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Where are we?

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression

Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction

Mixture Models EM & Variational Inference Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Black Box, Amortized VI Image Generation
State Space Models Message Passing Segmenting Video Data

Bayesian Nonparametrics Fancy MCMC Modeling Neural Spike Trains
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Review: Bayesian Mixture Model
1. Sample the proportions from a Dirichlet prior:

π∼ Dir(α) (1)

2. Sample the parameters (e.g., cluster means) for each component:

µk
iid∼ p(µ | φ,ν) for k = 1, . . . ,K (2)

3. Sample the assignment of each data point:

zn
iid∼ π for n= 1, . . . ,N (3)

4. Sample data points given their assignments:

xn ∼ p(x | µzn) for n= 1, . . . ,N (4)
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Review: Exponential family mixture models

What about p(x | µk) and p(µk | φ,ν)?

Let’s assume an exponential family likelihood,

p(x | µk) = h(xn) exp
�

〈t(xn),µk〉 − A(µk)
	

. (5)

Then assume a conjugate prior,

p(µk | φ,ν)∝ exp
�

〈φ,µk〉 − νA(µk)
	

. (6)

The hyperparmeters φ are pseudo-observations of the sufficient statistics (like statistics from fake
data points) and ν is a pseudo-count (like the number of fake data points).

Note that the product of prior and likelihood remains in the same family as the prior. That’s why we
call it conjugate.
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Review: Gaussian mixture model

Assume the conditional distribution of xn is a Gaussian with mean µk ∈ RD and identity
covariance,

p(xn | µk) =N (xn | µk, I) (7)

= (2π)−D/2 exp
�

−12(xn −µk)
⊤(xn −µk)
	

(8)

= (2π)−D/2 exp
�

−12x
⊤
n xn+ x

⊤
n µk −

1
2µ
⊤
k µk
	

, (9)

which is an exponential family distribution with base measure h(xn) = (2π)−D/2e−
1
2 x
⊤
n xn , sufficient

statistics t(xn) = xn, and log normalizer A(µk) =
1
2µ
⊤
k µk .

The conjugate prior is a Gaussian prior on the mean,

p(µk | φ,ν) =N (ν−1φ,ν−1I)∝ exp
�

φ⊤µk −
ν
2µ
⊤
k µk
	

= exp
�

φ⊤µk − νA(µk)
	

. (10)

Note that φ sets the location and ν sets the precision (i.e. inverse variance).
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EM in the Gaussian mixture model

EM was like K-Means but with soft assignments.

1. For each data point n and component k, set the responsibility to,

ωnk =
πkN (xn | µk, I)
∑K
j=1πjN (xn | µj, I)

. (11)

2. For each component k, set the new mean to

µ⋆k =
1
Nk

N
∑

n=1

ωnkxn, (12)

where Nk =
∑N
n=1ωnk .

This gives us a point estimate of µk . What if we need a full posterior?
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Taking stock of posterior inference algorithms thus far

We’ve covered a number of posterior inference algorithms thus far:

▶ Exact inference: for simple models (e.g. conjugate exponential family models) where the
posterior is available in closed form.

▶ Gibbs sampling: an MCMC algorithm that iteratively samples conditional distributions for one
variable at a time. This works well for conditionally conjugate models with weak correlations.

▶ Metropolis-Hastings: a very general MCMC algorithm to sample the posterior, and the building
block for many other MCMC techniques.

▶ Hamiltonian Monte Carlo: an MCMC algorithm to draw samples from the posterior by leveraging
gradients of the log joint probability. This works well for more general posteriors over continuous
variables.

Question: which of these algorithms could we use for the Gaussian mixture model?
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Variational inference
MCMC methods are asymptotically unbiased (though for finite samples there is a transient bias that
shrinks as O(S−1). The real issue is variance: it only shrinks as O(S−1/2).

Motivation: With finite computation, can we get better posterior estimates by trading asymptotic bias
for smaller variance?

Idea: approximate the posterior by with a simple, parametric form (though not strictly a Gaussian on
the mode!). Optimize to find the approximation that is as “close” as possible to the posterior.
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Notation

This notation could be a bit confusing. Let,

▶ θ ∈ RJ denote all of latent variables and parameters we wish to infer.

▶ In the GMM, θ = (π, {µk}Kk=1, {zn}
N
n=1).

In contrast to last week, here we will obtain a full posterior over parameters and latent
variables.

Likewise, let

▶ p(θ | x) denote the true posterior distribution we want to approximate.

