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Where are we?

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression

Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction

Mixture Models EM & Variational Inference Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Gradient-based VI Image Generation
State Space Models Message Passing Segmenting Video Data

Bayesian Nonparametrics Fancy MCMC Modeling Neural Spike Trains
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Taking stock of posterior inference algorithms thus far
We’ve covered a number of posterior inference algorithms thus far:

▶ Exact inference: for simple models (e.g. conjugate exponential family models) where the
posterior is available in closed form.

▶ Gibbs sampling: an MCMC algorithm that iteratively samples conditional distributions for one
variable at a time. This works well for conditionally conjugate models with weak correlations.

▶ Metropolis-Hastings: a very general MCMC algorithm to sample the posterior, and the building
block for many other MCMC techniques.

▶ Hamiltonian Monte Carlo: an MCMC algorithm to draw samples from the posterior by leveraging
gradients of the log joint probability. This works well for more general posteriors over continuous
variables.

▶ Coordinate Ascent Variational Inference: Minimizes the KL divergence between an approximate
distribution (e.g., the a mean-field distribution) and the true posterior. Yields biased estimates,
but potentially lower variance for fixed computational budget.
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Coordinate Ascent Variational Inference (CAVI)

▶ What parametric family should we use?

▶ The mean-field family.

▶ How should we measure closeness?

▶ The Kullback-Leibler (KL) divergence.

▶ How do we find the closest distribution in that family?

▶ Coordinate ascent, assuming we have a conditionally conjugate model.
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Gradient-based Variational Inference

▶ What parametric family should we use?

▶ Pretty much any q, as long as we can sample from it and evaluate the log density.

▶ How should we measure closeness?

▶ The Kullback-Leibler (KL) divergence.

▶ How do we find the closest distribution in that family?

▶ Stochastic gradient ascent using Monte Carlo estimates of the ELBO and its gradient.

Gradient-based VI methods go under a few different names: black-box VI (BBVI), automatic
differentiation VI (ADVI), fixed-form VI...
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Setup
Let θ denote parameters to be inferred and p(θ | X) the true posterior to be approximated.

LetQ = {q(θ ;λ) : λ ∈ Λ} denote the variational family — a parametric family of distributions
indexed by λ that we will optimize over in variational inference.

The optimal approximation is,

q⋆(θ ;λ) = argmin
q∈Q

DKL (q(θ ;λ) ∥ p(θ | X)) (1)

or equivalently

λ⋆ = argmin
λ∈Λ

DKL (q(θ ;λ) ∥ p(θ | X)) (2)

= argmax
λ∈Λ

L (λ) (3)

whereL (λ) denotes the evidence lower bound (ELBO),

L (λ) = Eq(θ ;λ) [log p(X ,θ )− log q(θ ;λ)] (4)
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Stochastic gradient ascent on the local ELBO
▶ Idea: Assume the variational parameters Λ are unconstrained (i.e., Λ= RD), then perform
(stochastic) gradient ascent.

▶ If the parameters are unconstrained and the ELBO is differentiable, we can use gradient ascent.
Repeat:

λ← λ+α∇λL (λ) (5)

with step size α. Typically, you decrease the step size over iterations so that α1 ≥ α2 ≥ . . .

▶ More generally, we can use stochastic gradient ascent with an estimate of the gradient, Ò∇λL (λ),
as long as it is unbiased,

E[Ò∇λL (λ)] =∇λL (λ). (6)
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Monte Carlo gradient estimation
No problem! We’ll just use ordinary Monte Carlo to estimate the gradient. But we run into a
problem...

∇λL (λ) =∇λEq(θ ;λ) [log p(x,θ )− log q(θ ;λ)] (7)

̸= Eq(θ ;λ) [∇λ (log p(x,θ )− log q(θ ;λ))] . (8)

Problem: Why can’t we simply bring the gradient inside the expectation?
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The “score function” gradient estimator I
The basic problem is that the variational parameters λ determine the distribution we are taking an
expectation under. However, there are a few ways to obtain unbiased estimates of the gradient.

One approach is called the score function gradient estimator or the REINFORCE estimator [Williams,
1992]. It is based on the following identity,

∇λ log q(θ ;λ) =
∇λq(θ ;λ)
q(θ ;λ)

(9)

where the l.h.s. is called the score function of distribution q.
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The “score function” gradient estimator II
We can use this identity to obtain an unbiased estimate of the gradient of an expectation,

∇λEq(θ ;λ) [h(θ )] =∇λ

∫

q(θ ;λ)h(θ )dθ (10)

=

∫

(∇λq(θ ;λ))h(θ )dθ (11)

=

∫

(q(θ ;λ)∇λ log q(θ ;λ))h(θ )dθ (12)

= Eq(θ ;λ) [(∇λ log q(θ ;λ))h(θ )] (13)

From this identity, we can obtain an unbiased Monte Carlo estimate,

Ò∇λEq(θ ;λ)[h(θ )] =
1
M

M
∑

m=1

�

∇λ log q(θ (m);λ)h(θ (m))
�

; θ (m)
iid∼ q(θ ;λ) (14)
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The “score function” gradient estimator III
Notes:

1. The exchange of the gradient and the integral is allowed as long as the dominated convergence
theorem holds, and it usually does for ML applications.

