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Where are we?

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression

Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction

Mixture Models EM & Variational Inference Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Gradient-based VI Image Generation
State Space Models Message Passing Segmenting Video Data

Bayesian Nonparametrics Fancy MCMC Modeling Neural Spike Trains
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PCA as a linear autoencoder
Recall from Lecture 5 that PCA could be motivated as a linear autoencoder trained to minimize
reconstruction error subject to having orthogonal weights.
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Deep autoencoders
Why restrict ourselves to linear autoencoders? The neural network community has used deep
autoencoders (a.k.a. autoassociative networks) for nonlinear dimensionality reduction [LeCun, 1987,
Bourlard and Kamp, 1988, Hinton and Zemel, 1993, Hinton and Salakhutdinov, 2006, Vincent et al.,
2010]. See also, Goodfellow et al. [2016, Ch. 14].

Figure: Figure from Hinton and Salakhutdinov [2006]

.

4 / 24



Variational autoencoders as deep, stochastic, regularized autoencoders
Kingma and Welling [2014] and Rezende et al. [2014] concurrently developed what we now call
variational autoencoders. The idea is to treat the hidden codes as random variables. As we will see,
VAEs can be viewed as deep generative models combined with amortized variational inference.

L (θ ,φ) = Eq(zn;xn,φ)[log p(xn | zn;θ )]− DKL (q(zn;xn,φ) ∥ p(zn)) (1)
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Outline

▶ The generative model

▶ Variational expectation maximization

▶ Amortized inference
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The generative model
VAEs start with a “deep” but conceptually simple generative model,

zn ∼N (0, I) (2)

xn ∼N (g(zn;θ ), I) (3)

where g : RH→ RD is a nonlinear mapping from zn ∈ RH to E[xn] ∈ RD, parameterized by θ .

We will assume g is a simple feedforward neural network (a.k.a. multilayer perceptron) of the
form,

g(z;θ ) = gL(gL−1(· · ·g1(z) · · · )) (4)

where each layer is a cascade of a linear mapping followed by an element-wise nonlinearity (except
for the last layer, perhaps). For example,

gℓ(uℓ) = relu(Wℓuℓ+ bℓ); relu(a) = max(0,a). (5)

The generative parameters consist of the weights and biases, θ = {Wℓ,bℓ}Lℓ=1.
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Two goals

The learning goal is to find the parameters that maximize the marginal probability of the data,

θ ⋆ = argmax
θ

p(X;θ ) (6)

= argmax
θ

N
∏

n=1

∫

p(xn | zn;θ )p(zn;θ )dzn (7)

The inference goal is to find the posterior distribution of latent variables,

p(zn | xn;θ ) =
p(xn | zn;θ )p(zn;θ )
∫

p(xn | z′n;θ )p(z′n;θ )dz′n
(8)

Both goals require an integral over zn, but that is intractable for deep generative models.
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The evidence lower bound (ELBO)
Idea: Use the ELBO to get a bound on the marginal probability and maximize that instead.

log p(X;θ ) =
N
∑

n=1

log p(xn;θ ) (9)

≥
N
∑

n=1

log p(xn;θ )− DKL (qn(zn;λn) ∥ p(zn | xn;θ )) (10)

=
N
∑

n=1

Eqn(zn) [log p(xn, zn;θ )− log qn(zn;λn)]
︸ ︷︷ ︸

“local ELBO”

(11)

≜
N
∑

n=1

Ln(λn,θ ) (12)

=L (λ,θ ) (13)

where λ= {λn}Nn=1. Here, I’ve written the ELBO as a sum of “local ELBOs”Ln.
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Optimal variational posterior
The ELBO is still maximized (and the bound is tight) when each qn is equal to the true posterior,

qn(zn;λn) = p(zn | xn,θ ). (14)

Question: The deep generative model above has a Gaussian prior on zn and a Gaussian likelihood for
xn given zn. Why isn’t the posterior Gaussian?
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Review: Gradient-based VI
Nevertheless, we can still constrain qn to be Gaussian and seek the best Gaussian approximation to the
posterior. This is sometimes called fixed-form, black-box, or automatic differentiation VI.

For example, let,

Q =
�

q : q(z;λ) =N
�

z | µ, diag(σ2)
�

for λ= (µ, logσ2) ∈ R2H
	

(15)

Then, for fixed parameters θ , the best qn in this variational family is,

q⋆n = argmin
qn∈Q

DKL (qn(zn;λn) ∥ p(zn | xn;θ )) (16)

= argmax
λn∈R2H

Ln(λn,θ ). (17)

We can maximize the ELBO with stochastic gradient ascent using unbiased estimates of the gradient,
Ò∇λnL (λn,θ ), e.g., using the score-function or the pathwise gradient estimators.
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Variational expectation-maximization (vEM)
Now we can introduce a new algorithm: variational expectation maximization.

