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What Is This Course About?

Probabilistic modeling and inference with high dimensional data.

What is the end goal?

P Predict: given features, estimate labels or outputs

» Simulate: given partial observations, generate the rest
Summarize: given high dimensional data, find low-dimensional factors of variation
Visualize: given high dimensional data, find informative 2D/3D plots

Decide: given past actions/outcomes, which choice is best?

v v . vY

Understand: what generative mechanisms gave rise to this data?
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Box’s Loop

Build model

Mixtures and mixed-membership models, —_—
time-series models, generalized linear models,
factor models, Bayesian nonparametrics

A

DATA

l

Infer hidden quantities

Markov chain Monte Carlo,
variational inference,
Laplace approximation

l

Apply model

Predictive systems,
data exploration,
data summarization

Criticize model

Performance on a task,
prediction on unseen data,
posterior predictive checks

4)‘ Blei DM. 2014.
Annu. Rev. Stat. Appl. 1:203-32

REVISE MODEL

Blei [2014].
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Bayesian Approach

1. A model is a joint distribution of parameters and data.
2. An inference algorithm computes the posterior distribution of parameters given data.

3. Model criticism and application are based on posterior expectations.
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Notation

Let

0 denote parameters

7) denote hyperparameters

X = {x4,...,xy} denote the set of data points
p(0,X;n) denote a model (i.e. joint distribution)

p(0 | X;m) denote the posterior distribution

vV v v v v Y

p(X;m) denote the marginal likelihood of the data

Generally, lowercase bold letters denote vectors, uppercase bold letters denote matrices, and regular
characters denote scalars.
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Bayes’ Rule

rodutk
joint distribution prior likelihood 5~ ?V\*\t
(0.6m) _ p(0:m) p(X10:)
p\Yv, A7) p\Y; :
qo1Xn) == - [ p(6,X;1)d6 1)
Posterior?iirstribution m ; LY, AT
marginal likelihoo
\ Sum ru
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Tentative Course Outline

Model

Algorithm

Application

Multivariate Normal Models
Hierarchical Models
Probabilistic PCA & Factor Analysis
Mixture Models
Mixed Membership Models
Variational Autoencoders
State Space Models
Bayesian Nonparametrics

Conjugate Inference
MCMC (MH & Gibbs)
MCMC (HMQ)

EM & Variational Inference
Coordinate Ascent VI
Black Box, Amortized VI
Message Passing
Fancy MCMC

Bayesian Linear Regression
Modeling Polling Data
Images Reconstruction

Image Segmentation
Topic Modeling
Image Generation
Segmenting Video Data
Modeling Neural Spike Trains
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Probabilistic
Machine Learning

Advanced Topics

Kevin P. Murphy

https://probml.github.io/
pml-book/book2.html

https://tinyurl.com/yckjp266

Bayesian Data Analysis
Third Edition

Relative Number of Births

—o—1972
—o—1976
—o6— 1980

©— 1984
—o—1988

—— 1972
—1976| =

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Valentine's day

Ty Y
Leap P 15t Memorial day

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Andrew Gelman, John B. Carlin, Hal S. Stern,
David B. Dunson, Aki Vehtari, and Donald B. Rubin

http://www.stat.columbia.
edu/~gelman/book/
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Logistics

» Tu/Th 10:30-11:50am Lecture
» Office hours:
> Wed 4:30-5:30pm in Wu Tsai Neurosciences Institute M252G (Scott)

» Thurs 5-7pm Location TBD (Xavier)
> 8 weekly assignments, released Wednesday after class, due 11:59pm the following Wednesday.
> Assignments will be in Jupyter notebooks with both Python coding and math problems.

» Final exam
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Grading

» 8 homeworks x 10% each = 80%
» Final exam =15%

» (Class participation = 5%
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Questions?
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Warm-up: Normal Model with Unknown Mean

Example: Modeling SAT scores.

Suppose we have scores of N students from one class. Assume the scores are well modeled as
Gaussian random variables and that they are conditionally independent given the mean and variance.
For now, assume we know the variance but not the mean.

/

Notation: Let,
> x, € R denote the score of the n-th student,
> u € R denote the (unknown) mean of the distribution, and
> o’e R, denote the (known) variance of the distribution.

> U, 0(2) denote the mean and variance of the Gaussian prior on u.
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Warm-up: Normal Model with Unknown Mean

Example: Modeling SAT scores.

Suppose we have scores of N students from one class. Assume the scores are well modeled as
Gaussian random variables and that they are conditionally independent given the mean and variance.
For now, assume we know the variance but not the mean.

Model:

ik i 1 °'“:) p~ A (o, 05) 2)
xnlu,azifigﬂ(u,oz) forn=1,...,N (3)
N
2k %) > plrnl T pliad i)
N
= N(mm.ﬁf) “EN(X"}I*J"Z)
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Draw the Graphical Model




Warm-up: Normal Model with Unknown Mean li

Goal: Infer p(u | X;m), the posterior distribution over model parameters given data and
hyperparameters n = (az,uo, O'é).

where

N
p(u | X;m) o< p(wm) | [o0xn | i)

n=1
N

= N (o, o) | |4 i, 0?)

n=1
N

n=1

1
o< exp {_EJNMZ + hNM}

,( )((p») EALY 3—»..)

