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Mixed Membership Models

Mixed membership models are designed for grouped data.
Each “data point” is itself a collection of observations. For example,
P in text analysis, a document is a collection of observed words.
P in social science, a survey is a collection of observed answers.
P in genetic sequencing, a genome is a collection of observed genes.

Mixed membership models look for patterns like the components of a mixture model, but allowing
each data point to involve multiple components.
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Notation for a mixed membership model

> Letx, = (X,1,..-,X,p) denote n-th data point. It contains a collection of observations. To
simplify notation, assume all data points are length D.

» Each data point reflects a combination of K mixture components with parameters {Gk}le. These
are shared by all documents.

» Each data point has its own mixture proportions, 7w, € Ay.

» Each observation is assigned to one of the components by z, , € {1,...,K}.
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Topic models

The most common mixed-membership model is the topic model, a generative model for

documents.

Topic models are so common, they have their own nomenclature:

data set
data point
observation
mixture component
mixture proportions
mixture assignment

Table: Rosetta stone for translating between mixed membership model and topic model notation.

corpus
document
word
topic
topic proportions
topic assignment

collection of documents
collection of words
one element of a document
distribution over words
distribution over topics
which topic produced a word
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Topic modeling intuition

Figure 1. The intuitions behind Latent Dirichiet allocation. We assume that some number of “topics,” which are distributions over words,
exist for the whole collection (far left). Each document is assumed to be generated as follows. First choose a distribution over the topics (the|

histogram at right); then, for each word, choose a topic assignment (the colored coins) and choose the word from the corresponding topic.
The topics and topic assignments in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from data.
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From Blei [2012].
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Topic modeling of New York Times articles
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Figure 6.1: Posterior topics from the The New York Times.
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Dynamic topic modeling of Science articles

1887 Mental Science
1900 Hemianopsia in Mi
1912 A Defence of the “New Phrenology"

1921 The Synchronal Flashing of Fireflies

1932 Myoesthesis and Imageless Thought

1943 Acetyicholine and the Physiology of the Nervous System

1952 Brain Waves and Unit Discharge in Cerebral Cortex

1963 Errorless Discrimination Learning in the Pigeon

1974 Temporal Summation of Light by a Vertebrate Visual Receptor
1983 Hysteresis in the Force-Calcium Relation in Muscle

1993 GABA-Activated Chioride Channels in Secretory Nerve Endings

"Neuroscience"

T T T T
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Figure 4. Examples from the posterior analysis of a 20-topic dynamic model estimated from the Science corpus. For two topics, we
illustrate: (a) the top ten words from the inferred posterior distribution at ten year lags (b) the posterior estimate of the frequency as a
function of year of several words from the same two topics (c) le articles througt the collection which exhibit these topics.
Note that the plots are scaled to give an idea of the shape of the trajectory of the words’ posterior probability (i.e., comparisons across
‘words are not meaningful).

From Blei and Lafferty [2006].
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Topic modeling of congressional voting records
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Figure 7.2: Topics discovered from Congressional floor debates using a down-
stream model to capture speaker’s ideology. Many first-level topics are biparti-
san (purple), while lower level topics are associated with specific ideologies
(Democrats blue, Republicans red). For example, the “tax” topic (B) is bipar-
tisan, but its Democratic-leaning child (D) focuses on social goals supported
by taxes (“children”, “education”, “health care”), while its Republican-leaning
child (C) focuses on business implications (“death tax”, “jobs”, “businesses”).
The number below each topic denotes the magnitude of a learned regression
parameter associated with that topic. Colors and the numbers beneath each
topic show the regression parameter 1 associated with the topic. From Nguyen
et al. [2013].

From Boyd-Graber et al. [2017]. 8/34



The generative process for a mixed membership model

The generative model process is:

» for each mixture component k =1,...,K, sample its parameter 8, ~ p(6, | ¢)
» for each data pointn=1,...,N:
» sample mixture proportions 7, ~ Dir(7, | @)
» for each observationd =1,...,D:
> sample mixture assignment z, , € {1,...,K} from a cateogrical distribution z, , ~ Cat(7,)
> sample observation x,, ~ p(x | 9, ,)

The mixed membership model allows sharing at the dataset level (all data points share the same
components) while allowing variability at the data point level (each data point has its own mixture
proportions).
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The generative process for a topic model

