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Mixed Membership Models

Mixed membership models are designed for grouped data.

Each “data point” is itself a collection of observations. For example,

▶ in text analysis, a document is a collection of observed words.

▶ in social science, a survey is a collection of observed answers.

▶ in genetic sequencing, a genome is a collection of observed genes.

Mixed membership models look for patterns like the components of a mixture model, but allowing
each data point to involve multiple components.
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Notation for a mixed membership model

▶ Let xn = (xn,1, . . . , xn,D) denote n-th data point. It contains a collection of observations. To
simplify notation, assume all data points are length D.

▶ Each data point reflects a combination of K mixture components with parameters {θ k}Kk=1. These
are shared by all documents.

▶ Each data point has its own mixture proportions, πn ∈∆K .

▶ Each observation is assigned to one of the components by zn,d ∈ {1, . . . ,K}.
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Topic models

The most common mixed-membership model is the topic model, a generative model for
documents.

Topic models are so common, they have their own nomenclature:

data set corpus collection of documents
data point document collection of words
observation word one element of a document

mixture component topic distribution over words
mixture proportions topic proportions distribution over topics
mixture assignment topic assignment which topic produced a word

Table: Rosetta stone for translating between mixed membership model and topic model notation.
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Topic modeling intuition

From Blei [2012].
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Topic modeling of New York Times articles
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Dynamic topic modeling of Science articles

From Blei and Lafferty [2006].
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Topic modeling of congressional voting records

From Boyd-Graber et al. [2017]. 8 / 34



The generative process for a mixed membership model

The generative model process is:

▶ for each mixture component k = 1, . . . ,K, sample its parameter θ k ∼ p(θ k | φ)
▶ for each data point n= 1, . . . ,N:

▶ sample mixture proportions πn ∼ Dir(πn | α)

▶ for each observation d = 1, . . . ,D:

▶ sample mixture assignment zn,d ∈ {1, . . . ,K} from a cateogrical distribution zn,d ∼ Cat(πn)

▶ sample observation xn,d ∼ p(x | θ zn,d)

The mixed membership model allows sharing at the dataset level (all data points share the same
components) while allowing variability at the data point level (each data point has its own mixture
proportions).
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The generative process for a topic model

Slide 9 in the language of topic modeling:

▶ for each topic k = 1, . . . ,K, sample its parameter θ k ∼ p(θ k | φ)
▶ for each document n= 1, . . . ,N:

▶ sample topic proportions πn ∼ Dir(πn | α)

▶ for each word d = 1, . . . ,D:

▶ sample topic assignment zn,d ∈ {1, . . . ,K} from a categorical distribution zn,d ∼ Cat(πn)

▶ sample word xn,d ∈ {1, . . . ,V} from a categorical distribution, xn,d ∼ Cat(θ zn,d)

The topic model captures sharing at the corpus level (all documents share the same topics) while
allowing variability at the data point level (each document weights topics differently).
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The joint distribution

The joint probability for a general mixed membership model is,

p({θ k}Kk=1, {πn, zn,xn}
N
n=1 | φ,α) =

K
∏

k=1

p(θ k | φ)
N
∏

n=1

�

p(πn | α)
D
∏

d=1

p(zn,d | πn)p(xn,d | θ zn,d)

�

(1)

As in mixture models, we can write this equivalently as

p({θ k}Kk=1, {πn, zn,xn}
N
n=1 | φ,α) =

K
∏

k=1

p(θ k | φ)
N
∏

n=1

�

p(πn | α)
D
∏

d=1

K
∏

k=1

�

πn,k p(xn,d | θ k)
�I[zn,d=k]
�

(2)
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Graphical Model
Exercise: Draw the graphical models for a mixture model and a mixed membership model.
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Latent Dirichlet allocation
Latent Dirichlet Allocation (LDA) [Blei et al., 2003] is the most widely used topic model.

