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Outline

… Collapsed Gibbs sampling for Bayesian Mixture Models

… Dirichlet process mixture models and random measures

… Poisson random measures
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Finite Bayesian Mixture Models
1. Sample the proportions from a Dirichlet prior with ↵ 2 RK+:

⇡ ⇠ Dir(↵) (1)

2. Sample the parameters for each component:

✓ k
iid⇠ p(✓ | �,⌫) for k = 1, . . . ,K (2)

3. Sample the assignment of each data point:

zn
iid⇠ ⇡ for n= 1, . . . ,N (3)

4. Sample data points given their assignments:

xn ⇠ p(x | ✓ zn) for n= 1, . . . ,N (4)
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Joint distribution
… This generative model corresponds to the following factorization of the joint distribution

p(⇡, {✓ k}Kk=1, {(zn,xn)}Nn=1 | �,⌫,↵) =

Dir(⇡ | ↵)
KY

k=1

p(✓ k | �,⌫)
NY

n=1

KY

k=1

[⇡k p(xn | ✓ k)]I[zn=k] (5)

… Let’s assume an exponential family likelihood,

p(x | ✓ k) = h(xn) exp
�
ht(xn),✓ ki � A(✓ k)

 
. (6)

… Then assume a conjugate prior,

p(✓ k | �,⌫) =
1

Z(�,⌫)
exp

�
h�,✓ ki � ⌫A(✓ k)

 
. (7)

where Z✓ (�,⌫) is the normalizing function.
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“Collapsing” out variables
In some models, we can marginalize (aka collapse or integrate out) some variables to work on a lower
dimensional distribution.

Typically, this is possible in models constructed with conjugate exponential family distributions.

5 / 33



Collapsing out the parameters in a Bayesian mixture

Let’s marginalize the parameters {✓ k}Kk=1 in the exponential family mixture model,

p(⇡,{(zn,xn)}Nn=1 | �,⌫,↵) = Dir(⇡ | ↵)
KY

k=1

ñZ
p(✓ k | �,⌫)

NY

n=1

[⇡k p(xn | ✓ k)]I[zn=k] d✓ k
ô

(8)

/ Dir(⇡ | ↵)
KY

k=1

2
4⇡Nkk

Z
1

Z✓ (�,⌫)
exp

(D
�+

X

n:zn=k

t(xn),✓ k
E
� (⌫+ Nk)A(✓ k)

)
d✓ k

3
5 (9)

= Dir(⇡ | ↵)
KY

k=1

ñ
⇡
Nk
k

Z✓ (�+
P
n:zn=k

t(xn),⌫+ Nk)

Z✓ (�,⌫)

ô
(10)

where Z✓ (�,⌫) is the normalizing function of the conjugate prior p(✓ | �,⌫).
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Collapsing out the cluster probabilities in a Bayesian mixture

While we’re at it, let’s marginalize the mixture proportions ⇡, too. The Dirichlet density is,

Dir(⇡ | ↵) = 1
Z⇡(↵)

KY

k=1

⇡
↵k�1
k where Z⇡(↵) =

QK
k=1 � (↵k)

� (
PK
k=1↵k)

(11)

Plugging this in and integrating over ⇡ yields,

p({(zn,xn)}Nn=1 | �,⌫,↵) =

ñZ
Dir(⇡ | ↵)

KY

k=1

⇡
Nk
k d⇡

ôñ KY

k=1

Z✓ (�+
P
n:zn=k

t(xn),⌫+ Nk)

Z✓ (�,⌫)

ô
(12)

=


Z⇡([↵1+ N1, . . . ,↵K + NK])

Z⇡(↵)

�ñ KY

k=1

Z✓ (�+
P
n:zn=k

t(xn),⌫+ Nk)

Z✓ (�,⌫)

ô

(13)
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The collapsed distribution in a Bayesian mixture model