▶ q(θ ;λ) denote a parametric variational approximation to the posterior where...

▶ λ denotes the variational parameters that we will optimize.

▶ D(q∥p) denote a divergence measure that takes in two distributions q and p and returns a
measure of how similar they are.
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A view of variational inference
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Key questions

▶ What parametric family should we use?

▶ This lecture: the mean-field family.

▶ How should we measure closeness?

▶ This lecture: the Kullback-Leibler (KL) divergence.

▶ How do we find the closest distribution in that family?

▶ This lecture: coordinate ascent.

These choices are what Blei et al. [2017] call coordinate ascent variational inference CAVI).
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The mean-field family

The mean-field family gets its name from statistical mechanics. It treats each latent variable and
parameter as independent with its own variational parameter,

q(θ ;λ) =
J
∏

j=1

q(θj;λj). (13)

For example, in the GMM, the mean field approximation treats the cluster proportions, means, and
assignments as independent,

q(θ ;λ) = q(π; eα)
K
∏

k=1

q(µk;eνk, eφk)
N
∏

n=1

q(zn; eωn) (14)

for some functional forms and parameterizations that we will specify shortly.

Question: Does the true posterior factor in this way? If not, why not?
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The Kullback-Leibler (KL) divergence

The KL divergence is a measure of closeness between two distributions. It is defined as,

DKL (q(θ ;λ) ∥ p(θ | x) = Eq(θ ;λ)

�

log
q(θ ;λ)

p(θ | x)

�

(15)

= Eq(θ ;λ) [log q(θ ;λ)]−Eq(θ ;λ) [log p(θ | x)] (16)

It has some nice properties:

▶ It is non-negative.

▶ It is zero iff q(θ ;λ)≡ p(θ | x).

▶ It is defined in terms of expectations wrt q.

But it’s also a bit weird...

▶ It’s asymmetric (DKL (q ∥ p) ̸= DKL (p ∥ q)).
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The evidence lower bound (ELBO) from another angle
More concerning, the KL divergence involves the posterior p(θ | x), which we cannot compute!

But notice that...

DKL (q(θ ;λ) ∥ p(θ | x) = Eq(θ ;λ) [log q(θ ;λ)]−Eq(θ ;λ) [log p(θ | x)] (17)

= Eq(θ ;λ) [log q(θ ;λ)]−Eq(θ ;λ) [log p(θ ,x)] +Eq(θ ;λ) [log p(x)] (18)

= Eq(θ ;λ) [log q(θ ;λ)]−Eq(θ ;λ) [log p(θ ,x)]
︸ ︷︷ ︸

negative ELBO,−L (λ)

+log p(x)
︸ ︷︷ ︸

evidence

(19)

The first term involves the log joint, which we can compute, and the last term is independent of the
variational parameters!

Rearranging, we see thatL (λ) is a lower bound on the marginal likelihood, aka the evidence,

L (λ) = log p(x)− DKL (q(θ ;λ) ∥ p(θ | x)≤ log p(x). (20)

That’s why we call it the evidence lower bound (ELBO).
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Viewer discretion advised...

https://www.youtube.com/watch?v=jugUBL4rEIM
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Optimizing the ELBO with coordinate ascent
We want to find the variational parameters λ that minimize the KL divergence or, equivalently,
maximize the ELBO.

For the mean-field family, we can typically do this via coordinate ascent.

Consider optimizing the parameters for one factor q(θj;λj). As a function of λj, the ELBO is,

L (λ) = Eq(θj;λj)
�

Eq(θ¬j;λ¬j) [log p(θ ,x)]
�

−Eq(θj;λj)[log q(θj;λj)] + c (21)

= Eq(θj;λj)
�

Eq(θ¬j;λ¬j)
�

log p(θj | θ¬j ,x)
��

−Eq(θj;λj)[log q(θj;λj)] + c
′ (22)

= −DKL

�

q(θj;λj) ∥ p̃(θj)
�

+ c′′ (23)

where

p̃(θj)∝ exp
¦

Eq(θ¬j;λ¬j)
�

log p(θj | θ¬j,x)
�

©

(24)

The ELBO is maximized wrt λj when this KL is minimized; i.e. when q(θj;λj) = p̃(θj), the
exponentiated expected log conditional probability, holding all other factors fixed.
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Coordinate Ascent Variational Inference for GMMs

Let’s derive the CAVI updates for a Gaussian mixture model (GMM).

