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Last Time...

… Course Overview

… Bayes’ Rule

… Normal with unknown mean (normal prior)

… Normal with unknown precision (�2 prior)

… Normal with unknown variance (��2 prior)

… Normal with unknown mean and variance (NIX prior)

… Posterior marginals (Student’s t distribution)
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Today...

… Multivariate normal (MVN) distribution

… Generative story

… Marginal distributions

… Conditional distributions

… Linear Gaussian models

… The Wishart and inverse Wishart distributions

… Bayesian estimation with a normal-inverse-Wishart (NIW) prior

… Posterior marginals (multivariate Student’s t distribution)

Reading: Bishop, Ch 2.3. See also: Murphy, Ch 2.3 and 3.2.4.
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Generative Story
Start with a vector of standard normal random variates, z = [z1, . . . , zD]> where zd

iid⇠N (0,1).

This is a D-dimensional random variable, but not a very interesting one. All the coordinates are
independent! The joint density is,

p(z) =
DY

d=1

N (zd | 0,1) (1)

=
DY

d=1

1p
2⇡
e�

1
2 z
2
d (2)

= (2⇡)�
D
2 exp

®
�1
2

DX

d=1

z2d

´
(3)

= (2⇡)�
D
2 exp
ß
�1
2
z>z
™

(4)

¨N (z | 0, I). (5)

Question: What do the contours of this joint density look like in D= 2 dimensions? 4 / 32



Spherical Gaussian Density

Figure: Contours of the pdf of a spherical Gaussian distribution,N (z | 0, I).
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Generative Story II
We can obtain more interesting joint distributions by transforming this random vector.

For example, let U be an orthogonal D⇥D matrix and ⇤= diag([�1, . . . ,�D]) with �d > 0. Define the
linearly transformed random variable x = U⇤

1
2 z.

Exercise: Compute the mean E[x] and covariance Cov[x].
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Generative Story III
Exercise: Explain each step in this derivation of the density:

p(x) = p(z)
����
dz
dx

���� (6)

= p(⇤�
1
2U>x) |⇤� 12U>| (7)

= (2⇡)�
D
2 exp
ß
�1
2
x>U⇤�1U>x
™
|⇤� 12 | |U>| (8)

= (2⇡)�
D
2 exp
ß
�1
2
x>U⇤�1U>x
™
|⇤|� 12 (9)

= (2⇡)�
D
2 exp
ß
�1
2
x>⌃�1x
™
|⌃|� 12 (10)

where ⌃= U⇤U>.

7 / 32



Generative Story IV
Last but not least, add a translation so that x = U⇤

1
2 z+µ for µ 2 RD.

Question: How does this change the mean and covariance of x?

Following the same argument as above,

p(x) = (2⇡)�
D
2 |⌃|� 12 exp
ß
�1
2
(x �µ)>⌃�1(x �µ)

™
¨N (x | µ,⌃). (11)

This is the pdf of the multivariate normal distribution with mean vector µ 2 RD and positive definite
covariance matrix ⌃ 2 RD⇥D. Again, ⌃= U⇤U>.

It depends on x through the squared Mahalanobis distance between x and µ,

�2 = (x �µ)>⌃�1(x �µ) (12)

Question: What do the contours of this density look like?
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Spherical Gaussian Density

Figure: Contours of the pdf of a multivariate normal distribution,N (x | µ,⌃).
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Generative Story V
We introduced the MVN by scaling z, applying a change of basis, and adding a translation.

However, we could have applied any linear transformation,

x = Az+µ. (13)

for A 2 RM⇥D and µ 2 RM . Then,

x ⇠N (µ,⌃). (14)

with ⌃= AA>.

Question: What if M > D?
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Generative Story VI
Finally, we can go the other direction as well: to sample x ⇠N (µ,⌃), first compute any square root
of the covariance matrix ⌃

1
2 2 RD⇥D such that ⌃= (⌃

1
2 )(⌃

1
2 )>, then set,

x = ⌃
1
2 z+µ, (15)

where z 2 RD is a vector of standard normal random variates.
As before, we could use the eigendecomposition ⌃

1
2 = U⇤

1
2 where ⌃= U⇤U>. Since the covariance is

positive semidefinite, we could also use the Cholesky decomposition, ⌃
1
2 = chol(⌃), in which case

the square root is lower triangular.