1 N
'IN:_2+_2 and hN:ﬂ
O'O o) GO

’B&SL«) Rule, pre

'5\5 a5sump i

dweyr

vwle

1z(xn—u)2} By det

1
o< exp {_F(“ —Mo)z} l_[exp {—20
0
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Warm-up: Normal Model with Unknown Mean lli

Completing the square: Show that
1
exp {—EJNMZ + hNu} o< A () > o) 9)

where 0,2\, — JA_,1 and Uy :J,fh,\,.

N(Mm.%") . }"—;a wre gz - ”“)3

. “fs\ ZN()‘ - p ¥ /““)'g

L w4 M
ok Qxei ZO’:”A -;‘Jz )‘\’&
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Warm-up: Normal Model with Unknown Mean IV

Thus, p(u | X, 1) = A (u; y, 01) where

22 N
0o0 (Mo 1
e =2+ =D K (10)
o2 +Nog\ oy o2
0'2 NO'CZ)
= + (11)

o2+ NO'(Z) Ho o2+ NO'CZ) FmL-

and uy = %Zgzl x, is the maximum likelihood estimate.
Questions:
1. What is the posterior mean in the limit where N — o0?

2. What happens when uy = 0 and 0(2) — 0OQ (i.e. when the prior is uninformative)?
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Warm-up: Normal Model with Unknown Mean V
What about the posterior variance?

SRR (12)
0'/2\/_0'(2) o2

2

Same questions: what happens when N — o0 or when o — 007?

> O
O’N N
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Normal Model with Unknown Precision

Now suppose we know the mean u but not the variance o2. Our calculations will be a little simpler if
we work with the precision instead, A = 1/c2. Then,

1
A2 A
x| uA )= — | exp{—=(x—u)? 13
p(x | u,A) (m) p{ > u)} (13)
What would be a nice prior distribution for the precision?
» Support for the non-negative reals
» Control of mean and variance

» Conjugate with the Gaussian likelihood
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Chi-Squared () Distribution

Let z; < N(0,1) fori=1,...,yand A =>." , z2. (Assume v is an integer.) Then,

A~y 2(Vo)
where A is called the degrees of freedom.

The y? pdfis,

The chi-squared distribution is a special case of the gamma distribution,
Vo) = Ga| —, = |.
x (o) ( 7 2)

(Here, using the rate parameterization of the gamma distribution.)

(14)

(15)

(16)
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Adding a scale parameter

We can add a scale parameter by considering z; < A (0, Ag) where A, is the variance and defining
A== Z . (Note that we have defined it to be the average sum of squares!)

We say A is a scaled chi-squared random variable,

A~ (70, o) (17)
where A, is called the scale parameter.

Question: What is the mean of the scaled chi-squared distribution? What is its density?
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Scaled y* Distribution

Scaled y? Distribution

x%(2,2)
0.4 - X*(4,2)
— x%(6,2)
— — X*(8,2)
< 2
Q0.2
0.0
T T T T T T
0 2 4 6 8 10

Figure: The y*(vy, Ag) pdf for A, = 2 and varying degrees of freedom v,. In all cases, the mean is E[A] = A,
but the variance shrinks as v, increases.
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Normal Model with Unknown Precision Il

Model:
A~ 25 (vo, o) (18)
o~ A (11,1/2) (19)
Exercise: Draw the graphical model. Jo No
‘\®/
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Normal Model with Unknown Precision Il
The )(2 distribution is conjugate with the Gaussian likelihood. Letting n = (u, vy, Ag), We have,

N

p(A | X;im) o< 12 (Ai vo, 20) | |4 G 3) (20)

n=1

A N3

oc A7 te o ]_[M e~ 7 ()’ (21)

n=1

YN _M
o< A2 te 2 (22)
2
where . X ()‘l Jﬂl)‘“)
N —1
vw="v9+N and Ay=wy (% +Z(xn—,u)2) : (23)
0 n=1 \

| 1
Question: What does the posterior mean converge to as vy — 0? >‘N - (N Zh b‘m"l‘\))
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Normal Model with Unknown Variance

If the precision A ~ y%(v,, Ay), then the variance o = 1/ is a scaled inverse y 2 random
variable,

o’ ~ x (v, 0p) (24)

where O'S =1/A.

