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Hidden Markov Models

Hidden Markov Models (HMMs) assume a particular factorization of the joint distribution on latent
states (z,) and observations (x;). The graphical model looks like this:

This graphical model says that the joint distribution factors as,

p(zy.7,X1.7) Zl)l_lp (z: | z—1) l_[ (x; | z;). (1)

We call this an HMM because p(z;) l_[tT:z p(z; | z;—1) is a Markov chain.
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Hidden Markov Models Il

We are interested in questions like:
> What are the predictive distributions of p(z,, 1 | X1.;)?
» What is the posterior marginal distribution p(z; | x1.7)?
What is the posterior pairwise marginal distribution p(z;, 2,1 | X1.7)?
What is the posterior mode z;.; = arg maxp(zy.r | X1.7)?
How can we sample the posterior p(z4.7 | x4.7) of an HMM?

What is the marginal likelihood p(x;.7)?

v v v v Y

How can we learn the parameters of an HMM?

Question: Why might these sound like hard problems?
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State space models

Note that nothing above assumes that z; is a discrete random variable!
HMM’s are a special case of more general state space models with discrete states.

State space models assume the same graphical model but allow for arbitrary types of latent
states.

For example, suppose that z; € R are continuous valued latent states and that,

.
p(z1.7) = p(21) l_[P(Zt | 2,1) (2)
t=2
.
= A (zy | b1,Qy) l_[JV(Zt | Az, +b,Q) (%)
t=2

This is called a Gaussian linear dynamical system (LDS).
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Stability of Gaussian linear dynamical systems
Question: What is the asymptotic mean of a Gaussian LDS, lim,_, oo, E[z,]?

Question: When is a Gaussian LDS stable? l.e. when is the asymptotic mean finite?

2%\2{4 ~ Nl Ait—t* b, Q)
Ela.]- ABL-J"

(1-A)ER.]="
gla)- A

|ei3(ﬂ\ <1
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Message passing in HMMs

In the HMM with discrete states, we showed how to compute posterior marginal distributions using
message passing,

p(z; | x1.7) Ocy 77‘ ZP217X1T) T ! (4)

Zt—1 Zt41
- at(zt)p(xt | 2;) ﬁt(zt) (5)
where the forward and backward messages are defined recursively
ar(ze) = D p(ze | 21) P(xes | 21) @4 (24) ©
Ziq
Be(z:) = Z p(zer1 | 2¢) P(Xeya | Ze11) Beya(Ze41) (7)

Zt11
The initial conditions are a4(z;) = p(z;) and B;(z7) = 1.
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What do the forward messages tell us?

The forward messages are equivalent to,

a.(z;) = 7:“'7:19(211,)(11—1) (8)

z;

p(Ze; X1:-1)- ()

The normalized message is the predictive distribution,

a(z) p(zX1:4—1) _ p(z,X1:4-1)

Soad) S pEhxie)  POes) = p(zt | Xr.-1), (10

The final normalizing constant yields the marginal likelihood, er ar(zr) = p(xq.7)-
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Message passing in state space models

The same recursive algorithm applies (in theory) to any state space model with the same factorization,
but the sums are replaced with integrals,

p(z; | xq.7) o< J dzl"'Jdzt—lezt—l—l"'Jdsz(zl:Taxl:T) (11)

= a(z;) p(x; | 2;) Be(2;) (12)

where the forward and backward messages are defined recursively

a,(z;) = | p(z: | z—q) pP(Xe—1 | Z0—1) A1 (Z;—1) dz;—4 (13)

Be(z:) = | P(Zt+1 EN) P(Xt+1 | zH—l) ﬁt+1(zt+1) dz, 4 (14)

The initial conditions are a4(z;) = p(z1) and B7(z7) o< 1.
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Forward pass in a linear dynamical system

Consider an linear dynamical system (LDS) with Gaussian emissions,

p(xv.r.21.7) = p(z1) | | pz: | 2es)

T N
= N (2 |b1,@) | | # (2 | A2y +5,Q) ] |(x: | Cz +d,R)

t=2 t=1

Let's derive the forward message ;1 (2;11). Assume a,(z;) o< A (2; | Uyje—1, Dej—1)-

Atri1 (Zt+1) —

-

-

p(zt—l—l | z,) p(x; | z;) a(z;) dz,

N (241 | Az, +b,Q) N (x, | Cz, +d,R) N (2, | »u‘[|t—132t|t—1)dzt

(15)

(16)

(17)

(18)
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The update step
The first step is the update step, where we condition on the emission x;,

Exercise: Expand the densities, collect terms, and complete the square to compute the mean u,; and
covariance X, after the update step,