It assumes conjugate Dirichlet-Categorical model for the topics θ k ∈∆V and words
xn,d ∈ {1, . . . ,V},

θ k
iid∼ Dir(φ), (3)

πn
iid∼ Dir(α), (4)

zn,d
iid∼ Cat(πn) (5)

xn,d
iid∼ Cat(θ zn,d) (6)

13 / 34



Latent Dirichlet allocation II
Plugging in these assumptions, the joint probability is,

p({θ k}Kk=1,{πn, zn,xn}
N
n=1 | φ,α) (7)

=
K
∏

k=1

Dir(θ k | φ)
N
∏

n=1

�

Dir(πn | α)
D
∏

d=1

πn,zn,d θzn,d,xn,d

�

(8)

=
K
∏

k=1

Dir(θ k | φ)
N
∏

n=1

�

Dir(πn | α)
D
∏

d=1

�

K
∏

k=1

π
I[zn,d=k]
n,k

��

K
∏

k=1

V
∏

v=1

θ
I[xn,d=v]I[zn,d=k]
k,v

��

∝

�

K
∏

k=1

V
∏

v=1

θ
φv−1
k,v

�

N
∏

n=1

��

K
∏

k=1

π
αk+Nn,·,k−1
n,k

��

K
∏

k=1

V
∏

v=1

θ
Nn,v,k
k,v

��

(9)

where

▶ Nn,v,k =
∑D
d=1 I[xn,d = v]I[zn,d = k] is the number of instances of word v in document n assigned

to topic k, and,

▶ Nn,·,k =
∑V
v=1 Nn,v,k =
∑D
d=1 I[zn,d = k] is the number of words in document n assigned to topic k.
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Gibbs sampling for LDA
As usual, sample each variable from its conditional distribution, holding the rest fixed.

▶ Topic assignments: The assignments are conditionally independent given the topic parameters
and proportions,

p(zn,d = k | xn,d = v, {θ k}Kk=1,πn)∝ πn,kθk,v (10)

▶ Topic proportions: Let Nn,k =
∑D
d=1 I[zn,d = k] denote the number of words in document n

assigned to topic k. Then,

p(πn | α, zn)∝ Dir(πn | α)
K
∏

k=1

π
Nn,·,k
n,k = Dir([α1+ Nn,·,1, . . . ,αK + Nn,·,K]). (11)

▶ Topic parameters: Let Nn,k,v =
∑D
d=1 I[zn,d = k]I[xn,d = v] denote the number of times word v

was assigned to topic k in document n. Then,

p(θ k | {zn,xn},φ)∝ Dir(θ k | φ)
N
∏

n=1

V
∏

v=1

θ
Nn,v,k
k,v = Dir([φ1+

N
∑

n=1

Nn,v,k, . . . ,φV +
N
∑

n=1

Nn,V ,k]).

(12)
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Why does LDA produce sharp topics?

Consider the log posterior as a function of θ k and πn. From eq. 8, it is,

K
∑

k=1

log p(θ k | φ) +
N
∑

n=1

log p(πn | α) +
N
∑

n=1

D
∑

d=1

�

logπn,zn,d + logθzn,d,xn,d

�

(13)

The double sum over n and d dominates this expression.

It encourages topic proportions and topic probabilities to both be large, but recall that both πn and θ k
are constrained to the simplex.

For logπn,zn,d to be large, the posterior should assign all words to as few topics as possible.

For logθzn,d,xn,d to be large, the topics should put high probability on as few words as possible.

These goals are at odds. The LDA posterior balances these goals to find topics with sharply
co-occuring words.
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Coordinate Ascent Variational Inference for LDA

Let’s derive the CAVI updates for LDA.

Assume a mean field family, and assume each factor is of the same exponential family form as the
corresponding prior:

q(zn,d;λ
(z)
n,d) = Cat(zn,d;λ

(z)
n,d) (14)

q(πn;λ
(π)
n ) = Dir(πn;λ

(π)
n ) (15)

q(θ k;λ
(θ )
k ) = Dir(θ k;λ

(θ )
k ). (16)

so λ(z)n,d ∈∆K , λ
(π)
n ∈ RK+, and λ

(θ )
k ∈ R

V
+ are the variational parameters.

