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Recap

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression

Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction

Mixture Models Expectation Maximization Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Black Box, Amortized VI Image Generation
State Space Models Message Passing Segmenting Video Data
Stochastic Processes MCMC & Data Augmentation Inhomog. Poisson Processes
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Box’s Loop

Blei [2014].
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Outline

▶ Bayesian model comparison

▶ Posterior predictive checks
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Marginal Likelihood
▶ The marginal likelihood, aka model evidence, is a useful measure of how well a modelMi fits
the data.

▶ Specifically, it measures the expected probability assigned to the data under modelMi ,
integrating over possible parameters under the prior,

p(x | Mi) =

∫

p(θ | Mi)p(x | θ ,Mi)dθ (1)

= Ep(θ |Mi)
[p(x | θ ,Mi)] (2)

▶ If a prior distribution puts high probability on parameters that then assign high conditional
probability to the data, the marginal likelihood will be large.

▶ If the prior spreads its probability mass over a wide range of parameters, it may have a lower
marginal likelihood than one that concentrates mass around the weights that achieve maximal
likelihood.
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Occam’s Razor

Figure: Bishop, pg 164

More flexible models can assign probability to many datasets, but since the distribution has to
normalize, the probability of any given dataset is limited.

Thus, the marginal likelihood offers a form of Occam’s razor for choosing models that are only as
complex as is necessary.
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Bayesian Model Averaging

Suppose you have a collection of models {Mi}Mi=1. How would a proper Bayesian leverage them to
make predictions? Put a prior on models and integrate over it!

To make predictions, combine models according to their evidence,

p(xnew | x) =
M
∑

i=1

p(Mi | x)p(xnew | Mi) (3)

∝
M
∑

i=1

p(Mi)p(x | Mi)p(xnew | Mi,x) (4)

A simple approximation is to make predictions using only the model with the highest evidence,
M ⋆.

This is called model selection
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Marginal likelihood in exponential family models
Recall that for exponential family distributions, the marginal likelihood is given by a ratio of
normalizing constants,

p(x | Mi) =

�

N
∏

n=1

h(xn)

�

Z(φ′,ν′)

Z(φ,ν)
(5)

whereMi is an exponential family model specified by prior hyperparameters φ and ν.

The posterior parameters are,

φ′ = φ+
N
∑

n=1

t(xn) (6)

ν′ = ν+ N. (7)

(We used these properties to derive collapsed Gibbs sampling algorithms last week.)
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Example: Bayesian linear regression
In a Bayesian linear regression, the model is defined by the choice of features (basis functions) in the
design matrix X , as well as the prior hyperparameters (ν,τ,Λ) of a normal-inverse-chi-squared
prior,

p(y | X) =
∫

(2π)−
N
2

Z(ν,τ2,Λ)
(σ2)−(1+

ν′
2 +

P
2 )

exp

¨

−
1
2

D

ν′τ′2+µ′⊤Λ′µ′,
1
σ2

E

+
D

Λ′µ′,
w
σ2

E

−
1
2

D

Λ′,
ww⊤

σ2

E

«

dw dσ2 (8)

= (2π)−
N
2
Z(ν′,τ′2,Λ′)

Z(ν,τ2,Λ)

∫

1
Z(ν′,τ′2,Λ′)

“ . . . ”dw dσ2 (9)

= (2π)−
N
2
Z(ν′,τ′2,Λ′)

Z(ν,τ,Λ)
(10)
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Example: Bayesian linear regression II

Under the conjugate prior, we can compute the marginal likelihood in closed form,

p(y | X) = (2π)−
N
2
Z(ν′,τ′2,Λ′)

Z(ν,τ,Λ)
(11)

= (2π)−
N
2
Γ (ν

′

2 )

Γ (ν2 )

(τ
2ν
2 )

ν
2

(τ
′2ν′

2 )
ν′
2

|Λ|
1
2

|Λ′|
1
2

(12)
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Example: Bayesian linear regression III
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The Evidence Approximation

▶ To get some insight into the model evidence,
consider the case where θ ∈ R.
▶ Assume the posterior is peaked around its
mode θMAP with width σpost.
▶ Likewise, assume the prior is flat with width
σprior.
▶ Then

p(x | Mi) =

∫

p(x | θ ,Mi)p(θ | Mi)dθ

≈ p(x | θMAP
σpost

σprior
.

This is a simple rectangular approximation.
Figure: Bishop, pg. 163
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Laplace Approximation

Idea: approximate the posterior with a multivariate normal distribution centered on the mode.

To motivate this, consider a second-order Taylor approximation to the log posterior,

L (θ )≈L (θMAP) + (θ − θMAP)⊤∇θL (θMAP)
︸ ︷︷ ︸

0 at the mode

+
1
2
(θ − θMAP)⊤∇2θL (θMAP)(θ − θMAP) (13)

= −
1
2
(θ − θMAP)⊤Σ−1(θ − θMAP) + c (14)

= logN (θ | θMAP,Σ) (15)

where Σ= −[∇2θL (θMAP)]
−1

In other words, the posterior is approximately Gaussian with covariance given by the (negative) inverse
Hessian at the mode.