N (X | €2+ d,R) N (2; | Wyje—15 D) O A (2¢ | Uyye, Zpe)- (19)
A QX(’% ()( €N ‘0 R (xt Ci A)zﬁ Q'x‘,i (%k )AHH\ Z'H ( T )*tlt-t\}
*Q*(’?z* Juety 7 *"‘"S‘x _
Tye - C e Z\tm P = Suie Wy
-( —> -t
h = CT ((‘ Ut‘ A\ * Tluw M e 2\_\:\& - 3&\\:

tik
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The update step I

Write the joint distribution,

p(ze, % | X1.—1) = A (x¢ | €z, +d,R) N (2, | Au‘t|t—1azt|t—1) (20)

-
= Zt ‘uﬂt_l Zﬂt—l 2t|t_1C 51
- (["t} [CW|t—1 + d] ’ [CZHH C2t|t—1CT +R (21)

Since (z;, x;) are jointly Gaussian, z;, must be conditionally Gaussian as well,

p(zt | Xl:t) - JV(»uﬂtJ z:l‘|t)' (22)

Exercise: Now use the Schur complement from Week 1 to solve for uy, and X
. \ TyRY (x. - -
Mo = Pt * L e (cZyC R) " (x, Chyen 4)
- < 1 a4
2;1(: } 2 - Z'HH(’ (szc +2)" C8y

tle

11/29



The update step lll

Exercise: Write w,, and X, in terms of the Kalman gain,
K: = Zt|t_1CT(CZt|t_1CT + R)_l (23)

What is the Kalman gain doing?

< -\ _
My = Poignr ? 2)‘%,. c' (eZpeC *R\’ (x’c-cf“{;(e-\ A)
\-_-———-,,——"——> -

= Mg + Kf (X{ - C}‘Ht-\“ A)

TR’ (%, - xt)
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The predict step

Wpdeke
The p-ng-kt step yields p(z; | x1.;) = A (2 | Uy, L) To complete the forward pass, we need the
predict step,

f

at—l—l(zt—i—l) — | P(Zt+1 | z,) p(x; | z;) a(z;) dz, (24)

f

— | N(z;41 | Az, +b,Q) N (2, | Myt %ye) dz; (25)

- JV(Zt+1 | 415 z:t+1lt) (26)

Exercise: Solve for the mean w, ;. and covariance X, after the predict step.

P = Kpg b

24—;;'{5 - An{:leAT* Q
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Completing the recursions

That wraps up the recursions! All that’s left is the base case, which comes from the initial state
distribution,

W0 = by and X409 =0;. (27)
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Computing the marginal likelihood

Like in the discrete HMM, we can compute the marginal likelihood along the forward pass.

Exercise:

T

p(x1.7) = l_[P(Xt | X1:0-1)

Obtain a closed form expression for the integrals.

)‘(‘(t\cl"m-.* A, Cﬁub_‘cﬁ (L)

-

P(Xt | Zt)P(Zt | Xl:t—l)dzt

N (% | Cz; +d,R) N (2, | Au‘t|t—132t|t—1)dzt

.

(23)

(29)

(30)
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Computing the smoothing distributions

» The forward pass gives us the filtering distributions p(z; | x;.;). How can we compute the
smoothing distributions, p(z; | x1.7)?

P |n the discrete HMM we essentially ran the same algorithm in reverse to get the backward
messages, starting from f;(z;) o< 1.

» We can do the same sort of thing here, but it’s a bit funky because we need to start with an
improper Gaussian distribution f;(z7) o< A(0, 00l).

P |Instead, we’ll derive an alternative way of computing the smoothing distributions.
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Bayesian Smoothing

Note: z, is conditionally independent of x;, ;.7 given z;, 1, SO |
p(2; | 21, %1.7) = p(2; | Zi 1, X1¢) (31)
p(ztﬂzt—i—l |X1:t)
= (32)
p(zeq [ X1.t)
z, | x..)p(z z
_ p(z: | x1.4) P(ze 41 | 2¢) (33)

P(Zt+1 | Xl:t)

Question: what rules did we apply in each of these steps?
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Bayesian Smoothing Il

Now we can write the joint distribution as,

p(zt:zt—l—l | x1.7) = p(z; | Zi11 |X1:T)P(Zt+1 | x1.7)
P(zt | Xl:t)P(zt+1 | zt)P(zt+1 | X1:T)
P(Zt+1 |X1:t)

Marginalizing over z;,, | gives us,

(Zt+1 | z,) (Zt+1 | X1.7)

Zt+1 | ;. t)

dz, 4

p(z; | x1.7) = p(z; | 1t)J

Question: Can we compute each of these terms?