Its pdf can be found with the change of measure formula. Let f(o%) = 1/02.

d 2
p(c” | vo,az):‘% x°(f(0?); vo, 1/ ) (25)
vooé vo/2
( 2 ) 2\—20_1 _ 0%
— [ (02)" 7 e 2 (26)
2
2 x 7% (0? | v, 00). (27)

The scaled inverse chi-squared is a special case of the inverse gamma

2
distribution, y ~%(vo, 03) = 1Ga(=, VOZGO ), again using the rate parameterization.
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Scaled Inverse y* Distribution

Scaled y~? Distribution

Figure: The y ~*( vy, 03) pdf for o5 = 2 and varying degrees of freedom ;. In all cases, the mean

is E[o?] = v;ﬂzaé (for vy > 2), but the variance shrinks as v, increases.
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Normal Model with Unknown Variance Il
Now let’s parameterize the model in terms of the variance,
o’ ~ x (v, 0F) (28)

Xp ~ N (1, 0?) (29)

Exercise: Draw the graphical model.
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Normal Model with Unknown Variance lli

The )(_2 distribution is conjugate with the Gaussian likelihood.

Exercise: Letting 1) = (u, v, 0°3), compute the posterior p(c? | X,n) = x~*(0%; vy, op).
N
p(o? | X,m) o< x 2 (0% v, 02) | | A (xi s, 02) (30)
n=1
"0 _”0"5 N L1 (x,—)>
o< (0?) 7 te e | (o) e m e (31)
n=1
o< y 7 H(o% vy, o) (32)
where
1 N
vw= v9+N and O',Z\/: —(vooé+2(xn—u)2) (33)
YN n=1
Question: What does O',ZV converge to as vy — 07 28/36



Normal Model with Unknown Mean and Variance

Finally, let’s assume both the mean and the variance are unknown. Then, the conjugate prior is a
normal inverse chi-squared (N1X) distribution.

p(u,0%) =p(c?)p(u | o?) (34)
=1 (0% v0,00) N (Wi o, 0% /K0 (35)
= NIX(u, 0%; tho, Ko, vo,aé) (36)
. . . . . \’D U:‘
Our first multivariate distribution! / d

Exercise: Draw the graphical model. \
L >A®

)Aa Vo

N
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Normal Inverse y* Distribution

ONIX(,u=O,K=1,\)=2,02=2)

0.105
38 0.090
0.075 5
6 5
N 0.060 ~
3
4 0.045 §
, 0.030
0.015
0 0.000

-5.0 -25 0.0 2.5 5.0

Figure: The NIX(ug, Ko, Vo, 0'¢) pdf. Note the dependence: large values of o imply larger variance in p(u | o).
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Normal Model with Unknown Mean and Variance Il

Exercise: Show that p(u,o? | X;m) = NIX(u, 02; iy, Kn, VN, O2) Where,
n N> KN> VN> O

YN = Yo + N (37)
Ky = Kp -+ N (38)
. N
uy = — (KoMo + an) (39)
Kn —
n=1
. N
ol = o (voaé + Koug + in = KN,u,ZV) (40)
n=1

Question: Take the uninformative limit where vy — 0 and ky — 0. What is the posterior mean?
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The Posterior Marginals
Question: What is the posterior marginal distribution over the variance, p(cr2 | X;m)?

The posterior marginal distribution over the mean is,

.
p(u | X;m) = J p(u, 0% | X;m)do? (41)
-
= | 2% vy, o) A (s iy, 07 /1cy) do? (42)
= St(u; v, n, T /KN) 5 (43)
where St denotes a Student’s t distribution with v d.o.f., location u, and scale o. Its density is,
v+1

T y+1 1 AZ 2
St(x; v, u,0%) = — [H_]

I'(3) vVrvo? 4

—un2 . L : : :
where A% = (%) is the squared Mahalanobis distance. Its mean is u and its variance

. Y 2
IS _v+20 .
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Student’s t Distribution

— t(l | Vo, Mo, 0§/Ko)
—— N(u | Ho, 08/K0)
1 samples

0.20-
20.15-
Q.

0.10-

0.05 -

0.00

4 -2 0 2 4
u

Figure: The St(u; v, u, O'Z/K') is heavy tailed since it mixes over Gaussian distributions with varying scales.

Question: What are the mean and variance of the posterior marginal distribution over u under an
uninformative NIX prior?
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Posterior Credible Intervals
Under an uninformative prior, A

N f
1 ' r
vy =N = D % = ooom g
n=1
1 N
Ky =N o =1 2 00— )’ =y (46)
n=1

so u | X, m ~ St(N, e, o /N).

The Bayesian way of testing whether u £ u* is to see if u* is in the 1 — a central posterior credible
interval,

Iy =Fs (5 IN, i, o IN), Fgt (=5 | Ny, o /N) ] (47)
where FS_tl is the quantile function of the Student’s t distribution.
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Posterior Credible Intervals i

Alternatively, note that

U — UmL

—— | X ~ St(N,0,1). (48)
om/VN
. R . . . e, A US—UML . -
Testing if u™ € £ is equivalent to testing if t = P IS in,
Zy=F 4 1N,0,1), F(1—% | N,0,1)] (49)
a st \2 1TH Y 2) Pt 2 11 Y

Question: How does this compare to frequentist hypothesis testing?
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