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What Is This Course About?

Probabilistic modeling and inference with high dimensional data.

What is the end goal?

… Predict: given features, estimate labels or outputs

… Simulate: given partial observations, generate the rest

… Summarize: given high dimensional data, find low-dimensional factors of variation

… Visualize: given high dimensional data, find informative 2D/3D plots

… Decide: given past actions/outcomes, which choice is best?

… Understand: what generative mechanisms gave rise to this data?
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Box’s Loop

Blei [2014].
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Bayesian Approach

1. A model is a joint distribution of parameters and data.

2. An inference algorithm computes the posterior distribution of parameters given data.

3. Model criticism and application are based on posterior expectations.
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Notation

Let

… ✓ denote parameters
… ⌘ denote hyperparameters
… X = {x1, . . . ,xN} denote the set of data points
… p(✓ ,X;⌘) denote a model (i.e. joint distribution)

… p(✓ | X;⌘) denote the posterior distribution
… p(X;⌘) denote the marginal likelihood of the data

Generally, lowercase bold letters denote vectors, uppercase bold letters denote matrices, and regular
characters denote scalars.
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Bayes’ Rule

p(✓ | X;⌘)| {z }
posterior distribution

=

joint distributionz }| {
p(✓ ,X;⌘)
p(X;⌘)| {z }

marginal likelihood

=

priorz }| {
p(✓ ;⌘)

likelihoodz }| {
p(X | ✓ ;⌘)R

p(✓ ,X;⌘)d✓
(1)
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Tentative Course Outline

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression

Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction

Mixture Models EM & Variational Inference Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Black Box, Amortized VI Image Generation
State Space Models Message Passing Segmenting Video Data

Bayesian Nonparametrics Fancy MCMC Modeling Neural Spike Trains
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Books

https://probml.github.io/
pml-book/book2.html https://tinyurl.com/yckjp266

http://www.stat.columbia.
edu/~gelman/book/
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Logistics

… Tu/Th 10:30-11:50am Lecture

… Office hours:

… Wed 4:30-5:30pm in Wu Tsai Neurosciences Institute M252G (Scott)

… Thurs 5-7pm Location TBD (Xavier)

… 8 weekly assignments, released Wednesday after class, due 11:59pm the following Wednesday.

… Assignments will be in Jupyter notebooks with both Python coding and math problems.

… Final exam
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Grading

… 8 homeworks ⇥ 10% each = 80%
… Final exam = 15%

… Class participation = 5%
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Questions?
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Warm-up: Normal Model with Unknown Mean

Example: Modeling SAT scores.
Suppose we have scores of N students from one class. Assume the scores are well modeled as
Gaussian random variables and that they are conditionally independent given the mean and variance.
For now, assume we know the variance but not the mean.

Notation: Let,

… xn 2 R denote the score of the n-th student,
… µ 2 R denote the (unknown) mean of the distribution, and
… �2 2 R+ denote the (known) variance of the distribution.
… µ0,�20 denote the mean and variance of the Gaussian prior on µ.
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Warm-up: Normal Model with Unknown Mean

Example: Modeling SAT scores.
Suppose we have scores of N students from one class. Assume the scores are well modeled as
Gaussian random variables and that they are conditionally independent given the mean and variance.
For now, assume we know the variance but not the mean.

Model:

µ⇠N (µ0,�
2
0) (2)

xn | µ,�2 iid⇠N (µ,�2) for n= 1, . . . ,N (3)
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Draw the Graphical Model
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Warm-up: Normal Model with Unknown Mean II
Goal: Infer p(µ | X ,⌘), the posterior distribution over model parameters given data and
hyperparameters ⌘= (�2,µ0,�20).

p(µ | X;⌘)/ p(µ;⌘)
NY

n=1

p(xn | µ;⌘) (4)

=N (µ;µ0,�
2
0)

NY

n=1

N (xn;µ,�2) (5)

/ exp

⇢
� 1
2�20

(µ�µ0)2
� NY

n=1

exp
ß
� 1
2�2

(xn �µ)2
™

(6)

/ exp
ß
�1
2
JNµ

2+ hNµ
™

(7)

where

JN =
1
�20

+
N
�2

and hN =
µ0
�20

+
NX

n=1

xn
�2

(8)
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Warm-up: Normal Model with Unknown Mean III
Completing the square: Show that

exp
ß
�1
2
JNµ

2+ hNµ
™
/N (µ | µN,�2N) (9)

where �2N = J�1N and µN = J�1N hN .
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Warm-up: Normal Model with Unknown Mean IV
Thus, p(µ | X ,⌘) =N (µ;µN,�2N) where

µN =
�20�

2

�2+ N�20

Ç
µ0
�20

+
1
�2

NX

n=1

xn

å
(10)

=
�2

�2+ N�20
µ0+

N�20
�2+ N�20

µML. (11)

and µML =
1
N

PN
n=1 xn is the maximum likelihood estimate.

