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Last Time...

… Multivariate normal distribution

… The Wishart distribution

… Bayesian inference with Wishart, inverse Wishart, and normal inverse Wishart priors

… The multivariate Student’s t distribution
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Today...

Outline:

… Directed graphical models

… Hierarchical models

Reading:

… Required: Murphy, Ch 3.5.2, 4.2

… Optional: Bishop, Ch 8.1-8.2

… Optional: Gelman, Ch 5
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Where are we?

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression

Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction

Mixture Models EM & Variational Inference Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Black Box, Amortized VI Image Generation
State Space Models Message Passing Segmenting Video Data

Bayesian Nonparametrics Fancy MCMC Modeling Neural Spike Trains
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Is the Multivariate Normal Too Simple or Too Complex?
The MVN was our first encounter with a joint distribution over multiple random variables. As a
probabilistic model, you could argue that it is both too simple and too complex. Why?

Too simple:

Too complex:

Solutions:
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Compare to a multidimensional histogram
Now let each variable xd be an integer in {1, . . . ,K}. (E.g. bin the real line into K bins.)
Question: How many parameters does an arbitrary distribution on (x1, . . . , xD) require?

Question: What if we use the product rule instead? How many parameters does each conditional
have?

p(x) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · ·p(xD | x1, . . . , xD�1) (1)

Question: How could we reduce complexity?
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Directed Graphical Models
DGMs represent joint distributions as graphs.

… Suppose that the conditional probability
of xd on depends on only a subset of
preceding variables, pad ✓ {1, . . .d� 1}.
… These are the parents of node d. Then,

p(x) =
DY

d=1

p(xd | xpad) (2)

… We can represent the joint distribution
as a directed acyclic graph:
… Each node corresponds to a variable. It
may be discrete or continuous, scalar
or multidimensional.

… Draw an edge from node i to j if i 2 paj .

Exercise: Draw the directed graphical model
for the following joint distribution,

p(x) = p(x1)p(x2)p(x3)p(x4 | x1, x2, x3)
⇥ p(x5 | x1, x3)p(x6 | x4)p(x7 | x4, x5)

7 / 34



Directed Graphical Models II
Question: How many parameters would it take to represent the joint distribution p(x1, . . . , xD) if each
xd 2 {1, . . . ,K} and each node (except x1) had exactly one parent? What type of graph is that?
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Directed Graphical Models III
Exercise: Let x = (x1, . . . , xD) 2 RD. Draw the graphical model for p(x) =N (x | µ,�2I) with
diagonal covariance.
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Plate Notation
This example has repeated structure,

N (x | µ,�2I) =
DY

d=1

N (xd | µd,�2). (3)

We often use plate notation to such graphical models more compactly.
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Directed Graphical Models IV
Exercise: Let x = (x1, . . . , xD) 2 RD. Draw the graphical model for p(x) =N (✓ ,⌃) with arbitrary
covariance.
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Directed Graphical Models V
Note: Any joint distribution can be factored as,

p(x) = p(x1)p(x2 | x1)p(x3 | x1, x2) · · ·p(xD | x1, . . . , xD�1), (4)

in which case pad = {1, . . . ,d� 1}.
This is called a fully connected graph.

The absence of edges conveys independence assumptions.
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Conditional Independence
We say “xi is conditionally independent of xj given xs” if p(xi | xj,xs) = p(xi | xs), or equivalently,
p(xi, xj | xs) = p(xi | xs)p(xj | xs). We use the following shorthand,

xi ?? xj | xs () p(xi | xj,xs) = p(xi | xs). (5)

To read conditional independence relationships from a directed graphical model, we need to consider
three types of motifs:
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Markov Blanket
The Markov blanket of variable xd consists of xd ’s parents, xd ’s children, and the other parents of xd ’s
children. (These are all the variables that appear alongside xd in a factor of the joint distribution.)
Given its Markov blanket, xd is conditionally independent of all other variables.

14 / 34



Exchangeability
Conditional independence assumptions are natural when information is limited.

Consider modeling a collection of variables (x1, . . . , xD). If no information is available to order or
group the variables, we must assume they are exchangeable:

p(x1, . . . , xD) = p(x⇡(1), . . . , x⇡(D)) (6)

for any permutation ⇡. The simplest exchangeable distributions assume independent and identically
distributed r.v.’s,

p(x1, . . . , xD) =
DY

d=1

p(xd). (7)

More generally, we may assume the variables are conditionally independent given a parameter ✓ ,
which has been marginalized over,

p(x1, . . . , xD) =

Z ñ DY

d=1

p(xd | ✓)
ô
p(✓)d✓ . (8)

Marginally, x1, . . . , xD are not independent, but they are exchangeable. 15 / 34



de Finetti’s Theorem
de Finetti’s theorem states that as D!1, any suitably well-behaved exchangeable distribution on
(x1, . . . , xD) can be expressed as a mixture of independent and identical distributions, as in (8).

Though the theorem does not hold in the finite case, it is often cited as a motivation for conditional
independence assumptions in Bayesian models.

