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Review: Bayesian Mixture Model
1. Sample the proportions from a Dirichlet prior:

π∼ Dir(α) (1)

2. Sample the parameters for each component:

θ k
iid∼ p(θ | φ,ν) for k = 1, . . . ,K (2)

3. Sample the assignment of each data point:

zn
iid∼ π for n= 1, . . . ,N (3)

4. Sample data points given their assignments:

xn ∼ p(x | θ zn) for n= 1, . . . ,N (4)

2 / 25



Review: Joint distribution
▶ This generative model corresponds to the following factorization of the joint distribution,

p(π, {θ k}Kk=1, {(zn,xn)}
N
n=1 | φ,ν,α) = p(π | α)

K
∏

k=1

p(θ k | φ,ν)
N
∏

n=1

p(zn | π)p(xn | zn, {θ k}Kk=1)

(5)

▶ Equivalently,

p(π, {θ k}Kk=1, {(zn,xn)}
N
n=1 | φ,ν,α) =

p(π | α)
K
∏

k=1

p(θ k | φ,ν)
N
∏

n=1

K
∏

k=1

[Pr(zn = k | π)p(xn | θ k)]
I[zn=k] (6)

▶ Substituting in the assumed forms

p(π, {θ k}Kk=1, {(zn,xn)}
N
n=1 | φ,ν,α) = Dir(π | α)

K
∏

k=1

p(θ k | φ,ν)
N
∏

n=1

K
∏

k=1

[πk p(xn | θ k)]
I[zn=k]
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Review: Exponential family mixture models

What about p(x | θ k) and p(θ k | φ,ν)?

Let’s assume an exponential family likelihood,

p(x | θ k) = h(xn) exp
�

〈t(xn),θ k〉 − A(θ k)
	

. (8)

Then assume a conjugate prior,

p(θ k | φ,ν)∝ exp
�

〈φ,θ k〉 − νA(θ k)
	

. (9)

The hyperparmeters φ are pseudo-observations of the sufficient statistics (like statistics from fake
data points) and ν is a pseudo-count (like the number of fake data points).

Note that the product of prior and likelihood remains in the same family as the prior. That’s why we
call it conjugate.
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Review: Gaussian mixture model

Assume the conditional distribution of xn is a Gaussian with mean θ k ∈ RD and identity
covariance,

p(xn | θ k) =N (xn | θ k, I) (10)

= (2π)−D/2 exp
�

−12(xn − θ k)
⊤(xn − θ k)
	

(11)

= (2π)−D/2 exp
�

−12x
⊤
n xn+ x

⊤
n θ k −

1
2θ
⊤
k θ k
	

, (12)

which is an exponential family distribution with base measure h(xn) = (2π)−D/2e−
1
2 x
⊤
n xn , sufficient

statistics t(xn) = xn, and log normalizer A(θ k) =
1
2θ
⊤
k θ k .

The conjugate prior is a Gaussian prior on the mean,

p(θ k | φ,ν) =N (ν−1φ,ν−1I)∝ exp
�

φ⊤θ k −
ν
2θ
⊤
k θ k
	

= exp
�

φ⊤θ k − νA(θ k)
	

. (13)

Note that φ sets the location and ν sets the precision (i.e. inverse variance).
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EM in the Gaussian mixture model
K-Means made hard assignments of data points to clusters in each iteration. What if we used soft
assignments instead?

Instead of assigning z⋆n to the closest cluster, we compute responsibilities for each cluster:

1. For each data point n and component k, set the responsibility to,

ωnk =
πkN (xn | θ k, I)
∑K
j=1πjN (xn | θ j, I)

. (14)

2. For each component k, set the new mean to

θ ⋆k =
1
Nk

N
∑

n=1

ωnkxn, (15)

where Nk =
∑N
n=1ωnk .

This is called the expectation maximization (EM) algorithm.
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What is EM doing?

Rather than maximizing the joint probability, EM is maximizing the marginal probability,

log p(X ,θ ) = log p(θ ) + log
∑

Z

p(X ,Z | θ ) (16)

= log p(θ ) + log
N
∏

n=1

∑

zn

p(xn, zn | θ ) (17)

= log p(θ ) +
N
∑

n=1

log
∑

zn

p(xn, zn | θ ) (18)

For discrete mixtures (with small enough K) we can evaluate the log marginal probability (with what
complexity?).

We can usually evaluate its gradient too, so we could just do gradient ascent to find θ ∗.

However, EM typically obtains faster convergence rates.
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What is EM doing? II

Idea: Obtain a lower bound on the marginal probability,

log p(X ,θ ) = log p(θ ) +
N
∑

n=1

log
∑

zn

p(xn, zn | θ ) (19)

= log p(θ ) +
N
∑

n=1

log
∑

zn

q(zn)
p(xn, zn | θ )
q(zn)

(20)

= log p(θ ) +
N
∑

n=1

logEq(zn)

�

p(xn, zn | θ )
q(zn)

�

(21)

where q(zn) is any distribution on zn ∈ {1, . . . ,K} such that q(zn) is absolutely continuous w.r.t.
p(xn, zn | θ ).
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Jensen’s Inequality
Jensen’s inequality states that,

f (Ep(y)[y])≥ Ep(y) [f (y)] (22)

if f is a concave function, with equality iff f is linear.