Questions:

1. What is the posterior mean in the limit where N!1?

2. What happens when µ0 = 0 and �20!1 (i.e. when the prior is uninformative)?
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Warm-up: Normal Model with Unknown Mean V
What about the posterior variance?

1
�2N

=
1
�20

+
N
�2

(12)

Same questions: what happens when N!1 or when �20!1?
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Normal Model with Unknown Precision
Now suppose we know the mean µ but not the variance �2. Our calculations will be a little simpler if
we work with the precision instead, �= 1/�2. Then,

p(x | µ,�) =
Å
�

2⇡

ã 1
2

exp
ß
��
2
(x�µ)2
™

(13)

What would be a nice prior distribution for the precision?

… Support for the non-negative reals

… Control of mean and variance

… Conjugate with the Gaussian likelihood
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Chi-Squared (�2) Distribution
Let zi

iid⇠N (0,1) for i = 1, . . . ,⌫ and �=
P⌫
i=1 z

2
i . (Assume ⌫ is an integer.) Then,

� ⇠ �2(⌫0) (14)

where ⌫ is called the degrees of freedom.

The �2 pdf is,

�2(�;⌫0) =
1

2
⌫0
2 � (⌫02 )

�
⌫0
2 �1e�

�
2 . (15)

The chi-squared distribution is a special case of the gamma distribution,

�2(⌫0) = Ga
Å
⌫0
2

,
1
2

ã
. (16)

(Here, using the rate parameterization of the gamma distribution.)
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Adding a scale parameter
We can add a scale parameter by considering zi

iid⇠N (0,�0) where �0 is the variance and defining
�= 1

⌫0

P⌫0
i=1 z

2
i . (Note that we have defined it to be the average sum of squares!)

We say � is a scaled chi-squared random variable,

� ⇠ �2(⌫0,�0) (17)

where �0 is called the scale parameter.

Question: What is the mean of the scaled chi-squared distribution? What is its density?
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Scaled �2 Distribution

Figure: The �2(⌫0,�0) pdf for �0 = 2 and varying degrees of freedom ⌫0. In all cases, the mean is E[�] = �0,
but the variance shrinks as ⌫0 increases.
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Normal Model with Unknown Precision II
Model:

� ⇠ �2(⌫0,�0) (18)

xn
iid⇠N (µ,1/�) (19)

Exercise: Draw the graphical model.

23 / 36



Normal Model with Unknown Precision III
The �2 distribution is conjugate with the Gaussian likelihood. Letting ⌘= (µ,⌫0,�0), we have,

p(� | X;⌘)/ �2(�;⌫0,�0)
NY

n=1

N (xn;µ, 1�) (20)

/ �
⌫0
2 �1e

�⌫0�2�0
NY

n=1

�
1
2 e�

�
2 (xn�µ)

2
(21)

/ �
⌫N
2 �1e

�⌫N�2�N (22)

where

⌫N = ⌫0+ N and �N = ⌫N

Ç
⌫0
�0

+
NX

n=1

(xn �µ)2
å�1

. (23)

Question: What does the posterior mean converge to as ⌫0! 0?
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Normal Model with Unknown Variance
If the precision � ⇠ �2(⌫0,�0), then the variance �2 = 1/� is a scaled inverse �2 random
variable,

�2 ⇠ ��2(⌫0,�20) (24)

where �20 = 1/�0.

Its pdf can be found with the change of measure formula. Let f (�2) = 1/�2.

p(�2 | ⌫0,�20) =
����
df (�2)

d�2

�����2(f (�2);⌫0,1/�20) (25)

=

⇣
⌫0�

2
0

2

⌘⌫0/2

� (⌫02 )
(�2)�

⌫0
2 �1e�

⌫0�
2
0

2�2 (26)

¨ ��2(�2 | ⌫0,�20). (27)

The scaled inverse chi-squared is a special case of the inverse gamma

distribution, ��2(⌫0,�20)⌘ IGa(⌫02 ,
⌫0�

2
0

2 ), again using the rate parameterization.
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Scaled Inverse �2 Distribution

Figure: The ��2(⌫0,�20) pdf for �
2
0 = 2 and varying degrees of freedom ⌫0. In all cases, the mean

is E[�2] = ⌫0
⌫0�2�

2
0 (for ⌫0 > 2), but the variance shrinks as ⌫0 increases.
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Normal Model with Unknown Variance II
Now let’s parameterize the model in terms of the variance,

�2 ⇠ ��2(⌫0,�20) (28)

xn
iid⇠N (µ,�2) (29)

Exercise: Draw the graphical model.
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Normal Model with Unknown Variance III
The ��2 distribution is conjugate with the Gaussian likelihood.