Extensions of de Finetti’s theorem have been proven for finite and Markov exchangeable
sequences [Diaconis and Freedman, 1980a,b] and for partially exchangeable arrays, like infinite
matrices, or graphs [Aldous, 1981, Hoover, 1979].
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Hierarchical Models
Example: Modeling SAT scores from many schools.
Suppose we have test scores from S schools. Let Ns denote the number of students from school s and
xs,n 2 R denote the score of the n-th student from the s-th school. We aim to build a probabilistic
model of the scores X = {{xs,n}Nsn=1}Ss=1 that will allow us to study relative performance across schools.

The individual scores are not exchangeable since they are organized into groups by school. However,
the schools themselves are exchangeable. This motivates the following hierarchical model:

µ,⌧2 ⇠ p(µ,⌧2) (9)

✓s ⇠N (µ,⌧2) for s= 1, . . . ,S (10)

xs,n ⇠N (✓s,�
2
s ) for n= 1, . . . ,Ns and s= 1, . . . ,S (11)

Each school has its own mean ✓s, and the means are conditionally independent given the global mean
and variance, µ and ⌧2, respectively. Hence, the means are exchangeable.
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Hierarchical Models II
For the prior on (µ,⌧2), we will assume an improper uniform distribution on the mean and a weakly
informative inverse-chi-squared prior on the variance.

We can express this as a normal inverse-chi-squared,

p(µ,⌧2) = NIX(µ,⌧2 | µ0,0,⌫0,⌧20) (12)

=N (µ | µ0,⌧2/0)��2(⌧2 | ⌫0,⌧20) (13)

The hyperparameters of the full model are ⌘= (µ0,0,⌫0,⌧20, {�2s }Ss=1). (Soon we will model �2s
too.)
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Hierarchical Models III
Question: Consider the limit where 0! 0, ⌧20! 0, and ⌫0!1. What does that imply about
p(µ,⌧2) and p(✓s | µ,⌧2)?

Question: Consider the limit where 0! 0, ⌧20!1, and ⌫0!1. What does that imply about
p(µ,⌧2) and p(✓s | µ,⌧2)?
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Bayesian Inference in the Hierarchical Gaussian Model I
Our goal is to compute the posterior,

p(µ,⌧2,✓ | X ,⌘), (14)

where ✓ = (✓1, . . . ,✓S).

We’ll take it in steps.

1. First, we can simplify the likelihood by observing that as a function of the parameter ✓s,

NsY

n=1

N (xs,n | ✓s,�2s )/N (x̄s | ✓s, �̄2s ) (15)

where x̄s =
1
Ns

PNs
n=1 xs,n and �̄

2
s =

�2s
Ns
.

Put differently, the school mean is a sufficient statistic of the likelihood (when variance is known).
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Bayesian Inference in the Hierarchical Gaussian Model II
2. Use the product rule to write the posterior as

p(µ,⌧2,✓ | X ,⌘) = p(✓ | µ,⌧2,X ,⌘)p(µ | ⌧2,X ,⌘)p(⌧2 | X ,⌘) (16)

3. The first term is the easy one:

p(✓ | µ,⌧2,X ,⌘)/
SY

s=1

h
N (✓s | µ,⌧2)N (x̄s | ✓s, �̄2s )

i
(17)

/
SY

s=1

N (✓s | ✓̂s, vs) (18)

where

vs =

✓
1
�̄2s

+
1
⌧2

◆�1
✓̂s = vs

✓
x̄s
�̄2s

+
µ

⌧2

◆
(19)

I.e. the conditional means are precision-weighted averages of the prior and sample means.
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Bayesian Inference in the Hierarchical Gaussian Model III
4. To compute the second term in (16), we need to marginalize over the parameters ✓ . This is usually
intractable, but since this model is conditionally linear and Gaussian, we can do it analytically.

p(µ | ⌧2,X ,⌘)/
Z
p(µ,⌧2,✓ ,X | ⌘)d✓ (20)

/N (µ | µ0,⌧2/0)
SY

s=1

Z
N (✓s | µ,⌧2)N (x̄s | ✓s, �̄2s )d✓s (21)

=N (µ | µ0,⌧2/0)
SY

s=1

N (x̄s | µ, �̄2s +⌧
2) (22)

/N (µ | µ̂, vµ) (23)

where
vµ =

1

�0+
PS
s=1�s

µ̂=
�0µ0+
PS
s=1�sx̄s

�0+
PS
s=1�s

�0 =
0
⌧2

�s =
1

�̄2s +⌧
2

(24)

The posterior mean of µ is a precision-weighted average of the school means.
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Bayesian Inference in the Hierarchical Gaussian Model IV

Figure: Posterior distribution on µ given the data and a range of ⌧2 values.
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Bayesian Inference in the Hierarchical Gaussian Model V
5. Finally, for the last term in (16), we can integrate over µ to obtain,

p(⌧2 | X ,⌘)/
Z
p(µ,⌧2,X | ⌘)dµ (25)

= p(⌧2)

Z
N (µ | µ0,⌧2/0)

ñ SY

s=1

N (x̄s | µ, �̄2s +⌧
2)

ô
dµ (26)

The integral is very doable (a good exercise!) but it’s a bit of a pain.

