥ p(ut))

KL to the prior

*For more ways of rewriting the ELBO, see Johnson and Hoffman (2017)



Stochastic RNNs
LFADS learning and inference: gradients wrt θ

Gradient ascent on the ELBO:





Since the generative parameters don’t appear in , we can pull the gradient inside the 
expectation and compute it with automatic differentiation for any .


Then approximate the expectation with Monte Carlo:


.

∇θℒ(λ, θ) = 𝔼q(x0,u1:T,λ) [
T

∑
t=1

∇θlog p(yt ∣ x0, u1:t, θ)]
q

x0, u1:t, θ

∇Θℒ(λ, θ) ≈
1
M

M

∑
m=1 [

T

∑
t=1

∇Θlog p(yt ∣ x(m)
0 , u(m)

1:t , θ)] x(m)
0 ∼ q(x0; λ), u(m)

t ∼ q(ut; λ)



Stochastic RNNs
LFADS learning and inference: the “reparameterization trick”

The gradients with respect to the variational parameters are a bit trickier:




Note that  where .


We can reparameterize the model in terms of an expectation wrt  and then take the 
gradient inside the expectation, as before





As before, we can approximate this with ordinary Monte Carlo.

∇λℒ(λ, θ) = ∇λ𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

x0 ∼ 𝒩(μ̃0, Σ̃0) ⟺ x0 = μ̃0 + Σ̃1/2
0 ϵ0 ϵ0 ∼ 𝒩(0,I)

ϵ0:T

∇λℒ(λ, θ) = 𝔼ϵ0:T [
T

∑
t=1

∇λlog p(yt ∣ x0(ϵ0, λ), u1(ϵ1, λ), …, ut(ϵt, λ), θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))



Stochastic RNNs
LFADS learning and inference: the “reparameterization trick”

The gradients with respect to the variational parameters are a bit trickier:




Note that  where .


We can reparameterize the model in terms of an expectation wrt  and then take the 
gradient inside the expectation, as before





As before, we can approximate this with ordinary Monte Carlo.

∇λℒ(λ, θ) = ∇λ𝔼q(x0,u1:T,λ) [
T

∑
t=1

log p(yt ∣ x0, u1:t, θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))

x0 ∼ 𝒩(μ̃0, Σ̃0) ⟺ x0 = μ̃0 + Σ̃1/2
0 ϵ0 ϵ0 ∼ 𝒩(0,I)

ϵ0:T

∇λℒ(λ, θ) = 𝔼ϵ0:T [
T

∑
t=1

∇λlog p(yt ∣ x0(ϵ0, λ), u1(ϵ1, λ), …, ut(ϵt, λ), θ)] − ∇λKL(q(x0, u1:T, λ) ∥ p(x0, u1:T))



Stochastic RNNs
LFADS learning and inference

• Variational EM via gradient descent and the reparameterization trick,


• E step: 


• Draw  for , .


• Use  to approximate  via Monte Carlo and the 
reparameterization trick.


• Update 


• M step:


• Use  to approximate  via Monte Carlo.


• Update .

ϵ(m)
t ∼ 𝒩(0,I) t = 0,…, T s = 1,…, S

ϵ ∇λℒ(λ, θ)

λ ← λ + α∇λℒ(λ, θ)

ϵ ∇θℒ(λ, θ)

θ ← θ + α∇θℒ(λ, θ)



Stochastic RNNs
Amortized inference with encoders / recognition networks

• With large datasets, we often work on one mini-
batch at a time.


• In that setting, we need a way to quickly obtain a 
decent posterior approximation for that mini-batch.


• Key idea: the optimal  is a function of the data 
, so let’s use a neural network to approximate 

the mapping from data to variational parameters.


• This is called amortized inference. 


• The learned network is called an encoder or a 
recognition network. 

λ
y1:T



Conclusion

• Sequential VAEs are latent variable models for time series data like neural 
spike trains and behavioral pose trajectories.


• LFADS is one such example that is popular in neuroscience. It uses recurrent 
neural networks to parameterize the nonlinear dynamics, and Poisson GLMs 
to model the spike count observations.


• Learning and inference are much the same as in standard VAEs —we just 
maximize the ELBO. 


• It also uses an RNN for the recognition network / encoder, to estimate 
latent variables given observations.



Further Reading

• Pandarinath, Chethan, Daniel J. O’Shea, Jasmine Collins, Rafal Jozefowicz, 
Sergey D. Stavisky, Jonathan C. Kao, Eric M. Trautmann, et al. 2018. 
“Inferring Single-Trial Neural Population Dynamics Using Sequential Auto-
Encoders.” Nature Methods 15 (10): 805–15.


