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Gaussian Mixture Models

Recall the basic Gaussian mixture model,
z, % Cat() (1)
X |z~ Ny, By) 2)
where
» 7z, €{1,...,K} is a latent mixture assignment
» x, € R is an observed data point
> ne A, €RPand 3, € R%D are parameters
(Here we’ve switched to indexing data points by t rather than n.)

Let ® denote the set of parameters. We can be Bayesian and put a prior on ® and run Gibbs or VI, or
we can point estimate ® with EM, etc.
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Gaussian Mixture Models Il

Draw the graphical model.
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Gaussian Mixture Models Il
Recall the EM algorithm for mixture models,

» E step: Compute the posterior distribution

9(z1.7) = p(z1.7 | X1.7;©) 3)
T
=] [rtz 1 x:0) (4)
t=1
T
=] [a() (5)
t=1

> M step: Maximize the ELBO wrt ©,
g(@) - Eq(zl:r) [Iogp(xlzT:zl:T; @) - |Og q(zl:T)] (6)
- IEq(zm) [Iogp(xlszzlzT; 9)] +c (7)

For exponential family mixture models, the M-step only requires expected sufficient statistics.
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Hidden Markov Models

Hidden Markov Models (HMMs) are like mixture models with temporal dependencies between the
mixture assignments.

a o e @ o #

This graphical model says that the joint distribution factors as,

T T

p(zsrx0r) = p() | [ otz | 2-) [ [plx: 1 20). ®)

t=2 t=1

We call this an HMM because the hidden states follow a Markov chain, p(z;) ]_[::2 p(z: | zi—q)-
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Hidden Markov Models i

An HMM consists of three components:
1. Initial distribution: z; ~ Cat(7)

2. Transition matrix: z, ~ Cat(P,,_ ) where P € [0, 1]*X is a row-stochastic transition matrix with
rows Py.

3. Emission distribution: x, ~ p(- | 6, )
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Example: The occasionally dishonest casino
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Figure: An occasionally dishonest casino that sometimes throws loaded dice.
Fromhttps://probml.github.io/dynamax/notebooks/hmm/casino_hmm_inference.html
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https://probml.github.io/dynamax/notebooks/hmm/casino_hmm_inference.html

Example: HMM for splice site recognition

cooo
BoIn

Sequence: CTTCATGTGAAAGCAGACGTAAGTCA

State path: EEEEEEEEllEEEEEEEEEE [TT1111 lgP
e —41.22
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Figure: A toy model for parsing a genome to find 5’ splice sites. From Eddy [2004].

Question: Suppose the splice site always had a GT sequence. How would you change the model to
detect such sites?
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Example: Autoregressive HMM for video segmentation

Figure: Segmenting videos of freely moving mice [Wiltschko et al., 2015]. (Show video.)




Hidden Markov Models Il

We are interested in questions like:
> What are the predictive distributions of p(z,, 41 | X1.;)?
What is the posterior marginal distribution p(z; | x1.7)?
What is the posterior pairwise marginal distribution p(z,, 2,11 | X1.7)?
What is the posterior mode zj., = argmaxp(zy.7 | x1.7)?
How can we sample the posterior p(z,.7 | x1.7) of an HMM?

What is the marginal likelihood p(xy.7)?

vV vy v vV VY

How can we learn the parameters of an HMM?

Question: Why might these sound like hard problems?

11/23



Computing the predictive distributions

The predictive distributions give the probability of the latent state z, ; given observations up to but
not including time t + 1. Let,

A

P(Ze15X1:¢) )
t

= > 2p@)] [poxs 1 2)p(ze11 1 2) (10)

z;=1 z=1

- Z (Z Z p(z1) l_[p (%5 | 25) P25 41 | zs))p(xt | z:) (241 | 2¢) (11)
z,=1 s=1

z;=1 7 4=1

at+1(zt+1)

K

= > a(z)p(x | 2) p(ze41 | 22). 12)

We call a;(z;) the forward messages. We can compute them recursively! The base case is

p(z1 1 @) = p(z1).
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Computing the predictive distributions Il

We can also write these recursions in a vectorized form. Let

a,(z, =1) p(z: = 1,%14-1) p(x; |z, =1)

a,(z, = K) p(z = K, X1:4—1) p(x; | z, = K)

both be vectors in R’_{F. Then,

a1 =P (a2, 0L) (14)

where ® denotes the Hadamard (elementwise) product and P is the transition matrix.
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Computing the predictive distributions Il

Finally, to get the predictive distributions we just have to normalize,

P(Zes1 | X1:¢) O P(Ze41,X1:4) = A 1(Zegr)- (15)

Question: What does the normalizing constant tell us?