Since the Hessian is negative definite, the covariance is positive definite, as required.
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Laplace Approximation II
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Bernstein-von Mises Theorem
In the large data limit (as N→∞), the posterior is asymptotically normal, justifying the Laplace
approximation in this regime.

Consider a simpler setting in which we have data {xn}Nn=1
iid∼ p(x | θtrue).

Under some conditions (e.g. θ true not on the boundary of Θ and θ true has nonzero prior probability),
then the MAP estimate is consistent. As N→∞, θMAP→ θ true.

Likewise,

p(θ | {xn}Nn=1)→N
�

θ | θ true,
1
N [J(θ true)]

−1� (16)

where

J(θ ) = −Ep(x|θ )

�

d2

dθ 2
log p(x | θ )
�

(17)

is the Fisher information of parameter θ .
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Approximating the marginal likelihood

The Laplace approximation also offers an approximation of the intractable marginal likelihood,

L (θMAP) = log p(θMAP | Mi) + log p(x | θMAP,Mi)− log p(x | Mi) (18)

≈ logN (θMAP | θMAP,Σ) (19)

= −
P
2
log(2π)−

1
2
log |Σ| (20)

where again, Σ= −[∇2θL (θMAP)]
−1. Rearranging terms,

log p(x | Mi)≈ log p(θMAP) + log p(x | θMAP,Mi) +
D
2
log(2π) +

1
2
log |Σ|

Combine this with Σ≈ 1
N [J(θMAP)]

−1 and 1
2 log |Σ| ≈

D
2 logN+O(1) to derive the Bayesian

information criterion (BIC), a technique for penalized maximum likelihood estimation.
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Approximating the marginal likelihood with importance sampling
▶ We can obtain an unbiased estimate of the marginal likelihood with ordinary Monte Carlo,

p(x | Mi) =

∫

p(x | θ ,Mi)p(θ | Mi)dθ (21)

≈
1
S

S
∑

s=1

p(x | θ (s),Mi) θ (s)
iid∼ p(θ | Mi) (22)

but these estimates are often exceedingly high variance.

▶ It would be better if we could target our samples toward regions that have high likelihood.
Importance sampling aims to do that via a proposal distribution r(θ ),

p(x | Mi)≈
1
S

S
∑

s=1

w(s) p(x | θ (s),Mi) θ (s)
iid∼ r(θ ) (23)

where w(s) ≜ p(θ (s)|Mi)

r(θ (s))
is the importance weight.
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Importance sampling II

▶ Ideally, we would propose from the posterior distribution r(θ ) = p(θ | x,Mi).

▶ Then the estimator would have zero variance since,

p(x | Mi)≈
1
S

S
∑

s=1

p(θ (s) | Mi)p(x | θ (s),Mi)

p(θ (s) | x,Mi)
) (24)

=
1
S

S
∑

s=1

p(x | Mi) (25)

= p(x | Mi) (26)

▶ Of course, we can’t sample the posterior exactly for the model’s we’re interested in here!

18 / 35



Annealed Importance Sampling
▶ Annealed importance sampling [Neal, 2001] is a way of constructing a proposal distribution by
sampling a sequence of parameter values θ T , . . . ,θ 0, where θ 0 ≡ θ is our final proposal.

▶ The idea is to set,

r(θ 0) =

∫

r(θ T , . . . ,θ 0)dθ T:1 (27)

where

r(θ T , . . . ,θ 0) = rT(θ T) rT−1(θ T−1 | θ T) · · · r0(θ 0 | θ 1). (28)

▶ We choose the sequence of conditional distributions rt(θ t | θ t+1) to be Markov transition
operators with stationary distributions ft(θ t) that anneal from the prior fT(θ T) = p(θ T | Mi) to
the posterior f0(θ 0) = p(θ 0 | x,Mi).

▶ For example, ft(θ t)∝ p(θ t | Mi)p(x | θ t,Mi)
βt for βT = 0< βT−1 · · ·< β0 = 1.
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Empirical Bayes and Type-II Maximum Likelihood
▶ What about the hyperparameters φ and ν that define modelMi?

▶ If we were super-duper Bayesian, we would put a prior on our prior hyperparameters and
integrate over them, but that just kicks the can down the road. At some point we need to
commit...

▶ Empirical Bayes, a.k.a. type-II maximum likelihood estimation, use point estimates of the
hyperparameters chosen in a data-dependent manner,

φ∗,ν∗ = argmaxp(x | φ,ν) (29)

= argmax

∫

p(x | θ )p(θ | φ,ν)dθ . (30)

▶ For exponential families, the objective can be computed in closed form; for more complex
models, approximations like the Laplace approximation can be used instead.

▶ In either case, the optimal hyperparameters typically need to be found via generic optimization
algorithms like gradient descent.
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Caveats...