Exercise: Letting ⌘= (µ,⌫0,�20), compute the posterior p(�
2 | X ,⌘) = ��2(�2;⌫N,�2N).

p(�2 | X ,⌘)/ ��2(�2;⌫0,�20)
NY

n=1

N (xn;µ,�2) (30)

/ (�2)�
⌫0
2 �1e�

⌫0�
2
0

2�2

NY

n=1

(�2)�
1
2 e�

1
2�2

(xn�µ)2 (31)

/ ��2(�2;⌫N,�2N) (32)

where

⌫N = ⌫0+ N and �2N =
1
⌫N

Ç
⌫0�

2
0 +

NX

n=1

(xn �µ)2
å

(33)

Question: What does �2N converge to as ⌫0! 0? 28 / 36



Normal Model with Unknown Mean and Variance
Finally, let’s assume both the mean and the variance are unknown. Then, the conjugate prior is a
normal inverse chi-squared (NIX) distribution.

p(µ,�2) = p(�2)p(µ | �2) (34)

= ��2(�2;⌫0,�
2
0)N (µ;µ0,�

2/0) (35)

¨ NIX(µ,�2;µ0,0,⌫0,�
2
0) (36)

Our first multivariate distribution!

Exercise: Draw the graphical model.
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Normal Inverse �2 Distribution

Figure: The NIX(µ0,0,⌫0,�20) pdf. Note the dependence: large values of �
2 imply larger variance in p(µ | �2).
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Normal Model with Unknown Mean and Variance II
Exercise: Show that p(µ,�2 | X;⌘) = NIX(µ,�2;µN,N,⌫N,�2N) where,

⌫N = ⌫0+ N (37)

N = 0+ N (38)

µN =
1
N

Ç
0µ0+

NX

n=1

xn

å
(39)

�2N =
1
⌫N

Ç
⌫0�

2
0 + 0µ

2
0+

NX

n=1

x2n � Nµ2N

å
(40)

Question: Take the uninformative limit where ⌫0! 0 and 0! 0. What is the posterior mean?
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The Posterior Marginals
Question: What is the posterior marginal distribution over the variance, p(�2 | X;⌘)?
The posterior marginal distribution over the mean is,

p(µ | X;⌘) =
Z
p(µ,�2 | X;⌘)d�2 (41)

=

Z
��2(�2;⌫N,�2N)N (µ;µN,�2/N)d�2 (42)

= St
�
µ;⌫N,µN,�2N/N

�
, (43)

where St denotes a Student’s t distribution with ⌫ d.o.f., location µ, and scale �. Its density is,

St(x;⌫,µ,�2) =
� (⌫+12 )

� (⌫2 )

1p
⇡⌫�2


1+
�2

⌫

��⌫+12
(44)

where �2 =
� x�µ
�

�2
is the squared Mahalanobis distance. Its mean is µ and its variance

is ⌫
⌫+2�

2.
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Student’s t Distribution

Figure: The St(µ;⌫,µ,�2/) is heavy tailed since it mixes over Gaussian distributions with varying scales.

Question: What are the mean and variance of the posterior marginal distribution over µ under an
uninformative NIX prior?
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Posterior Credible Intervals
Under an uninformative prior,

⌫N = N µN =
1
N

NX

n=1

xn = µML (45)

N = N �2N =
1
N

NX

n=1

(xn �µN)2 = �2ML. (46)

so µ | X ,⌘ ⇠ St(N,µML,�2ML/N).

The Bayesian way of testing whether µ 6= µ⇤ is to see if µ⇤ is in the 1�↵ central posterior credible
interval,

I↵ =
⇥
F�1St (

↵
2 | N,µML,�

2
ML/N), F

�1
St (1� ↵2 | N,µML,�

2
ML/N)
⇤

(47)

where F�1St is the quantile function of the Student’s t distribution.
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Posterior Credible Intervals II
Alternatively, note that

µ�µML
�ML/
p
N
| X ⇠ St(N,0,1). (48)

Testing if µ⇤ 2 I is equivalent to testing if t ¨ µ⇤�µML
�ML/
p
N
is in,

I↵ =
⇥
F�1St (

↵
2 | N,0,1), F�1St (1� ↵2 | N,0,1)

⇤
(49)

Question: How does this compare to frequentist hypothesis testing?
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