11 / 32



Linear Transformations of Gaussians
The multivariate normal distribution is closed under linear transformations,

x ⇠N (µ,⌃) ) Ax+ b⇠N (Aµ+ b,A⌃A>). (16)
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Marginal Distributions
Let x 2 RD be a multivariate normal random vector. Partition the vector and the MVN parameters into
two subsets,

x =

xa
xb

�
, µ=


µa
µb

�
, ⌃=


⌃aa ⌃ab
⌃ba ⌃bb

�
. (17)

The symmetry of ⌃ implies that ⌃aa and ⌃bb are symmetric, whereas ⌃ab = ⌃
>
ba.

Now consider the linear transformation A=

I
0

�
so that Ax = xa.

The linearity property implies that the marginal distributions of the multivariate normal are also
multivariate normal,

p(xa) =N
�
Aµ,A⌃A>
�
=N (µa,⌃aa). (18)

Simply extract the corresponding blocks of the mean and covariance matrix to get the marginal.
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Conditional Distributions
Let x 2 RD be a multivariate normal random vector. Partition the vector and the MVN parameters into
two subsets,

x =

xa
xb

�
, µ=


µa
µb

�
, ⌃=


⌃aa ⌃ab
⌃ba ⌃bb

�
. (19)

The symmetry of ⌃ implies that ⌃aa and ⌃bb are symmetric, whereas ⌃ab = ⌃
>
ba.

We can write the inverse of ⌃ in block form as well,

⌃�1 ¨ ⇤=


⇤aa ⇤ab
⇤ba ⇤bb

�
. (20)

It too is symmetric, and its blocks involve the Schur complement,

⇤aa = (⌃aa �⌃ab⌃�1bb ⌃ba)�1 (21)

⇤ab = �(⌃aa �⌃ab⌃�1bb ⌃ba)�1⌃ab⌃�1bb . (22)
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Conditional Distributions II
What is p(xa | xb)? By Bayes’ rule,

p(xa | xb)/ p(xa,xb) =N (x | µ,⌃) (23)

/ exp
ß
�1
2
(x �µ)>⌃�1(x �µ)

™
(24)

/ exp
ß
�1
2
(xa �µa)>⇤aa(xa �µa)� (xa �µa)>⇤ab(xb �µb)

™
(25)

/ exp
ß
�1
2
x>a Ja|bxa+ x

>
a ha|b

™
(26)

where Ja|b = ⇤aa and ha|b = ⇤aaµa �⇤ab(xb �µb).
This is the information form of a Gaussian density on xa.
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Conditional Distributions III
Completing the square (recall Lecture 1), we find that

p(xa | xb) =N (xa | µa|b,⌃a|b), (27)

where

⌃a|b = J�1a|b (28)

= ⇤�1aa (29)

= ⌃aa �⌃ab⌃�1bb ⌃ba (30)

and

µa|b = J�1a|bha|b (31)

= µa �⇤�1aa ⇤ab(xb �µb) (32)

= µa+⌃ab⌃
�1
bb (xb �µb). (33)

.
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Linear Gaussian Models
Now suppose x ⇠N (b,Q) and y | x ⇠N (Cx+ d,R). What is the joint distribution p(x, y)?

Reparameterize the joint model as,

x = b+ Q
1
2 zx (34)

y = Cx+ d+ R
1
2 zy (35)

= Cb+ CQ
1
2 zx + d+ R

1
2 zy (36)

where zx and zy are independent standard normal vectors.

Now combine them into a single vector and rearrange terms,


x
y

�
=


b

Cb+ d

�
+

ñ
Q
1
2 0

CQ
1
2 R

1
2

ô
zx
zy

�
(37)
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Linear Gaussian Models II
Thus, x and y are jointly Gaussian,


x
y

�
⇠N (µ,⌃) (38)

where

µ=


b

Cb+ d

�
(39)

and

⌃=

ñ
Q
1
2 0

CQ
1
2 R

1
2

ôñ
Q
1
2 Q

1
2 C>

0 R
1
2

ô
=


Q QC>

CQ CQC>+ R

�
. (40)

Question: What is the marginal distribution of y?
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Maximum Likelihood Estimation
Exercise: The log likelihood is,

L (µ,⌃) =
NX

n=1

log p(xn | µ,⌃). (41)

Take gradients and set them to zero to obtain the the maximum likelihood estimates,

µML,⌃ML = argmaxL (µ,⌃). (42)

Show that,

µML =
1
N

NX

n=1

xn (43)