2. The score function gradient estimator is broadly applicable; e.g. it works for discrete and
continuous latent variables θ . We just need the log density to be continuously differentiable wrt
λ and to be able to sample from q.

3. If h is a function of both θ and λ, you need to apply the product rule. This gives another term,

∇λEq(θ ;λ) [h(θ ,λ)] = Eq(θ ;λ) [(∇λ log q(θ ;λ))h(θ ,λ)] +Eq(θ ;λ) [∇λh(θ ,λ)] (15)
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Control variates
Though broadly applicable, the score function estimator is often too high variance to be useful. This
problem can often be mitigated with control variates.

Recall that the expectation of the score is zero,

Eq(θ ;λ) [∇λ log q(θ ;λ)] =
∫

q(θ ;λ)∇λ log q(θ ;λ)dθ (16)

=

∫

∇λq(θ ;λ)dθ (17)

=∇λ

∫

q(θ ;λ)dθ (18)

=∇λ1= 0. (19)

Thus, we can subtract off any baseline from the function of interest without changing the expectation,
but potentially reducing variance substantially,

Eq(θ ;λ) [h(θ )∇λ log q(θ ;λ)] = Eq(θ ;λ) [(h(θ )− b)∇λ log q(θ ;λ)] . (20)
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The pathwise gradient estimator
▶ For example, suppose q(θ ;λ) =N (θ ;µ, diag(σ2)), where λ= (µ, logσ2) are the
(unconstrained) variational parameters. Then,

θ ∼ q(θ ;λ) ⇐⇒ θ = r(λ,ε), ε∼N (0, I) (21)

where r(λ,ε) = µ+σε is a reparameterization of θ in terms of parameters λ and “noise” ε.

▶ We can use the law of the unconscious statistician to rewrite the expectations as,

Eq(θ ;λ) [h(θ ,λ)] = Eε∼N (0,I) [h(r(λ,ε),λ)] (22)

The distribution that the expectation is taken under no longer depends on the parameters λ, so
we can simply take the gradient inside the expectation,

∇λEq(θ ;λ) [h(θ ,λ)] = Eε∼N (0,I) [∇λh(r(λ,ε),λ)] (23)

▶ Now we can use Monte Carlo to obtain an unbiased estimate of the final expectation.

Ò∇λEq(θ ;λ) [h(θ ,λ)] =
1
M

M
∑

m=1

∇λh(r(λ,εm),λ); εm
iid∼N (0, I) (24)
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Exercises
Exercise: Come up with a reparameterization of an exponential distribution,
q(θ ;λ) = Exp(θ ;λ)

Question: Can you use the pathwise gradient estimator for a Bernoulli posterior,
q(θ ;λ) = Bern(θ ;λ)?
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Empirically comparing estimator variances

Empirical comparisons from Mohamed et al. [2020]. 15 / 19



Working with mini-batches of data
Often, the ELBO involves a sum over data points,

L (λ) = Eq[log p(X ,θ )− log q(θ ;λ] (25)

= Eq(θ ;λ)

�

N
∑

n=1

log p(xn | θ ) + log p(θ )− log q(θ ;λ)

�

(26)

=
N
∑

n=1

Eq(θ ;λ)[log p(xn | θ )]− DKL (q(θ ;λ) ∥ p(θ )) (27)

We can view the sum as an “expectation” over data indices,

N
∑

n=1

Eq(θ ;λ)[log p(xn | θ )] = NEn∼Unif(1,N)[Eq(θ ;λ)[log p(xn | θ )]], (28)

and we can use Monte Carlo to approximate both expectations! (The same is true for Monte Carlo
estimators of the gradient of the ELBO.)
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SGD convergence and extensions
When does SGD work? This is a well studied problem in stochastic optimization [Bottou et al., 1998,
Robbins and Siegmund, 1971].

Under relatively mild conditions, SGD converges to a local minimum if the step sizes obey the
Robbins-Monro condtions,

∞
∑

i=0

αi =∞ and
∞
∑

i=0

α2i <∞ (29)

There have been dozens of extensions to basic SGD including,

▶ SGD with momentum

▶ AdaGrad [Duchi et al., 2011]

▶ RMSProp

▶ Adam [Kingma and Ba, 2014]
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