We’ll simplify the notation by writing,

p({(zn,xn)}Nn=1 | �,⌫,↵) =
Z⇡(↵

0)

Z⇡(↵)

KY

k=1

Z✓ (�
0
k,⌫
0
k)

Z✓ (�,⌫)
(14)

where

↵0 = [↵1+ N1, . . . ,↵K + NK] (15)

�0k = �+
X

n:zn=k

t(xn) (16)

⌫0k = ⌫+ Nk. (17)

This is a general pattern: in exponential families, marginal likelihoods are given by ratios of posterior
and prior normalizing functions.
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Exponential family posterior predictive distributions
Exercise: Consider an exponential family model with a conjugate prior,

✓ ⇠ p(✓ ;�,⌫), xn
iid⇠ p(x | ✓ ) (18)

Derive an expression for the posterior predictive distribution,

p(xN+1 | {xn}Nn=1;�,⌫) =

Z
p(xN+1 | ✓ )p(✓ | {xn}Nn=1;�,⌫)d✓ (19)

in terms of the log normalizing function of the conjugate prior.
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Collapsed Gibbs for Bayesian Mixtures
Now consider the conditional distribution of zn, holding all the other assignments fixed,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)/ Z⇡(↵
0)

KY

k=1

Z✓ (�
0
k,⌫
0
k) (20)

where ↵0, �0k , and ⌫
0
k are computed with zn = k. To simplify, divide by a constant w.r.t. zn,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)/ Z⇡(↵
0)

Z⇡(↵0(¬n))

KY

k=1

Z✓ (�
0
k,⌫
0
k)

Z✓ (�
0(¬n)
k ,⌫0(¬n)k )

(21)

where

↵0(¬n) = [↵1+ N
(¬n)
1 , . . . ,↵K + N

(¬n)
K ] �

0(¬n)
k = �+

X

n0 6=n
t(xn0)I[zn0 = k] (22)

⌫
0(¬n)
k = ⌫+ N(¬n)k N(¬n)k =

X

n0 6=n
I[zn0 = k] (23)
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Collapsed Gibbs for Bayesian Mixtures II

… Then many terms cancel. In the first ratio,

Z⇡(↵
0)

Z⇡(↵0(¬n))
=

QK
k=1 � (↵

0
k) � (

PK
k=1↵

0(¬n)
k )

QK
k=1 � (↵

0(¬n)
k ) � (

PK
k=1↵

0
k)
/ ↵0(¬n)k = ↵+ N(¬n)k (24)

In words, the first ratio is proportion to the size of cluster k before adding the n-th data point.

… In the second ratio, all but the k-th term in the product cancel to leave:

KY

k=1

Z✓ (�
0
k,⌫
0
k)

Z✓ (�
0(¬n)
k ,⌫0(¬n)k )

=
Z✓ (�

0
k,⌫
0
k)

Z✓ (�
0(¬n)
k ,⌫0(¬n)k )

/ p(xn | {xn0 : zn0 = k},�,⌫). (25)

In other words, the second ratio is proportional to the posterior predictive density.
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Collapsed Gibbs for Bayesian Mixtures III
Altogether, the conditional distribution of zn is,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)/ (↵k + N
(¬n)
k )p(xn | {xn0 : zn0 = k},�,⌫), (26)

a function of the size of the cluster and the probability of xn given other points in that cluster.
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The infinite limit: informally speaking

… Now consider a special case where ↵= ↵
K 1K and, loosely speaking, take K!1. In this limit,

we obtain a Dirichlet process mixture model.

… Note how the collapsed Gibbs sampling algorithm changes.