⌃ML =
1
N

NX

n=1

(xn �µML)(xn �µML)>. (44)
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Bayesian Estimation: Multivariate Normal with Unknown Mean
Like last time, let’s start with a simple Bayesian model of Gaussian data with a known covariance but
an unknown mean:

µ ⇠N (µ0,⌃0) (45)

xn
iid⇠N (µ,⌃). (46)

Goal: Infer the posterior distribution p(µ | X ,⌘) where ⌘= (µ0,⌃0,⌃).

p(µ | X ,⌘)/N (µ | µ0,⌃0)
NY

n=1

N (xn | µ,⌃) (47)

/ exp
ß
�1
2
(µ�µ0)>⌃�10 (µ�µ0)

™ NY

n=1

exp
ß
�1
2
(xn �µ)>⌃�1(xn �µ)

™
(48)

/ exp
ß
�1
2
µ>JNµ+µ

>hN

™
(49)

where JN = ⌃�10 + N⌃�1 and hN = ⌃�10 µ0+
PN
n=1⌃

�1xn.
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Bayesian Estimation: Multivariate Normal with Unknown Mean II
Completing the square,

p(µ | X ,⌘) =N (µ | µN,⌃N) (50)

where

⌃N = J�1N = (⌃�10 + N⌃�1)�1 (51)

µN = J�1N hN = ⌃N

Ç
⌃�10 µ0+

NX

n=1

⌃�1xn

å
(52)

Question: What does the posterior converge to in the uninformative limit ⌃0!1?
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Multivariate Normal with Unknown Precision
Now imagine the mean is known but not the covariance. Like last time, we will actually start by
parameterizing the model in terms of the precision, i.e. inverse covariance, ⇤= ⌃�1.

In the univariate case, we used a scaled �2 distribution for the prior, which was defined as the average
of squared standard normal variates. We will take an analogous approach here.

Let ⇤=
P⌫0
i=1 ziz

>
i where zi

iid⇠N (0,⇤0) with covariance ⇤0.

Then, ⇤ follows a Wishart distribution⇤ with ⌫0 degrees of freedom and scale ⇤0, written,

⇤ ⇠W(⌫0,⇤0). (53)

Its expected value is E[⇤] = ⌫0⇤0.

⇤ There is an unfortunate asymmetry between this definition and the definition of the scaled �2 distribution from the previous lecture. Whereas we defined the scaled �2 as the average of

squared Gaussian random variables, here we’ve defined the Wishart to be the sum of “squared” (really the outer product of) multivariate normal random vectors. This is to be consistent

with the textbook definitions of the Wishart distribution, even though I find it more convenient to parameterize the distribution in terms of its mean.
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The Wishart Distribution
Let SD denote the set of D⇥ D positive definite matrices, and let ⇤ 2 SD be a random variable.
The Wishart distribution is a distribution on the set of positive definite matrices. Its pdf is,

W(⇤ | ⌫0,⇤0) =
1

2
⌫0D
2 |⇤0|

⌫0
2 �D
�⌫0
2

� |⇤|
⌫0�D�1

2 e�
1
2Tr(⇤0�1⇤) (54)

where ⌫0 > 0 specifies the degrees of freedom and ⇤0 2 SD is the scale. �D is the multivariate gamma
function.

The mean of the Wishart distribution is ⌫0⇤0 and the mode is (⌫0 � D� 1)⇤0 for ⌫0 � (D+ 1).

In the univariate case where D= 1, we have W(� | ⌫0,⌫�10 �0) = �2(⌫0,�0).
The Wishart distribution plays a key role in frequentist statistics as the distribution of the sample
covariance matrix of mean-zero multivariate normal r.v.’s. In Bayesian statistics, it arises as the
conjugate prior for the precision of a multivariate normal distribution.
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The Wishart Distribution

Figure: Visualizing ⇤�1 where ⇤ ⇠W(⌫0,⇤0).
24 / 32



Multivariate Normal with Unknown Precision II
The Wishart distribution is a conjugate prior for the precision of a multivariate normal
distribution.