[Picture]
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What is EM doing? III
Applied to the log marginal probability, Jensen’s inequality yields,

log p(X ,θ ) = log p(θ ) +
N
∑

n=1

logEqn(zn)

�

p(xn, zn | θ )
qn(zn)

�

(23)

≥ log p(θ ) +
N
∑

n=1

Eqn(zn) [log p(xn, zn | θ )− log qn(zn)] (24)

≜L [θ ,q] (25)

where q= (q1, . . . ,qN) is a tuple of densities.

This is called the evidence lower bound, or ELBO for short.

It is a function of θ and a functional of q, since each qn is a probability density function.

We can think of EM as coordinate ascent on the ELBO.
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M-step: Maximizing the ELBO wrt θ (Gaussian case)
Suppose we fix q. Since each zn is a discrete latent variable, qn must be a probability mass function.
Let it be denoted by,

qn(zn) = [qn(zn = 1), . . . ,qn(zn = K)]⊤ = [ωn1, . . . ,ωnK]
⊤. (26)

(These will be the responsibilities from before.)

Now, recall our basic model, xn ∼N (θ zn , I), and assume a prior θ k ∼N (φ,ν−1I), Then,

L [θ ,q] = log p(θ ) +
N
∑

n=1

Eqn(zn)[log p(xn, zn | θ )] + c (27)

= log p(θ ) +
N
∑

n=1

K
∑

k=1

ωnk log p(xn, zn = k | θ ) + c (28)

=
K
∑

k=1

�

φ⊤θ k −
ν
2θ
⊤
k θ k
�

+
N
∑

n=1

K
∑

k=1

ωnk
�

x⊤n θ k −
1
2θ
⊤
k θ k
�

+ c (29)
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M-step: Maximizing the ELBO wrt θ (Gaussian case) II
Zooming in on just θ k ,

L [θ ,q] = φ⊤N,kθ k −
1
2νN,kθ

⊤
k θ k (30)

where

φN,k = φ+
N
∑

n=1

ωnkxn νN,k = ν+
N
∑

n=1

ωnk (31)

Taking derivatives and setting to zero yields,

θ ⋆k =
φN,k

νN,k
=
φ+
∑N
n=1ωnkxn

ν+
∑N
n=1ωnk

. (32)

In the improper uniform prior limit where φ→ 0 and ν→ 0, we recover the EM updates shown on
slide 6.
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E-step: Maximizing the ELBO wrt q (Gaussian case)
As a function of qn, for discrete Gaussian mixtures with identity covariance,

L [θ ,q] = Eqn(zn) [log p(xn, zn | θ )− log qn(zn)] + c (33)

=
K
∑

k=1

ωnk [logN (xn | θ k, I) + logπk − logωnk] + c (34)

where π= [π1, . . . ,πK]
⊤ is the vector of cluster probabilities.

We also have two constraints: ωnk ≥ 0 and
∑

kωnk = 1. Let’s ignore the non-negative constraint for
now (it will automatically be satisfied anyway) and write the Lagrangian with the simplex
constraint,

J (ωn,λ) =
K
∑

k=1

ωnk [logN (xn | θk, I) + logπk − logωnk]−λ

�

1−
K
∑

k=1

ωnk

�

(35)
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E-step: Maximizing the ELBO wrt q (Gaussian case) II
Taking the partial derivative wrt ωnk and setting to zero yields,

∂

∂ωnk
J (ωn,λ) = logN (xn | θ k, I) + logπk − logωnk − 1+λ= 0 (36)

⇒ logω⋆nk = logN (xn | θ k, I) + logπk +λ− 1 (37)

⇒ω⋆nk∝ πkN (xn | θ k, I) (38)

Enforcing the simplex constraint yields,

ω⋆nk =
πkN (xn | θ k, I)
∑K
j=1πjN (xn | θ j, I)

, (39)

just like on slide 6.

Note that

ω⋆nk∝ p(zn = k)p(xn | zn = k,θ ) = p(zn = k | xn,θ ) (40)
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The ELBO is tight after the E-step
Equivalently, qn equals the posterior, p(zn | xn,θ ). At that point, the ELBO simplifies to,

L [θ ,q] = log p(θ ) +
N
∑

n=1

Eqn(zn) [log p(xn, zn | θ )− log qn(zn)] (41)

= log p(θ ) +
N
∑

n=1

Ep(zn | xn,θ ) [log p(xn, zn | θ )− log p(zn | xn,θ )] (42)

= log p(θ ) +
N
∑

n=1

Ep(zn | xn,θ ) [log p(xn | θ )] (43)

= log p(θ ) +
N
∑

n=1

log p(xn | θ ) (44)

= log p(X ,θ ) (45)

In other words, after the E step, the bound is tight!
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EM as a minorize-maximize (MM) algorithm