… The probability of assigning the n-th data point to a non-empty cluster is still,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)/ (
↵

K
+ N(¬n)k )p(xn | {xn0 : zn0 = k},�,⌫). (27)

… But now there are only Kused =#unique({zn0}n0 6=n) non-empty clusters, and the remaining
K � Kused unoccupied clusters each have probability,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)/ ↵
K p(xn | �,⌫). (28)
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The infinite limit: informally speaking II
… Since all the empty clusters are equivalent, we can combine them to get,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)

/
®
(↵K + N

(¬n)
k )p(xn | {xn0 : zn0 = k},�,⌫) if k 2 {1, . . . ,Kused}

(K � Kused)↵K p(xn | �,⌫) if k = Kused+ 1,
(29)

where we assume that the cluster labels are permuted after each iteration so that only
k = 1, . . . ,Kused are non-empty.

… As K!1, these updates simplify to the classic collapsed Gibbs updates for DPMMs,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)

/
®
N(¬n)k p(xn | {xn0 : zn0 = k},�,⌫) if k 2 {1, . . . ,Kused}
↵p(xn | �,⌫) if k = Kused+ 1.

(30)

14 / 33



The infinite limit: informally speaking II
… Since all the empty clusters are equivalent, we can combine them to get,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)

/
®
(↵K + N

(¬n)
k )p(xn | {xn0 : zn0 = k},�,⌫) if k 2 {1, . . . ,Kused}

(K � Kused)↵K p(xn | �,⌫) if k = Kused+ 1,
(29)

where we assume that the cluster labels are permuted after each iteration so that only
k = 1, . . . ,Kused are non-empty.

… As K!1, these updates simplify to the classic collapsed Gibbs updates for DPMMs,

p(zn = k | xn, {(zn,xn)}n0 6=n,�,⌫,↵)

/
®
N(¬n)k p(xn | {xn0 : zn0 = k},�,⌫) if k 2 {1, . . . ,Kused}
↵p(xn | �,⌫) if k = Kused+ 1.

(30)

14 / 33



The infinite limit: informally speaking III

As the Gibbs sampler runs, it has some probability of deleting a cluster (by removing its last data point)
and some probability (determined by ↵) of creating a new cluster with one data point. In this sense,
the model is nonparametric: it doesn’t require you to specify K in advance.

These probabilities are size-biased, you’re more likely to add a data point to a large cluster.

There are many other ways to arrive at the DPMM:

1. via an stochastic process on partitions called the Chinese restaurant process (CRP)

2. as a random measure on ✓ with a countably infinite number of weighted atoms, only a finite
number of which are used.

3. via a stick-breaking construction to get the weights of the random measure.

Orbanz [2014] offers an accessible, book-length treatment of these important models.
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Random measure perspective
… Another way to arrive at the DPMM is by thinking in terms of random measures,

⇥ =
1X

k=1

⇡k �✓ k (31)

where ⇡k 2 R+ are the weights and ✓ k are the locations. Since the weights and locations are
random variables, ⇥ is a random measure.

… In particular, it’s a random measure on the space of ✓ with a countably infinite number of atoms.

… If the weights sum to one, it’s a random probability measure.

… In Bayesian mixture models, ⇥ serves as the random mixing measure in,

p(x) =
1X

k=1

⇡k p(x | ✓ k) =
Z
p(x | ✓ )⇥(d✓ ). (32)
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Constructing a random measure

… The simplest way to construct a random measure is to sample the locations independently,

✓ k
iid⇠ p(✓ | �,⌫). (33)

Such a measure is called homogeneous.

… The weights cannot be independent if they’re to sum to one. For finite mixtures, a simple
alternative is to sample weights and then normalize them,

wk ⇠ p(w), ⇡k =
wkPK
j=1wj

. (34)

… Question: When p(w) = Gamma(w;↵,1), what distribution does this imply on ⇡?

… Question: When p(w) = Gamma(w;↵,�), what distribution does this imply on ⇡?
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Constructing a random measure with an infinte number of atoms
This trick doesn’t work for infinite mixtures; the sum of weights diverges almost surely.

Question: how else could you sample ⇡= (⇡1,⇡2, . . .) so that
P1
k=1⇡k = 1?
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Stick breaking construction of the Dirichlet process

… Stick breaking construction: think of the interval [0,1] as a unit-length “stick.”