⇤ ⇠W(⌫0,⇤0), (55)

xn
iid⇠N (µ,⇤�1). (56)

Then, letting ⌘= (µ,⌫0,⇤0),

p(⇤ | X ,⌘)/W(⇤ | ⌫0,⇤0)
NY

n=1

N (xn | µ,⇤�1) (57)

/ |⇤|
⌫0�D�1

2 e�
1
2Tr(⇤�10 ⇤)

NY

n=1

|⇤| 12 e� 12 (xn�µ)>⇤(xn�µ) (58)

/ |⇤|
⌫0+N�D�1

2 exp

®
�1
2

Tr

Çñ
⇤�10 +

NX

n=1

(xn �µ)(xn �µ)>
ô
⇤

å´
(59)
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Multivariate Normal with Unknown Precision III
We recognize this as yet another Wishart distribution,

p(⇤ | X ,⌘)/W(⇤ | ⌫N,⇤N), (60)

where

⌫N = ⌫0+ N (61)

⇤N =

ñ
⇤�10 +

NX

n=1

(xn �µ)(xn �µ)>
ô�1

(62)

Question: What is the posterior mean under the uninformative prior where ⌫0! 0 or in the large
data limit where N!1?
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Visualizing the Posterior

Figure: Visualizing ⇤�1 under the posterior ⇤ ⇠W(⌫N,⇤N).
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Multivariate Normal with Unknown Covariance
As with the scaled inverse chi-squared distribution in the univariate case, we define the inverse
Wishart distribution as,

⇤ ⇠W(⌫0,⇤0) () ⌃= ⇤�1 ⇠ IW(⌫0,⌃0). (63)

where ⌃0 = ⇤
�1
0 .

It too is a distribution on the set of positive definite matrices. Its pdf is,

IW(⌃ | ⌫0,⌃0) =
|⌃0|

⌫0
2

2
⌫0D
2 �D
�⌫0
2

� |⌃|�
⌫0+D+1

2 e�
1
2Tr(⌃0⌃�1) (64)

where ⌫0 > 0 specifies the degrees of freedom and ⌃0 2 SD is the scale.
Its mean is ⌃0

⌫�D�1 for ⌫0 � (D+ 1) and its mode is ⌃0
⌫+D+1 .

In the univariate case where D= 1, we have IW(�2 | ⌫0,⌫0�20) = ��2(⌫0,�20).
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Multivariate Normal with Unknown Covariance
Exercise: Consider the model,

⌃ ⇠ IW(⌫0,⌃0), (65)

xn
iid⇠N (µ,⌃). (66)

Show that,

p(⌃ | X ,⌘) = IW(⌫N,⌃N) (67)

where

⌫N = ⌫0+ N (68)

⌃N = ⌃0+
NX

n=1

(xn �µ)(xn �µ)>. (69)
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Multivariate Normal with Unknown Mean and Covariance
As you can probably guess, the normal-inverse-chi-squared distribution for the univariate case
generalizes to the multivariate case too. Here, the conjugate prior for the mean and covariance is the
normal inverse Wishart (NIW) distribution,

NIW(µ,⌃ | µ0,0,⌫0,⌃0) = IW(⌃ | ⌫0,⌃0)N (µ | µ0,⌃/0). (70)

Exercise: Show that under this prior the posterior is,

p(µ,⌃ | X ,⌘) = NIW(µN,N,⌫N,⌃N) (71)

where

⌫N = ⌫0+ N (72)

N = 0+ N (73)

µN =
1
N

Ç
0µ0+

NX

n=1

xn

å
(74)

⌃N = ⌃0+ 0µ0µ
>
0 +

NX

n=1

xnx
>
n � NµNµ>N (75)
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Visualizing the Posterior

Figure: Visualizing µ and ⇤�1 under the posterior µ,⇤ ⇠ NW(µN,N,⌫N,⇤N).

31 / 32



Posterior Marginals
And again, just like in the univariate case, we find that the posterior marginal of µ 2 RD is

p(µ | X ,⌘) =

Z
p(µ,⌃ | X ,⌘)d⌃ (76)

=

Z
N (µ | µN,⌃/N) IW(⌃ | ⌫N,⌃N)d⌃ (77)

= St

✓
⌫N,µN,

1
N(⌫N � D+ 1)

⌃N

◆
(78)

where St denotes the multivariate Student’s t distribution with density,

St(x | ⌫,µ,⌃) =
� (⌫+D2 )

� (⌫2 )
(⌫⇡)�

D
2 |⌃|� 12

1+
�2

⌫

��⌫+D2
(79)

where �2 = (x �µ)>⌃�1(x �µ)2 is the squared Mahalanobis distance.
The mean of the multivariate Student’s t is µ and the covariance is ⌫

⌫+2⌃.
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