Slide 9 in the language of topic modeling:
» for each topic k = 1,...,K, sample its parameter 8, ~ p(6, | ¢)
» for each documentn=1,...,N:
» sample topic proportions 7, ~ Dir(7, | @)
» foreachwordd =1,...,D:
> sample topic assignment z, , € {1,...,K} from a categorical distribution z, , ~ Cat(7,)
> sample word x, 4 € {1,..., V} from a categorical distribution, x, ; ~ Cat(@,,,)

The topic model captures sharing at the corpus level (all documents share the same topics) while
allowing variability at the data point level (each document weights topics differently).
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The joint distribution

The joint probability for a general mixed membership model is,

K N D
p({ok}f:p{nna n}n 1 | ‘l’ a - l_[p ek | ¢)l_[|:p(nn | a l_[p nd | T, n,d | Ozn,d):|
k=1 n=1 d=1

1)
As in mixture models, we can write this equivalently as
K N D K ey i
Zp 4=
p({0. 1 A zpx Yy | §.a) =] [o(84 ] ¢)r[[ (ol )] ] [[7nspCenal 077 ]
k=1 n=1 d=1k=1

(2)
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Graphical Model

Exercise: Draw the graphical models for a mixture model and a mixed membership model.
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Latent Dirichlet allocation
Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is the most widely used topic model.

It assumes conjugate Dirichlet-Categorical model for the topics 8, € A, and words
Xpg €1{1,...,V},

iid

0~ Dir(¢), (3)
n,  Dir(a), (4)
2,4~ Cat(,) (5)
X4 ™ Cat(f, ) (6)
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Latent Dirichlet allocation Il

Plugging in these assumptions, the joint probability is,
p({ek}k 1,{7T,7,Zn,Xn} =1 | ¢ (l) (7)

— l_[Dlr k|¢ ﬁ[Dlr 7'C |a ﬁnnznd zndx,,d:| (8)
R A i,
— 0,1¢) l_[ (Dlr (7, a) l_[ [l—[ I[z, dk]:| [r[ l_[ 93’[:”’d_v]]1[2”"’_k]:|)

k=1 n=1 d=1Lk=1 k=1v=1
o [ﬁﬁe 1]ﬁ([ﬂ e k_l] [ILHL[@N] ©)
k=1v=1 n=1 k=1 k=1v=1

where

> Novik = 25:1 I[x, 4 = v]I[z, 4 = k] is the number of instances of word v in document n assigned
to topic k, and,

> Npox = 25:1 Npyi = 25:1 ]I[z,,,d = k] is the number of words in document n assigned to topic k.
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Gibbs sampling for LDA

As usual, sample each variable from its conditional distribution, holding the rest fixed.

» Topic assignments: The assignments are conditionally independent given the topic parameters
and proportions,

P(zpg =k X0 = v, {0}y, 0,) O T, 4O (10)
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Gibbs sampling for LDA

As usual, sample each variable from its conditional distribution, holding the rest fixed.

» Topic assignments: The assignments are conditionally independent given the topic parameters
and proportions,

P(Zng =k | Xnq =V, {8, 3i_1, 70) O 746y, (10)
> Topic proportions: Let N, , = 23:1 I[z, 4 = k]| denote the number of words in document n
assigned to topic k. Then,

N,

K
p(m, | a,z,) o< Dir(z, | a) l_[rc =Dir([a; +N,.1,..., g +N,.«])- (11)
k=1
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Gibbs sampling for LDA

As usual, sample each variable from its conditional distribution, holding the rest fixed.
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P(Zng =k | Xnq =V, {8, 3i_1, 70) O 746y, (10)
> Topic proportions: Let N, , = 23:1 I[z, 4 = k]| denote the number of words in document n
assigned to topic k. Then,

N,

K
p(m, | a,z,) o< Dir(z, | a) l_[rc =Dir([a; +N,.1,..., g +N,.«])- (11)
k=1

> Topic parameters: Let N, ,, Zd 11[z, 4 = K]I[x, 4 = v] denote the number of times word v
was assigned to topic k in document n. Then,

N N
p(0y | {2, %,}, ¢) o< Dir(6, | ¢) ]‘[l‘[e 2 =Dir([g + ) Nosor-- Sy + D Nowil)-
n=1 n=1

n=1v=
L A15/34



Why does LDA produce sharp topics?

Consider the log posterior as a function of 8, and 7,,. From eq. 8, it is,

N

K N D
kZ; logp(0, | ¢) + Z; logp(m, | @) + Z Z (log Tz, , 108 92n,d,xn,d) (13)
— n—=

n=1d=1
The double sum over n and d dominates this expression.