… Let `k denote the fraction of the remaining stick given to component k. Then sample,

`k ⇠ p(`k) ⇡k = `k

k�1Y

j=1

(1� `j). (35)

… When p(`k) = Beta(`k;1,↵), this yields a Dirichlet process.

… If we have finite K, setting ⇡K =
QK�1

j=1 (1� `j) yields a finite Dirichlet distribution on ⇡.
… We say ⇥ ⇠ DP(↵,G) where G is the distribution with density p(✓ | �,⌫).
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Naïve Gibbs sampling in the DPMM
… We can equivalently sample a Bayesian mixture model as,

✓ n
iid⇠ ⇥ (36)

xn ⇠ p(x | ✓ n) (37)

for n= 1, . . . ,N

… Since ⇥ is an atomic measure, there is some probability that ✓ n = ✓ n0 for two different data
points.

… Now we can run a Gibbs sampler on {✓ n}Nn=1, sampling their conditionals,

p(✓ n | {✓ n0}n0 6=n, {xn}Nn=1)/ ↵p(xn | ✓ n)p(✓ n | �,⌫) +
X

n0 6=n
p(xn | ✓ n0)�✓ n0 (✓ n), (38)

which is an uncollapsed Gibbs sampler.

… When p(x | ✓ ) is an exponential family distribution and p(✓ | �,⌫) is its conjugate prior, the first
term is available in closed form.

21 / 33



Naïve Gibbs sampling in the DPMM
… We can equivalently sample a Bayesian mixture model as,

✓ n
iid⇠ ⇥ (36)

xn ⇠ p(x | ✓ n) (37)

for n= 1, . . . ,N

… Since ⇥ is an atomic measure, there is some probability that ✓ n = ✓ n0 for two different data
points.

… Now we can run a Gibbs sampler on {✓ n}Nn=1, sampling their conditionals,

p(✓ n | {✓ n0}n0 6=n, {xn}Nn=1)/ ↵p(xn | ✓ n)p(✓ n | �,⌫) +
X

n0 6=n
p(xn | ✓ n0)�✓ n0 (✓ n), (38)

which is an uncollapsed Gibbs sampler.

… When p(x | ✓ ) is an exponential family distribution and p(✓ | �,⌫) is its conjugate prior, the first
term is available in closed form.

21 / 33



Collapsed Gibbs sampling in the DPMM
… Unfortunately, the uncollapsed Gibbs sampler tends to mix slowly.

… As before, we can marginalize over (“collapse out”) the cluster parameters ✓ .

… This is equivalent to performing Bayesian inference over a partition of indices [N]¨ {1, . . . ,N}.
… A partition is a set of disjoint, non empty sets whose union is [N]:

C = {Ck : |Ck|> 0} (39)

where Ck = {n : zn = k}. (40)

… The Gibbs sampler over partitions reduces to a straightforward update,

p(zn = k | X , {zn0}n0 6=n)/
(

↵
↵+N�1p(xn | �,⌫) if k is in a new cluster
N(¬n)k
↵+N�1p(xn | {xn0 : zn0 = k},�,⌫) o.w.

(41)
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Collapsed Gibbs sampling in the DPMM
… Unfortunately, the uncollapsed Gibbs sampler tends to mix slowly.

… As before, we can marginalize over (“collapse out”) the cluster parameters ✓ .
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The Chinese Restaurant Process (CRP)
… Another way to sample a DPMM is to first sample the partition of [N],

C ⇠ p(C ;N,↵) (42)

and then for each Ck 2 C sample,

✓ k
iid⇠ G (43)

xn ⇠ p(x | ✓ k) for n 2 Ck (44)

… The prior distribution on partitions is called a Chinese restaurant process (CRP).