Figure: Bishop, Figure 9.14: EM alternates between constructing a lower bound (minorizing) and finding new
parameters that maximize it.
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M-step: Maximizing the ELBO wrt θ (generic exp. fam.)
Now let’s consider the general Bayesian mixture with exponential family likelihoods and conjugate
priors. As a function of θ ,

L [θ ,q] = log p(θ ) +
N
∑

n=1

Eqn(zn)[log p(xn, zn | θ )] + c (46)

= log p(θ ) +
N
∑

n=1

K
∑

k=1

ωnk log p(xn, zn = k | θ ) + c (47)

=
K
∑

k=1

�

φ⊤θ k − νA(θ k)
�

+
N
∑

n=1

K
∑

k=1

ωnk
�

t(xn)
⊤θ k − A(θ k)
�

+ c (48)
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M-step: Maximizing the ELBO wrt θ (generic exp. fam.) II

Zooming in on just θ k ,

L [θ ,q] = φ⊤N,kθ k − νN,kA(θ k) (49)

where

φN,k = φ+
N
∑

n=1

ωnkt(xn) νN,k = ν+
N
∑

n=1

ωnk (50)

Taking derivatives and setting to zero yields,

θ ∗k = [∇A]−1
�

φN,k

νN,k

�

(51)
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M-step: Maximizing the ELBO wrt θ (generic exp. fam.) III
What is the gradient of the log normalizer? We have,

∇A(θ k) =∇θ k log
∫

h(x) exp
�

〈t(x),θ k)
	

dx (52)

=

∫

h(x) exp
�

〈t(x),θ k)
	

t(x) dx
∫

h(x) exp
�

〈t(xn),θ k)
	

dx
(53)

=

∫

h(x) exp
�

〈t(x),θ k)− A(θ k)
	

t(x) dx (54)

= Ep(x | θ k)[t(x)] (55)

Gradients of the log normalizer yield expected sufficient statistics!
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M-step: Maximizing the ELBO wrt θ (generic exp. fam.) IV
The gradient ∇A is a map from the set of valid natural parameters Ω (those for which the log
normalizer is finite) to the set of realizable mean parametersM ,

M =
�

µ ∈ RD : ∃p s.t. Ep[t(x)] = µ
	

(56)

An exponential family is minimal if its sufficient statistics are linearly independent.

Fact: The gradient mapping ∇A : Ω→M is one-to-one (and hence invertible) if and only if the
exponential family is minimal.

<Picture>
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M-step: Maximizing the ELBO wrt θ (generic exp. fam.) V
Thus, the generic M-step in eq. 51 amounts to finding the natural parameters θ ∗k that yield the
expected sufficient statistics φN,k/νN,k by inverting the gradient mapping.

Note: There is a longer and much more technical story about exponential families, maximum likelihood,
convex analysis, and conjugate duals that you can read about in [Wainwright et al., 2008, Ch. 3] if you are
interested.
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E-step: Maximizing the ELBO wrt q (generic exp. fam.)
In our first pass, we assumed qn was a finite pmf. More generally, qn will be a probability density
function, and optimizing over functions usually requires the calculus of variations. (Ugh!)

However, note that we can write the ELBO in a slightly different form,

L [θ ,q] = log p(θ ) +
N
∑

n=1

Eqn(zn) [log p(xn, zn | θ )− log qn(zn)] (57)

= log p(θ ) +
N
∑

n=1

Eqn(zn) [log p(zn | xn,θ ) + log p(xn | θ )− log qn(zn)] (58)

= log p(θ ) +
N
∑

n=1

[log p(xn | θ )− DKL (qn(zn) ∥ p(zn | xn,θ ))] (59)

= log p(X ,θ )−
N
∑

n=1

DKL (qn(zn) ∥ p(zn | xn,θ )) (60)

where DKL (· ∥ ·) denote the Kullback-Leibler divergence.
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Kullback-Leibler (KL) divergence
The KL divergence is defined as,

DKL (q(z) ∥ p(z)) =
∫

q(z) log
q(z)

p(z)
dz. (61)

It gives a notion of how similar two distributions are, but it is not a metric! (It is not symmetric, e.g.)
Still, it has some intuitive properties:

▶ It is non-negative, DKL (q(z) ∥ p(z))≥ 0.

▶ It equals zero iff the distributions are the same, DKL (q(z) ∥ p(z)) = 0 ⇐⇒ q(z) = p(z) almost
everywhere.
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E-step: Maximizing the ELBO wrt q (generic exp. fam.) II

Maximizing the ELBO wrt qn amounts to minimizing the KL divergence to the posterior
p(zn | xn,θ ),

L [θ ,q] = log p(θ ) +
N
∑

n=1

[log p(xn | θ )− DKL (qn(zn) ∥ p(zn | xn,θ ))] (62)

= −DKL (qn(zn) ∥ p(zn | xn,θ )) + c (63)

As we said, the KL is minimized when qn(zn) = p(zn | xn,θ ), so the optimal update is,

q⋆n(zn) = p(zn | xn,θ ), (64)

just like we found on slide 14.
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