▶ Note that in order for the marginal likelihood to be meaningful, we need to have a proper prior
distribution. In the uninformative/improper limit, the marginal likelihood goes to zero.

▶ Bayesian model selection based on the marginal likelihood only really makes sense when we
have a finite set of models {Mi}.

▶ The marginal likelihood does not measure generalization. It measures the expected probability
of the observed data under the prior, not the expected probability of new data under the posterior.
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Current research
Bayesian model comparison, marginal likelihood estimation, and generalization are still topics of
research, especially as [Lotfi et al., 2022].

Figure: From Lotfi et al. [2022]

.
22 / 35



Outline

▶ Bayesian model comparison

▶ Posterior predictive checks
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Posterior Predictive Distribution

▶ One of the main uses of regression models is to make predictions, e.g. of yN+1 at xN+1.

▶ In Bayesian data analysis, this is given by the posterior predictive distribution,

p(yN+1 | xN+1, {yn,xn})Nn=1) =
∫

p(yN+1 | xN+1,w,σ2)p(w,σ2 | {yn,xn}Nn=1 dw dσ2 (31)

▶ Generally, we can approximate the posterior predictive distribution with Monte Carlo.

▶ For Bayesian linear regression with a conjugate prior, we can compute it in closed form.
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Model checking

The following slides are adapted from Aki Vehtari’s lecture notes.
https://github.com/avehtari/BDA_course_Aalto/blob/master/slides/
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Posterior predictive checks (PPCs)
▶ Newcomb’s speed of light measurements
▶ Model:

y ∼N (µ,σ)

p(µ, logσ)∝ 1

▶ Posterior predictive replicate yrep

▶ draw µ(s),σ(s) from the posterior p(µ,σ | y)
▶ draw yrep (s) fromN (µ(s),σ(s))
▶ repeat n times to get yrep with n replicates

▶ yrep refers to replicating the whole
experiment (potentially with same values of
x) and obtaining as many replicated
observations as in the original data.

−60 −30 0 30 60
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Posterior predictive checks (PPCs) II
▶ Generate several replicated datasets yrep

▶ Compare to the original dataset

7 8 9

4 5 6

1 2 3

−60 −30 0 30 60−60 −30 0 30 60−60 −30 0 30 60
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Posterior predictive checking with test statistic

▶ Replicated data sets yrep

▶ Test quantity (or discrepancy measure) T(y,θ)

▶ summary quantity for the observed data T(y,θ)

▶ summary quantity for a replicated data T(yrep,θ)

▶ can be easier to compare summary quantities than data sets
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Example: Posterior predictive checking with the min

▶ Compute test statistic for data T(y,θ) = min(y)

▶ Compute test statistic min(yrep) for many replicated datasets

−40 −20 0 20
Minimum of y and yrep

29 / 35



Posterior predictive checking

▶ Posterior predictive p-value

p = Pr(T(yrep,θ)≥ T(y,θ) | y)

=

∫ ∫

I[T(yrep,θ)≥ T(y,θ)]p(yrep | θ)p(θ | y)dyrep dθ

where I is an indicator function

▶ having (yrep (s),θ (s)) from the posterior predictive distribution, easy to compute

T(yrep(s),θ (s))≥ T(y,θ (s)), s= 1, . . . ,S

▶ Posterior predictive p-value (ppp-value) estimated whether difference between the model and
data could arise by chance

▶ Not commonly used, since the distribution of test statistic has more information
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Sensitivity analysis

▶ How much different choices in model structure and priors affect the results

▶ test different models and priors

▶ alternatively combine different models to one model

▶ e.g. hierarchical model instead of separate and pooled

▶ e.g. t distribution contains Gaussian as a special case

▶ robust models are good for testing sensitivity to “outliers”

▶ e.g. t instead of Gaussian

▶ Compare sensitivity of essential inference quantities

▶ extreme quantiles are more sensitive than means and medians

▶ extrapolation is more sensitive than interpolation
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What would I cover if I had 10 more weeks?

▶ More state space models!

▶ Switching linear dynamical systems (SLDS) and “Recurrent” SLDS

▶ Sequential VAEs, structured VAEs, and deep state space models

▶ Sequential Monte Carlo methods

▶ Disentangling and identifiability in nonlinear latent variable models

▶ Bayesian deep learning

▶ More Monte Carlo methods: slice sampling, NUTS, quasi-Monte Carlo, ...

▶ Undirected graphical models, energy based models, contrastive divergence, score matching...

▶ Density ratio estimation

▶ Suggestions?
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Recap

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression

Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction

Mixture Models Expectation Maximization Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Black Box, Amortized VI Image Generation
State Space Models Message Passing Segmenting Video Data
Stochastic Processes MCMC & Data Augmentation Inhomog. Poisson Processes
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The End

Thank you all for a wonderful quarter, and have a great summer!

Please take time to fill out the course evaluation so I can improve for next time.
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