Assume a mean field family, and assume each factor is of the same exponential family form as the
corresponding prior:

q(zn; eωn) = Cat(zn; eωn) (25)

q(π; eα) = Dir(π; eα) (26)

q(µk;eνk, eφk) =N (µk;eν
−1
k
eφk,eν

−1
k I). (27)

so eωn ∈∆K , eα ∈ RK+, eνk ∈ R+ and eφk ∈ R
D constitute the set of variational parameters, λ.

(Here we’ve assumed the functional form of the variational posteriors, but for conjugate exponential
family models, it turns out the optimal variational factors are of the same form as the prior
anyway!)
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CAVI updates for the cluster assignments

Recall that the optimal CAVI updates are of the form in Eq. 24.

For the cluster assignments, the CAVI update is,

log q(zn = k; eωn) = Eq(π)q(µk) [logπk + logN (xn | µk, I)] + c (28)

= Eq(πn) [logπk] +Eq(µk) [logN (xn | µk, I)] + c (29)

= logCat(zn = k; eωn) (30)

⇒ log eωn,k = Eq(π) [logπk] +Eq(µk) [logN (xn | µk, I)] + c (31)

Since eωn must sum to one,

eωn,k =
exp
�

Eq(π) [logπk] +Eq(µk) [logN (xn | µk, I)]
	

∑K
j=1 exp
¦

Eq(π)
�

logπj
�

+Eq(µj)
�

logN (xn | µj, I)
�

© (32)
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Expectations under Dirichlet distributions

The variational factor for π is a Dirichlet distribution.

The necessary expectation has a closed form expression:

EDir(π;α)[logπk] =ψ(αk)−ψ
�

K
∑

j=1

αj

�

(33)

where ψ(·) is the digamma function, the logarithmic derivative of the gamma function.
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Gaussian cross-entropy
The updates for q(zn) also require a Gaussian cross entropy,

EN (µ;µ0,Σ0)[logN (x | µ,Σ)] (34)

Exercise: Derive an expression for the Gaussian cross entropy.
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CAVI updates for the cluster proportions

The CAVI update is„

log q(π; eα) = logDir(π;α) +
N
∑

n=1

K
∑

k=1

Eq(zn)[I[zn = k]] logπk + c (35)

=
K
∑

k=1

�

αk − 1+
N
∑

n=1

eωn,k

�

logπk (36)

= logDir(π; eα) (37)

where

eαk = αk +
N
∑

n=1

eωn,k (38)
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CAVI updates for the cluster means
The cluster mean updates are similar

log q(µk;eνk, eφk) = logN (µk;ν
−1φ,ν−1I) +

N
∑

n=1

Eq(zn)[I[zn = k]] logN (xn | µk, I) + c (39)

= 〈φ,µk〉+ νA(µk) +
N
∑

n=1

Eq(zn)[I[zn = k]] (〈xn,µk〉 − A(µk)) + c (40)

= logN (µk | eν
−1
k
eφk,eν

−1
k I) (41)

where

eφk = φ+
N
∑

n=1

eωn,kxn (42)

eνk = ν+
N
∑

n=1

eωn,k (43)
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Calculating the ELBO

Dropping hyperparameters and variational parameters, the ELBO is,

L (λ) = Eq[log p({xn, zn}Nn=1, {µk}
K
k=1,π)]−Eq[log q({zn}

N
n=1, {µk}

K
k=1,π)] (44)

Thanks to the factorization of the joint distribution and the variational posterior, this simplifies,

L (λ) =
N
∑

n=1

K
∑

k=1

Eq(zn)[I[zn = k]]Eq(µk)[logN (xn | µk, I)]

−
N
∑

n=1

Eq(zn)[log q(zn)]−
K
∑

k=1

DKL (q(µk) ∥ p(µk))− DKL (q(π) ∥ p(π)) (45)

These terms are all easy to compute! They’re just cross-entropies and KL divergences for exponential
family distributions.
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Scaling up to very large datasets

There are a few tricks to make CAVI scale to massive datasets.

You can process data points in rolling fashion since we just need sums of expected sufficient
statistics.

Likewise, you can use stochastic variational inference [Hoffman et al., 2013] to work with mini-batches
of documents to get Monte Carlo estimates of the ELBO, since it includes a big sum over data
points.

SVI can be seen as stochastic gradient ascent on the ELBO using natural gradients Amari [1998]; i.e.,
gradient descent preconditioned with the Fisher information matrix.
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