It encourages topic proportions and topic probabilities to both be large, but recall that both 7, and 8,
are constrained to the simplex.

For log T, , 10 be large, the posterior should assign all words to as few topics as possible.

For log 6, to be large, the topics should put high probability on as few words as possible.

n,d>Xn,d

These goals are at odds. The LDA posterior balances these goals to find topics with sharply
co-occuring words.
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Coordinate Ascent Variational Inference for LDA

Let’s derive the CAVI updates for LDA.

Assume a mean field family, and assume each factor is of the same exponential family form as the
corresponding prior:

4(2n,0: A7) = Cat(z, 4 A7) (14)
a(70; A7) = Dir(r,; A7) (15)
9(0,:4")) = Dir(6,; ,"). (16)

o) 7L( ?) e Ay, Aﬁ") € R’j_, and Z,EB) € ]RK_ are the variational parameters.

(It turns out, for conjugate exponential family models, the optimal variational factors are of the same
form as the prior anyway!)
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CAVI updates for the topic assignments
Recall that the optimal CAVI updates are of the form in Eq. ??.

We already derived the conditional distributions for Gibbs sampling (Slide 15).

For the topic assignments, the CAVI update is,

log q(z,,4 = k; Aﬁil) =Eq(n,)0(6,) 108 T + log p(Xy g | 6) ]+ ¢
= ]Eq(nn) [Iog nn’k] + Eq(gk) [Iog Gk,xn,d] +c
= log Cat(z, ; = k; )L,(f;)
(@)

= log ln,d)k = Eq(nn) [Iog Tr,,’k] + Eq(gk) [Iog Qk,xn,d] +c

Since lr(f; must sum to one,

@ &P {Eq(nn) [log 7] + Eq(o,) ['Og 9k)xn,d]}
o Zle exp {Eq(ﬂn) [log 70 ]+ Eqe,) [lc’g Qf:xn,a]}

18/34



Expectations under Dirichlet distributions

The variational factors for 7, and 6 are Dirichlet distributions.

The necessary expectations have closed form expressions:

K
IEDir(n;a)[lc’g nk] - ¢(O‘k) —1.0(206/) (22)

=1

where 1)(+) is the digamma function, the logarithmic derivative of the gamma function.
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CAVI updates for the topic proportions
Referring back to Slide 15, we see the CAVI update is,

K
logg(m,; A,(,")) =Eyz,) |:Iog Dir(7,; a) + Z N, xlog nn,k:| +c
k=1

K
- Z -1+ IEq(z,,) [Nn,k]) log Tn,k
k=1

=log Dir(n,,; 7L,(,n))
= l( ™) [al + Eq(z,)[Nn1)s -5 ok + Eq(zn)[Nn,K]]’

where

z,,)[Nn W] = ZEq(znd)[H[zn ¢ =k = an dk*

(27)
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CAVI updates for the topic parameters

The topic parameter updates are similar

y
log q(0; l,((g)) =Eq(z) [IogDir(Ok; ?) +ZN/<,V log Qk’v] +c

v=1
v
- Z(¢v —1+ IEI‘q(z) [Nk,v]) log Qk,v
V=1
Iongr(Bk ),(9))
A9 = E, [N E, [N
= 1+ Eqz)[Nials -+ dv + Eg) [INev] |»

where

By [N = D D ooy ylzng = KXy =V = D DAY Tx, 4 = V],

=1d=1 n=1d=1

(32)
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Calculating the ELBO
Dropping hyperparameters and variational parameters, the ELBO is,
£L(A) = E,log p({Xn, 20, Ta}y_y» {0,y )] — Eqllog a({zo, o}y s, {0}y (33)

Thanks to the factorization of the joint distribution and the variational posterior, this simplifies,

ZEq[Iogp ]+ZEq[|°gP (0]

N D
+ > B llog plzag | )] + Eqgllog pxn g | 20,0, 0)]
n=1d=1

K
— > Eq[logq(8 1—ZE llog q(,)] —ZZEq[logq (z0a)] (34)
k=1 n=1d=1
The first two terms are Dirichlet cross entropies and the last three terms are entropies. Tensorflow
probability has already implemented these functions for you, so this is easier to calculate than you

might think!
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Calculating the ELBO Il

The middle terms are,

Eq[logp(zn,d | nn)] - IEq(zn,,,)[]l[zn,d - k]] : IEq(n,,)[log nn,k]

M- I+

)Lr(i;,k ’ IEq(r:n) [log Tfn,k]

>
Il
N

and

K
Eqll0g p(Xna | 204, 0)] = D By, 120y = K] - Eqa, ) [l0g B, ]
k=1

K
Ar(':g,k ’ ]EQ(ok) [Iog Qk’xn,d]
k=1

Again, these involve only simple expectations of Dirichlet distributions.