(It turns out, for conjugate exponential family models, the optimal variational factors are of the same
form as the prior anyway!)
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CAVI updates for the topic assignments
Recall that the optimal CAVI updates are of the form in Eq. ??.

We already derived the conditional distributions for Gibbs sampling (Slide 15).

For the topic assignments, the CAVI update is,

log q(zn,d = k;λ(z)n,d) = Eq(πn)q(θ k)
�

logπn,k + log p(xn,d | θk)
�

+ c (17)

= Eq(πn)
�

logπn,k
�

+Eq(θ k)
�

logθk,xn,d

�

+ c (18)

= logCat(zn,d = k;λ(z)n,d) (19)

⇒ logλ
(z)
n,d,k = Eq(πn)
�

logπn,k
�

+Eq(θ k)
�

logθk,xn,d

�

+ c (20)

Since λ(z)n,d must sum to one,

λ
(z)
n,d,k =

exp
¦

Eq(πn)
�

logπn,k
�

+Eq(θ k)
�

logθk,xn,d

�©

∑K
j=1 exp
¦

Eq(πn)
�

logπn,j
�

+Eq(θ j)
�

logθj,xn,d

�© (21)
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Expectations under Dirichlet distributions

The variational factors for πn and θ k are Dirichlet distributions.

The necessary expectations have closed form expressions:

EDir(π;α)[logπk] =ψ(αk)−ψ
�

K
∑

j=1

αj

�

(22)

where ψ(·) is the digamma function, the logarithmic derivative of the gamma function.
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CAVI updates for the topic proportions
Referring back to Slide 15, we see the CAVI update is,

log q(πn;λ
(π)
n ) = Eq(zn)

�

logDir(πn;α) +
K
∑

k=1

Nn,k logπn,k

�

+ c (23)

=
K
∑

k=1

(αk − 1+Eq(zn)[Nn,k]) logπn,k (24)

= logDir
�

πn;λ
(π)
n

�

(25)

⇒ λ(π)n =
h

α1+Eq(zn)[Nn,1], . . . ,αK +Eq(zn)[Nn,K]
i

, (26)

where

Eq(zn)[Nn,k] =
D
∑

d=1

Eq(zn,d)[I[zn,d = k]] =
D
∑

d=1

λ
(z)
n,d,k. (27)
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CAVI updates for the topic parameters
The topic parameter updates are similar

log q(θ k;λ
(θ )
k ) = Eq(z)

�

logDir(θ k;φ) +
V
∑

v=1

Nk,v logθk,v

�

+ c (28)

=
V
∑

v=1

(φv − 1+Eq(z)[Nk,v]) logθk,v (29)

= logDir
�

θ k;λ
(θ )
k

�

(30)

⇒ λ(θ )k =
h

φ1+Eq(z)[Nk,1], . . . ,φV +Eq(z)[Nk,V ]
i

, (31)

where

Eq(z)[Nk,v] =
N
∑

n=1

D
∑

d=1

Eq(zn,d)[I[zn,d = k]]I[xn,d = v] =
N
∑

n=1

D
∑

d=1

λ
(z)
n,d,kI[xn,d = v]. (32)
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Calculating the ELBO
Dropping hyperparameters and variational parameters, the ELBO is,

L (λ) = Eq[log p({xn, zn,πn}Nn=1, {θ k}
K
k=1)]−Eq[log q({zn,πn}

N
n=1, {θ k}

K
k=1)] (33)

Thanks to the factorization of the joint distribution and the variational posterior, this simplifies,

L (λ) =
N
∑

n=1

Eq[log p(πn)] +
K
∑

k=1

Eq[log p(θ k)]

+
N
∑

n=1

D
∑

d=1

Eq[log p(zn,d | πn)] +Eq[log p(xn,d | zn,d,θ )]