Alternatively, note that the following holds for any µ:

p(⌧2 | X ,⌘) =
p(µ,⌧2 | X ,⌘)
p(µ | ⌧2,X ,⌘)

/
p(⌧2)N (µ | µ0,⌧2/0)

QS
s=1N (x̄s | µ, �̄2s +⌧

2)

N (µ | µ̂, vµ)
. (27)

This is just Bayes’ rule.
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Bayesian Inference in the Hierarchical Gaussian Model VI
6. Plug in µ= µ̂ since that will cause many terms in the denominator to disappear. Then,

p(⌧2 | X ,⌘)/ p(⌧2)

p
vµ
⌧
e�

0
2⌧2

(µ̂�µ0)2
SY

s=1

1∆
�̄2s +⌧

2
e
� 12
✓

x̄s�µ̂p
�̄2s+⌧2

◆2

(28)

¨ f (⌧2) (29)

This function is complicated because both vµ and µ̂ depend on ⌧
2.

Nevertheless, ⌧2 is only a one-dimensional variable, so we can use numerical quadrature to
compute the normalizing constant

R
f (⌧2)d⌧2 and draw samples from this posterior.
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Bayesian Inference in the Hierarchical Gaussian Model VII

Figure: Posterior distribution on ⌧ given the data, marginalizing out µ and ✓ .

26 / 34



Bayesian Inference in the Hierarchical Gaussian Model VIII
7. Last but not least, note that,

p(✓s | ⌧,X ,⌘) =

Z
p(✓s | µ,⌧,X ,⌘)p(µ | ⌧,X ,⌘)dµ (30)

/
Z
N (x̄s | ✓s, �̄2s )N (✓s | µ,⌧2)N (µ | µ̂, vµ)dµ (31)

/N (x̄s | ✓s, �̄2s )N (✓s | µ̂,⌧2+ vµ) (32)

=N (✓s | ✓̂s, v✓s) (33)

where

v✓s =

Ç
1
�̄22

+
1

⌧2+ v2µ

å�1
✓̂s = v✓s

✓
x̄s
�̄2s

+
µ̂

⌧2+ vµ

◆
(34)

Again, note that ⌧2 affects all of these quantities!
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One More Posterior Distribution II

Figure: Posterior mean of ✓ given the data and ⌧, marginalizing out µ.
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Posterior Sample of Per-School Effects
We can draw samples of ✓s from their posterior marginal distribution by sampling ⌧

2, µ, and ✓s, then
discarding the former two. This is called ancestral sampling.

Figure: Posterior samples of ✓ .
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Hierarchical Gaussian Model Recap
… We’ve derived expressions for each term in the hierarchical Gaussian posterior (16).

… With these, we can visualize the posterior marginal distribution over (µ,⌧2) since its only 2D.

… We can also simulate posterior samples of ✓s for each school.
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Comparison to Classical Analysis of Variance
A classical approach to estimating ✓s is to choose between two estimators: the unpooled estimate,
✓̂s =

1
Ns

PNs
n=1 xs,n, or the pooled estimate, ✓̂s =

1
N

PS
s=1

PNs
n=1 xs,n. The former treats all schools as

independent; the latter treats them as identical.

To choose between these two estimators, one might perform an analysis of variance.

df SS MS E[MS | �2,⌧2]
Between groups S � 1

P
s(x̄s � x̄)2 SS/(S � 1) N⌧2+�2

Within groups S(N� 1)
P
s

P
n(xs,n � x̄s)2 SS/(S(N� 1)) �2

Total SN� 1
P
s

P
n(xs,n � x̄)2 SS/(SN� 1)

If the ratio of the between to the within mean squares (MS) is significantly greater than 1 (according to
an F test), then the ANOVA suggests using unpooled estimates ✓̂s = x̄s for each school.

If the ratio is not significantly greater than one, then we cannot reject the null hypothesis that ⌧2 = 0
(i.e. all schools are identical), so we should use the pooled estimate.

The hierarchical Bayesian approach yields a posterior distribution over ✓s whose mean naturally
interpolates between these two extremes. 31 / 34



Comparison to Classical Analysis of Variance
Another approximation uses unbiased point estimates of the parameters,

µ̂= x̄, ⌧̂2 = (MSB �MSW)/N, (35)

to draw inferences about ✓s from the conditional distribution,

p(✓s | µ̂, ⌧̂2,xs). (36)

However, this approach fails to propagate uncertainty about the global parameters and so
underestimates the posterior variance of ✓s.

Moreover, the point estimate ⌧̂2 can be negative! In this case, it’s typical to set ⌧̂2 = 0, but this is too
strong a claim as well.
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Next Time...
We assumed that �2s was known a priori, but this assumption is unwarranted in practice. An alternative
is to give each school’s variance a prior distribution like,

�2s ⇠ ��2(⌫0,�20). (37)

Unfortunately, this further complicates the analysis to the point where it is no longer doable in closed
form.

Next time we’ll introduce methods to handle this added complexity.
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