Initialize C =?. For each n= 1, . . . ,N:

1. insert n into existing block Ck with probability |Ck |
↵+n�1 , or

2. create a new block with probability ↵
↵+n�1 .

… Question: Why doesn’t the CRP prior depend on G? (I.e. on the hyperparameters � and ⌫.)
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The CRP suggests a way of sampling a DPMM one data point at a time
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The CRP as a prior on binary matrices with one-hot rows
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The Indian Buffet Process (IBP) as a prior on binary feature matrices
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Pitman-Yor processes
The Pitman-Yor process (PYP) generalizes the DP to allow for more general distributions over cluster
sizes.

We say ⇥ ⇠ PYP(↵,d,G) is a Pitman-Yor process with concentration ↵, discount d, and base measure
G if

⇥ =
1X

k=1

⇡k�✓k (45)

`k ⇠ Beta(1� d,↵+ kd) (46)

⇡k = `k

k�1Y

j=1

(1� `j) (47)

✓ k
iid⇠ G (48)

When d = 0 we recover the DP; when d > 0 the PY produces a power law distribution over cluster
sizes.
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Mixture of finite mixture models
… DPMMs are often used to select the number of mixture components automatically, but they are
actually misspecified for this task.

… The DP random measure has an infinite number of atoms almost surely. As N!1, we get an
infinite number of clusters with probability one.

… When we believe the data to have an unknown but finite number of clusters, mixture of finite
mixture models (MFMMs) [Miller and Harrison, 2018] are more appropriate,

K ⇠ p(K) [e.g. K � 1⇠ Po(�)] (49)

⇡ ⇠ Dir(↵1K) (50)

✓ k
iid⇠ G for k = 1, . . . ,K (51)

zn
iid⇠ ⇡ for n= 1, . . . ,N (52)

xn ⇠ p(x | ✓ zn) for n= 1, . . . ,N (53)

… Surprisingly, very similar collapsed Gibbs sampling algorithms can be derived for MFMMs.
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Outline

… Collapsed Gibbs sampling for Bayesian Mixture Models

… Dirichlet process mixture models and random measures

… Poisson random measures
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Poisson random measures

… Dirichlet processes and Poisson processes are closely related. In fact, DPs are instances of
Poisson random measures.

… Consider the unnormalized weights and parameters to be a realization of a marked point process,

{wk,✓ k}Kk=1 ⇠ PP(�(w,✓ )) (54)

where � : R+ ⇥RD! R+, and define,

µ=
KX

k=1

wk�✓ k . (55)

This is an unnormalized random measure on RD.
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Poisson random measures II
… A Poisson random measure is homogeneous if the intensity factors as,

�(w,✓ ) = �(w) ·�(✓ ). (56)

… Now suppose the weight intensity is,

�(w) = ↵w�1e��w . (57)

Then
R1
0 �(w)dw =1, so the random measure has infinitely many atoms almost surely.

… However, the measure assigned to any setA ✓ RD is,

µ(A ) =
X

k:✓ k2A
wk ⇠ Ga(↵G(A ), 1). (58)

and the total measure W =
P1
k=1wk ⇠ Ga(↵,1) is almost surely finite.

… We say µ=
P1
k=1wk�✓ k is a gamma process because �(w)/ Ga(w;0,�).
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Dirichlet processes are normalized gamma processes

… If µ is a gamma process, the normalized random measure is a Dirichlet process,

µ=
1X

k=1

wk�✓ k ⇠ GaP(↵,G) ) ⇥ =
1X

k=1

wk
W
�✓ k ⇠ DP(↵,G). (59)

… We can get other Poisson random measures by changing the weight intensity. E.g.

… �(w) = �w�(↵+1) yields a stable process, and
… �(w) = �w�1(1�w)↵�1 yields a beta process.

… Completely random measures further generalize Poisson random measures.

… If µ is a CRM, then ⇥ = µ
W is independent of W iff µ is a gamma process; i.e. ⇥ is a DP.
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