−
K
∑

k=1

Eq[log q(θ k)]−
N
∑

n=1

Eq[log q(πn)]−
N
∑

n=1

D
∑

d=1

Eq[log q(zn,d)] (34)

The first two terms are Dirichlet cross entropies and the last three terms are entropies. Tensorflow
probability has already implemented these functions for you, so this is easier to calculate than you
might think!
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Calculating the ELBO II
The middle terms are,

Eq[log p(zn,d | πn)] =
K
∑

k=1

Eq(zn,d)[I[zn,d = k]] ·Eq(πn)[logπn,k] (35)

=
K
∑

k=1

λ
(z)
n,d,k ·Eq(πn)[logπn,k] (36)

and

Eq[log p(xn,d | zn,d,θ )] =
K
∑

k=1

Eq(zn,d)[I[zn,d = k]] ·Eq(θ k)[logθk,xn,d ] (37)

=
K
∑

k=1

λ
(z)
n,d,k ·Eq(θ k)[logθk,xn,d ] (38)

Again, these involve only simple expectations of Dirichlet distributions.
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Bag of word counts assumption and exchangeability
LDA models the words as exchangeable random variables. That is, the joint distribution is invariant to
permutations:

p(xn) = p(xn,1, . . . , xn,D)≡ p(xn,σ(1), . . . ,p(xn,σ(D))) (39)

where σ(·) is any permutation of the indices {1, . . . ,D}.

In text modeling, this is called the bag of words assumption.

In LDA, this manifests in the joint probability (eq. 9, reproduced below) only depending on word
counts,

p({θ k}Kk=1, {πn, zn,xn}
N
n=1 | φ,α)

∝

�

K
∏

k=1

V
∏

v=1

θ
φv−1
k,v

�

N
∏

n=1

��

K
∏

k=1

π
αk+Nn,·,k−1
n,k

��

K
∏

k=1

V
∏

v=1

θ
Nn,v,k
k,v

��

(40)
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Working with word counts
The fact that the joint probability depends only on word counts suggests an alternative representation
of the data.

Let, yn ∈ NV denote the n-th document represented as a vector of word counts; i.e.,

yn,v =
D
∑

d=1

I[xn,d = v]. (41)

Typically these vector will be sparse.

Likewise, let cn,v ∈ NK be a vector of latent counts denoting how many times word v in document n
was attributed to each of the K topics; i.e.,

cn,v,k =
D
∑

d=1

I[xn,d = v] I[zn,d = k] (42)

We must have that
∑K
k=1 cn,v,k = yn,v .
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LDA with word counts and the corresponding data types
Picture: Draw the data types for y, c, π, and θ .
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Gibbs and CAVI updates with word counts
In terms of word counts, the conditional distribution of cn,v ∈ NK is,

p(cn,v | yn, {θ k}Kk=1,πn) = Mult

�

cn,v

�

�

�

�

yn,

�

πn,1θ1,v
∑K
k=1πn,kθk,v

, . . . ,
πn,KθK,v
∑K
k=1πn,kθk,v

��

(43)

Instead of sampling each zn,d in the Gibbs sampler, we can directly sample count vectors cn,v .

Likewise, for CAVI, instead of having parameters for each q(zn,d | λ
(z)
n,d), only store one for each

term v,

q(cn,v;λ
(c)
n,v ) = Mult(cn,v | yn,v ,λ

(c)
n,v ) (44)

λ
(c)
n,v,k =

exp
�

Eq(πn)
�

logπn,k
�

+Eq(θ k)
�

logθk,v
�	

∑K
j=1 exp
¦

Eq(πn)
�

logπn,j
�

+Eq(θ j)
�

logθj,v
�

© (45)

From these variational parameters, it’s easy to compute the expected summary counts,

Eq[Nn,·,k] =
V
∑

v=1

yn,vλ
(c)
n,v,k Eq[N·,k,v] =

N
∑

n=1

yn,vλ
(c)
n,v,k (46)
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Scaling up to very large datasets

There are a few tricks to make LDA much more scalable.