(34)

(35)

(36)
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The Rauch-Tung-Striebel Smoother, aka Kalman Smoother

These recursions apply to any Markovian state space model. For the special case of a Gaussian linear
dynamical system, the smoothing distributions are again Gaussians,

p(z | x1.7) = N (2¢ | thy7, Zoy7) (37)
where
U7 = My + G (U 1)7 — Myy 1)) (38)
ZtIT — Zt|t T Gt(zt+1|T o z:t+1|t)GtT (39)
G = ZA T (40)

This is called the Rauch-Tung-Striebel (RTS) smoother or the Kalman smoother.
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Kalman smoothing in information form

So far we’ve worked with the mean parameters u and i, but working with natural parameters J and h
offers another perspective.

Let’s go back to the basics,

p(zy.7 | x1.7) o< p(z4.7,%1.7) (41)
T T
=p(z))]| |pz | z—) | [p(xc | 2:) (42)
t T t T
= N (21 1b0,0) [ [ A (2 | A2y +0,Q) [N (x: | C2,+d,R)  (43)
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Kalman smoothing in information form Il

Expand the Gaussian densities,

1 B
p(zy.7 [ xq.7) o< exp{ - E(Zl —by) '@, (2, —by) (44)
1 T
— > D (2= Az —b) Q7 (2, — Az~ ) (45)
t=2
1 T
- > (% —Czi—d) R (x,— Cz,— d)} (46)
t=1

This is a giant quadratic expression in z;.7; i.e. a multivariate normal distribution on R'°.

We can write it in terms of its natural parameters J € R™®*? and he RP
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Kalman smoothing in information form Il

Question: Which entries in J are nonzero?
Ep1

v | —

-—

naive: O(TDo)

fFas: ol(To)

ol |
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Duality between message passing and sparse linear algebra

Recall that to get mean from the natural parameters we have,
p(z1.7 | Xe.7) = A (207 [T, T7H). (47)

In other words, the posterior mean is the solution of a linear system Jh.

Typically, this would cost O((7D)?), but since J is block-tridiagonal (or more generally, banded), we can
compute it in only O(7D?) time.

The algorithm for solving this sparse linear system is essentially the same as the message passing
algorithm we derived today.
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Message passing in nonlinear dynamical systems

Question: What would you do if you were given a nonlinear dynamics model,

p(z: | zi—1) = AN (2 | f(2,-1),Q)?

o vi (ean? Srad. boyed \I\\
NN'S (“S"vucmw&“ Vk\fs)

Extended KF - 2, ¢ ‘?(%e«\ % t '

- ~{—(1\+V{—\ 2. 7—\"0(/4"’2
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Sequential Monte Carlo

Recall that the forward messages are proportional to the predictive distributions p(z; | x;.;—1). We can

view the forward recursions as an expectation,

a,(z;) = J p(z; | z—1) p(X—1 | 2—1) Otp—1 (241 ) dz,—4
I['E’zt_lwp(zt_l | X1.0—2) [p(zt | Zt—l)p(xt—l | zt—l)]

One natural idea is to approximate this expectation with Monte Carlo,

S
a2 L 3o e )]

() ()

where we have defined the weights w,”

(s) iid

P(Xt—l | z

How do we sample z,”, ~ p(z;_; | x1.,—,)? Let’s sample the normalized &,_;(z;_;) instead!

(43)

(49)

(50)
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Sequential Monte Carlo |l

The normalizing constant is,

S S
J Ar1(2p1)dz, g = S W(_)z J p(z;1 | ZE—)Z) dz, | = < Wt(_)z- (51)

s—1 s=1

Use this to define the normalized forward message (i.e. the Monte Carlo estimate of the predictive
distribution) is,

A, 1(z._
— 1§ 1) , f_)zp(zt_l 12%)) (52)
fat—l (Zt—l) dzt—l s—1

a1(20—1) =

where w

7 ﬁ is the normalized weight of sampl ()
Wiy = &) g sample z,_,.
s/ W2

()

The normalized forward message is just a mixture distribution with weights w,” !
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Putting it all together

Combining the above, we have the following algorithm for the forward pass:

1. Let ay(z;) =p(z)
2. Fort=1,...,T:
a. Sample zfs) < a,(z,)fors=1,...,S

b. Compute weights w ( ) = p(x; | zfs)) and normalize Wt —= Wt Z Wt

c. Compute normalized forward message @, 1(z,1) = ZS ‘(S)p(zprl | z( ))

This is called sequential Monte Carlo (SMC) using the model dynamics as the proposal.

Note that Step 2a can resample the same z( ) . multiple times according to its weight.

Question: How can you approximate the marginal likelihood p(x;.7) using the weights? Hint: look back

to Slide 7.
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Generalizations

(s)

» Instead of sampling @,(z;), we could have sampled with a proposal distribution r(z, | z_,

instead and corrected for it by defining the weights to be,

(s) p(z; | Zgi)l)/?(xt | z;)
" ©)

r(zt| zp_l

(53)

Moreover, the proposal distribution can “look ahead” to future data x;.
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