Bayesian Mixture Models, MAP Estimation, and K-Means
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Outline

» Model: Bayesian mixture models

» Algorithm: MAP Estimation / K-Means
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Where are we?

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression
Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction
- MixtureModels  EM & Variational Inference ~ Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Black Box, Amortized VI Image Generation
State Space Models Message Passing Segmenting Video Data

Bayesian Nonparametrics Fancy MCMC Modeling Neural Spike Trains
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Motivation: Clustering scRNA-seq data

Fig. 3: Clustering methods for scRNA-seq.
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From Kiselev et al. [2019]
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Motivation: Foreground/background segmentation

https://ai.stanford.edu/ " syyeung/cvweb/tutorial3.html
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https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html

Motivation: Density estimation

Bradypus Variegatus Microryzomys Minutus

https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html .


https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html

Notation

Constants: Let

» N denote the number of data points.

» K denote the number of mixture components (i.e. clusters)
Data: Let

» x, € RP denote the n-th data point.
Latent Variables: Let

» z € {1,...,K} denote the assignment of the n-th data point.
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Notation Il

Parameters: Let
» 0, denote the natural parameters of component k
» 1 € Ayx_q1 denote the component proportions (i.e. probabilities).

Hyperparameters: Let

» ¢, v denote hyperparameters of the prior on 6

> ac R’jr denote the concentration of the prior on proportions.
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Generative Model

1. Sample the proportions from a Dirichlet prior:

7 ~ Dir(a) (1)
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The beta distribution
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Figure: The beta distribution over 7t € [0, 1] is a special case of the Dirichlet distribution.
https://en.wikipedia.org/wiki/Beta_distribution
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https://en.wikipedia.org/wiki/Beta_distribution

The Dirichlet distribution

If the beta distribution generates weighted coins, the Dirichlet generates weighted dice.
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Figure: The Dirichlet distribution over T € A,; i.e. distributions over K = 3 outcomes. From
https://en.wikipedia.org/wiki/Dirichlet_distribution 11/21


https://en.wikipedia.org/wiki/Dirichlet_distribution

Generative Model

1. Sample the proportions from a Dirichlet prior:

7t ~ Dir(a)

2. Sample the parameters for each component:

0, <p0]|¢,v) fork=1,...,K (3)

3. Sample the assignment of each data point:

Znifi\qﬂ: forn=1,...,N (4)

4. Sample data points given their assignments:
x,~p(x|0,) forn=1,...,N (5)
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Joint distribution

» This generative model corresponds to the following factorization of the joint distribution,

K N
(A0 Az x )Yy [ b, v @) =p( | @) | [p(04] 6, v) | [ oz | 7)p(x, | 2, {0, 1_,)
k=1 n=1
(6)
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Joint distribution
» This generative model corresponds to the following factorization of the joint distribution,
K N
(A0 Az x )Yy [ b, v @) =p( | @) | [p(04] 6, v) | [ oz | 7)p(x, | 2, {0, 1_,)
k=1 n=1
(6)
» Equivalently,

p(1, {0}y, {20 %)y | 9, v, @) =

p(rla)] |p(0c1¢.v) ] ] |IPr(z =kl 7)p(x, 1 017 (7)

n=1 k=1
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Joint distribution

» This generative model corresponds to the following factorization of the joint distribution,

K N
(A0 Az x )Yy [ b, v @) =p(n | )| [p(041 6, v) | [ oz | m)p(x, | 2, {01,
k=1 n=1
(6)
» Equivalently,

(ﬂ' {Ok}k 1> (Znaxn)},l;/zl | ¢: vaa) -
K N K
p(rla)| [p0c10.v) ] || [IPrz, =1 m)p(x, 1 0,17 )
k=1

n=1 k=1

» Substituting in the assumed forms
N K

K
p(m, A0, {(zx )Y | ¢, v, @) =Dir(z [ ) | [p(041 6, v) | || |[mepx, | 0,1
k=1 n=1 k=1
$)a1



Exponential family mixture models

What about p(x | 8,) and p(0, | ¢, v)?

Let’s assume an exponential family likelihood,

p(x, ;) = h(x,) exp {{t(x,), 0
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The hyperparmeters ¢ are pseudo-observations of the sufficient statistics (like statistics from fake
data points) and v is a pseudo-count (like the number of fake data points).

Note that the product of prior and likelihood remains in the same family as the prior. That’'s why we

call it conjugate.
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Example: Gaussian mixture model

Assume the conditional distribution of x,, is a Gaussian with mean 8, € R” and identity
covariance,

p(x, | 0y)=A(x,]01) (11)
= (2m) P exp{—3(x,— 0,) " (x,— 0,)} (12)
= 271')_0/2 exp {—%XIXH—I—XIO,(—%OZO,(}, (13)

— —_—— =P\ g —

() (tln,), B0y Al

1T
which is an exponential family distribution with base meastire h(x,) = (27)™2/2e2%*"_ sufficient
statistics t(x,) = x,,, and log normalizer A(0,) = %HkTOk.

The conjugate prior is a Gaussian prior on the mean,

p(0c1 @, v)=H(vip, v )ocexp{d'0,—20,0,}=exp{d'0,—vA0,)}. (14
Note that ¢ sets the location and v sets the precision (i.e. inverse variance).
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Outline

> Model: Bayesian mixture models

» Algorithm: MAP Estimation / K-Means

16/21



MAP inference via coordinate ascent
Let’s first consider maximum a posteriori (MAP) inference.

Idea: find the mode of p(, {Ok}le, {zn}g:1 | {x,,,}ﬁzl, ¢, v, a) by coordinate ascent.

For now, set ¢ = 0, and v = 0 so that the prior is an (improper) uniform distribution. Then
maximizing the posterior is equivalent to maximizing the likelihood.

While we're simplifying, let’s even fix T = %1/«
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Coordinate ascent in the Gaussian mixture model

For the Gaussian mixture model (with uniform prior and T = %1,(), coordinate ascent amounts to:

1. Foreachn=1,...,N, fix all variables but z, and find z; that maximizes

P, {0 —ys {20 Xn) ooy | @, v, @) O (X, | 20, {0, }iy) = A (X, 1 0,,,1)  (15)

The cluster assignment that maximizes the likelihood is the one with the closest mean to x,,
so set

z- = argmin |[x, — 6 ,[]. (16)
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Coordinate ascent in the Gaussian mixture model Il

2 Foreach k=1,...,K, fix all variables but 8, and find 8, that maximizes,
N
p(m, 0.1 (20, ) Yy | 6, v,0) o< | [o(x, | 6,)He= (17)
n=1

N
o< exp {Z]I[zn =K (x) 0,— %0[0,()} (18)

n=1

Taking the derivative of the log and setting to zero yields,
1K
0; =— > [z, = Klx,, (19)
N, —

p— N p— “Tie [ahth
Where Nk anl ]:[[Zn k]. T(e"..-\x)d \"‘.-\-“:E "j[ ]
This is the k-means algorithm!
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EM in the Gaussian mixture model

K-Means made hard assignments of data points to clusters in each iteration. What if we used soft
assignments instead?

Instead of assigning z” to the closest cluster, we compute responsibilities for each cluster:

1. For each data point n and component k, set the responsibility to,

0,1
W, = ﬂ:kJV(Xn | k> ) . (20)

Zf:l 7-Cjc/‘/(xn | Hj: I)

2. For each component k, set the new mean to
0,=— ) wuXp, (21)

N
where Ny = >" . @y

This is called the expectation maximization (EM) algorithm.
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