First, to save memory, you only need to track, λ(c)n,v = [λ
(c)
n,v,1, . . . ,λ(c)n,v,K] if yn,v > 0.

Likewise, you can process documents in rolling fashion, discarding λ(c)n,v once you’ve updated Eq[Nk,v]
and λ(π)n .

Finally, you can use stochastic variational inference [Hoffman et al., 2013] to work with mini-batches
of documents to get Monte Carlo estimates of Eq[Nk,v].

SVI can be seen as stochastic gradient ascent on the ELBO using natural gradients Amari [1998]; i.e.,
gradient descent preconditioned with the Fisher information matrix.
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Evaluating topic models
The key hyperparameter is K, the number of topics. By now, we’ve seen a few different ways of setting
these “complexity knobs.”

Question: what approaches could we take?

Blei recommends another method that differs slightly from what we’ve seen thus far. He suggests
evaluating,

p(xoutn′ | x
in
n′ , {xn}

N
n=1) =

∫

p(xoutn′ | πn′ , {θ k}
K
k=1)p(πn′ | x

in
n′ , {θ k}

K
k=1)p({θ k}

K
k=1 | {xn}

N
n=1)dπn′

(47)

where

▶ xoutn′ consists of a subset of words in a held-out document n
′

▶ xinn′ are the remaining words in that document, which are used to estimate the topic proportions,
and

▶ {xn}Nn=1 are the training documents used to estimate the topics {θ k}
K
k=1.

Wallach et al. [2009] discuss topic model evaluation in detail.
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Evaluating topic models II
Question: why not simply compare the ELBO for different values of K? It’s related to the marginal
likelihood, after all.
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Other mixed membership models

▶ LDA evolved from a long line of work on topic modeling. Deerwester et al. [1990] proposed latent
semantic analysis and Hofmann [1999] proposed a probabilistic version called the aspect model.

▶ Pritchard et al. [2000] developed MM models in population genetics.

▶ Erosheva et al. [2007] used MM models for survey data.

▶ Airoldi et al. [2008] developed MM models for community detection in networks. Gopalan and
Blei [2013] developed a stochastic variational inference algorithm for this model.

▶ Gopalan et al. [2013] proposed Poisson matrix factorization, which is closely related to LDA.

31 / 34



References I
David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.

David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of the 23rd international
conference on Machine learning, pages 113–120, 2006.

Jordan Boyd-Graber, Yuening Hu, and David Mimno. Applications of topic models. Found. Trends® Inf.
Retr., 11(2-3):143–296, 2017.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation. Journal of Machine
Learning Research, 3:993–1022, 2003.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(5), 2013.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

32 / 34



References II
Hanna M Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation methods for topic
models. In Proceedings of the 26th Annual International Conference on Machine Learning, pages
1105–1112, 2009.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman.
Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci., 41(6):391–407, September 1990.

T Hofmann. Probabilistic latent semantic indexing. Proceedings of the 22nd annual international ACM,
1999.

J K Pritchard, M Stephens, and P Donnelly. Inference of population structure using multilocus genotype
data. Genetics, 155(2):945–959, June 2000.

Elena A Erosheva, Stephen E Fienberg, and Cyrille Joutard. Describing disability through
individual-level mixture models for multivariate binary data. Ann. Appl. Stat., 1(2):346–384, 2007.

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership stochastic
blockmodels. J. Mach. Learn. Res., 9:1981–2014, September 2008.

33 / 34



References III
Prem K Gopalan and David M Blei. Efficient discovery of overlapping communities in massive networks.
Proc. Natl. Acad. Sci. U. S. A., 110(36):14534–14539, September 2013.

Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with Poisson factorization.
November 2013.

34 / 34


	Model: Mixed Membership Models
	CAVI for LDA
	References