14/23



Computing the posterior marginal distributions

The posterior marginal distributions give the probability of the latent state z, given all the observations
up totime T.

K K K K
Zt | Xq: T Z Z Z Z p(zl:TﬁxlzT) (16)

z=1 zq=1211=1 zr=1

K K t—1
S DD ITH] | [LCAESCHNES) PYAES
z=1 7 =1 s=1

Z Z l_[PZ | 2,-1) (xulzu)} (17)

=1 zr=1u=t+1

= ay(z:) x p(x; | 2:) % Be(z;) (18)

X

| —|

where we have introduced the backward messages f3;(z;).
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Computing the backward messages

The backward messages can be computed recursively too,

K T
Z ]_[ (2u | 24-1) P(x, | 2,) (19)
pzcs1 12) p(x, | 241) (Z Z ]_[ P21 2,1) P(x, |z)) (20)

[>

[l
[~ %Mx me

Be(z:)

1 Zp =1 zr=1u=t+2

P(zet1 | 2) p(Xe, | Ze1) Bea (Zes1)- (21)
1

Zry1

For the base case, let Br(z7) = 1.
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Computing the backward messages (vectorized)
Let

Be(ze =1)
ﬂt -
Be(z: = K)

be a vector in R’i. Then,

ﬂt - P(ﬁt—H. © lt+1)-
Let ﬁT — 1K'
Now we have everything we need to compute the posterior marginal,

Ay lig ﬁt,k

plze=klxy7)= -
Zj:l at,j[t,jﬁt,j

We just derived the forward-backward algorithm for HMMs [Rabiner and Juang, 1986].

(24)
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What do the backward messages represent?

Question: If the forward messages represent the predictive probabilities @, 1(z;11) = P(Z;11,X1.¢),
what do the backward messages represent?
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Computing the posterior pairwise marginals

Exercise: Use the forward and backward messages to compute the posterior pairwise marginals
P(Zt, Zeyq | X1.7)-
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Normalizing the messages for numerical stability
If you're working with long time series, especially if you're working with 32-bit floating point, you need
to be careful.

The messages involve products of probabilities, which can quickly overflow.

There’s a simple fix though: after each step, re-normalize the messages so that they sum to one. l.e
replace

Qe = PT(at o) (25)
with
~ 1 .-
@ = A—tP (a,oL) (26)
K K K
A= Z Z Py jly; = Z a;jl;; (since P is row-stochastic). (27)
k=1 j=1 j=1

This leads to a nice interpretation: The normalized messages are predictive likelihoods

Qy i1 = P(2i11 = k | X1.), and the normalizing constants are A, = p(x; | Xq.—1).
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EM for Hidden Markov Models
Now we can put it all together. To perform EM in an HMM,

> E step: Compute the posterior distribution
q(z1.7) = p(z1.7 | x1.7;©). (28)
(Really, run the forward-backward algorithm to get posterior marginals and pairwise marginals.)

» M step: Maximize the ELBO wrt ©,

"%(@) - IEq(zl:T) [lng(XlzT,Zl:T;@)] +c (29)
K -1 K K
Eyz,) {Z I[z, = k] log no,k] +Eg, Z Z 1z, = i, 2011 = j]log P
k=1 t=1 =1 j=1

T K
+Ege,) [ZZH[Zt = Kl log p(x;; Gk)} (30)
t=1 k=1

For exponential family observations, the M-step only requires expected sufficient statistics.
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What else?

> How can we sample the posterior?
» How can we find the posterior mode?
» How can we choose the number of states?

» What if my transition matrix is sparse?
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