(37)

(38)
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Bag of word counts assumption and exchangeability

LDA models the words as exchangeable random variables. That is, the joint distribution is invariant to
permutations:

p(x,) = p(Xn,lz s :Xn,D) = p(Xn,cr(l)J XX ap(xn,U(D))) (39)
where o (-) is any permutation of the indices {1,...,D}.
In text modeling, this is called the bag of words assumption.

In LDA, this manifests in the joint probability (eq. 9, reproduced below) only depending on word
counts,

p({ek}f:l;{nnnzmxn}g:1 | ¢)a)
K N K K Vv
-l (e -
k=1v=1
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Working with word counts

The fact that the joint probability depends only on word counts suggests an alternative representation
of the data.

Let, y, € NV denote the n-th document represented as a vector of word counts; i.e.,

D
Yo = D g =Vl. (41)
d=1

Typically these vector will be sparse.

Likewise, let ¢, , € NX be a vector of latent counts denoting how many times word v in document n
was attributed to each of the K topics; i.e.,

D
Cope = D Mg = V1[z, g = K] (42)
d=1

K
We must have that D}, ¢, = Vy,-
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LDA with word counts and the corresponding data types

Picture: Draw the data types for y, ¢, 7, and 6.
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Gibbs and CAVI updates with word counts

In terms of word counts, the conditional distribution of ¢, , € N is,

101, ok Ok,
p(€ny | Yoo {0k} 5> 7,) = Mult (cn,v 7 [ = D (43)
Zk:l nn,kek,v Zk:1 nn,kek,v
Instead of sampling each z, ; in the Gibbs sampler, we can directly sample count vectors ¢, ,..
Likewise, for CAVI, instead of having parameters for each q(z Z, 4 | l( )) only store one for each
term v,
A(Cni A80) = Mul(c,, | o A1) (44)
o P {JE [Iogrc,, k]+JE (0 k)[logek,v]}
An’v’k (45)

Tk
Zj:l exp {Eq(nn) [log ”n,j] + Eq(o)) [Iog Qj,v:|}
From these variational parameters it's easy to compute the expected summary counts,

N
E [Nn k] - Zan n,v,k Eq[N-,k,v] - ZYn vx,(qcak (46)
n=1
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Scaling up to very large datasets

There are a few tricks to make LDA much more scalable.
C .
Rk 7‘5;,3,/(] if ¥, > 0.

63 once you've updated [N ]

First, to save memory, you only need to track, l,(,ca = [Ar(fa o

Likewise, you can process documents in rolling fashion, discarding l,g
and l,(f).

Finally, you can use stochastic variational inference [Hoffman et al., 2013] to work with mini-batches
of documents to get Monte Carlo estimates of E [N, ,].

SVI can be seen as stochastic gradient ascent on the ELBO using natural gradients Amari [1998]; i.e.,
gradient descent preconditioned with the Fisher information matrix.
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Evaluating topic models

The key hyperparameter is K, the number of topics. By now, we've seen a few different ways of setting
these “complexity knobs.”

Question: what approaches could we take?

Blei recommends another method that differs slightly from what we’ve seen thus far. He suggests
evaluating,

p( ol | Xn/:{xn}gzl) :J ( ot | s {ek}k 1) (nn’ |X {Ok} ) ({Bk} =1 | {Xn} )dnn’
(47)
where

> xﬁ}‘t consists of a subset of words in a held-out document n’

» x!" are the remaining words in that document, which are used to estimate the topic proportions
and

> {x,,}g:1 are the training documents used to estimate the topics {Gk}f |
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Evaluating topic models Il

Question: why not simply compare the ELBO for different values of K? It’s related to the marginal
likelihood, after all.
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Other mixed membership models

» LDA evolved from a long line of work on topic modeling. Deerwester et al. [1990] proposed latent
semantic analysis and Hofmann [1999] proposed a probabilistic version called the aspect model.

» Pritchard et al. [2000] developed MM models in population genetics.
» Erosheva et al. [2007] used MM models for survey data.

» Airoldi et al. [2008] developed MM models for community detection in networks. Gopalan and
Blei [2013] developed a stochastic variational inference algorithm for this model.

» Gopalan et al. [2013] proposed Poisson matrix factorization, which is closely related to LDA.
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