Repeat until either the ELBO or the parameters converges:

1. M-step: Set θ ← argmaxθ L (λ,θ )

2. E-step: For n= 1, . . . ,N

▶ Set λn← argmaxλn∈ΛLn(λn,θ )

3. Compute (an estimate of) the ELBOL (λ,θ ).

Unfortunately, none of these steps will have closed form solutions, so we’ll have to use
approximations.
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Generic M-step with stochastic gradient ascent
▶ For exponential family mixture models and simple factor analysis, the M-steps had closed form.
For deep generative models, we need a more general approach.

▶ If the parameters are unconstrained and the ELBO is differentiable wrt θ , we can use stochastic
gradient ascent.

θ ← θ +α∇θL (q,θ ) = θ +α
N
∑

n=1

Eq(zn;λn) [∇θ log p(xn, zn;θ )] (18)

▶ Note that the expected gradient wrt θ can be computed using ordinary Monte Carlo — no fancy
gradient estimators necessary!

▶ Likewise, we can use mini-batches of data to approximate the sum over data points.
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The variational E-step
▶ AssumeQ is the family of Gaussian distributions with diagonal covariance:
qn(zn) =N (zn | µn, diag(σ2n)), with variational parameters λn = (µn, logσ

2
n) ∈ R

2H .

▶ To perform SGD, we need an unbiased estimate of the gradient of the local ELBO, but

∇λnLn(λn,θ ) =∇λnEq(zn;λn) [log p(xn, zn;θ )− log q(zn;λn)] (19)

̸= Eq(zn;λn)
�

∇λn (log p(xn, zn;θ )− log q(zn;λn))
�

. (20)

▶ Last lecture we introduced the score-function and pathwise gradient estimators to tackle this
problem. For example,

∇λnLn(λn,θ ) =∇λnEq(zn;λn) [log p(xn, zn;θ )− log q(zn;λn)] (21)

= Eεn∼N (0,I)

�

∇λn (log p(xn, r(λn,εn);θ )− log q(r(λn,εn);λn))
�

(22)

where r(λn,εn) = µn+σnεn.
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Variational expectation-maximization (vEM)
Now we can add some detail to our variational expectation maximization algorithm.

Repeat until either the ELBO or the parameters converges:

1. M-step: Set θ ← argmaxθ L (q,θ ) [with stochastic gradient ascent on the ELBO]

2. E-step: For n= 1, . . . ,N

▶ Set qn← argmaxqn∈QLn(qn,θ )

▶ Set λn← argmaxλnLn(λn,θ )
[with stochastic gradient ascent on the local ELBO using either the score function estimator or the
pathwise gradient estimator]

3. Compute the ELBOL (q,θ ). [with Monte Carlo]
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Amortized inference with recognition networks
▶ Note that vEM involves a costly E-step to find the variational parameters λn for each data point.
This could involve many steps of stochastic gradient descent inside just the E-step!

▶ With a finite computational budget, we might be better off doing more gradient steps on θ and
fewer on the local variational parameters.

▶ Note that the optimal variational parameters are just a function of the data point and the model
parameters,

λ⋆n = argmin
λn

DKL (q(zn;λn) ∥ p(zn | xn,θ ))≜ f ⋆(xn,θ ). (23)

for some implicit and generally nonlinear function f ⋆.
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Amortized inference with recognition networks II
▶ VAEs learn an approximation to f ⋆(xn,θ ) with an inference network, a.k.a. recognition network or
encoder.

▶ The inference network is (yet another) neural network that takes in a data point xn and outputs
variational parameters zn,

λn ≈ f (xn,φ), (24)

where φ are the weights of the network.

▶ The advantage is that the inference network is very fast; in the E-step, we simply need to pass a
data point through the network to obtain the variational parameters.

▶ The disadvantage is the output will not minimize the KL divergence. However, in practice we
might tolerate a worse variational posterior and a weaker lower bound if it buys us more updates
of θ .
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Amortization and approximation gaps

Cremer et al. [2018] consider the relative effects of the amortization gap and the approximation gap
on variational EM.
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Linear VAEs
Question: What does the optimal encoder network look like for a VAE with a linear generative
model,

zn ∼N (0, I) (25)

xn ∼N (Wzn+ b, I) (26)
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Putting it all together
Logically, I find it helpful to distinguish between the E and M steps, but with recognition networks and
stochastic gradient ascent, the line is blurred.

The final algorithm looks like this. Repeat until either the ELBO or the parameters converges:

1. Sample data point n∼ Unif(1, . . . ,N). [Or a minibatch of data points.]

2. Estimate the local ELBOLn(φ,θ ) with Monte Carlo. [Note: it is a function of φ instead of λn.]

3. Compute unbiased Monte Carlo estimates of the gradients Ò∇θLn(φ,θ ) and Ò∇φLn(φ,θ ).
[The latter requires the score function or pathwise gradient estimator.]

4. Set

θ ← θ +αiÒ∇θLn(φ,θ ) (27)

φ← φ+αiÒ∇φLn(φ,θ ) (28)

with step size αi decreasing over iterations i according to a valid schedule.
21 / 24



VAEs from an autoencoder perspective

From https://towardsdatascience.com/
intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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