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Outline

» Collapsed Gibbs sampling for Bayesian Mixture Models
» Dirichlet process mixture models and random measures

» Poisson random measures
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Finite Bayesian Mixture Models K- 4 compowents

1. Sample the proportions from a Dirichlet prior with a € Ri: (R e l“\

7 ~ Dir(a) (1)

2. Sample the parameters for each component:

0, ~p0|¢,v) fork=1,...,K 2)

3. Sample the assignment of each data point:

2 X forn=1,...,N (3)

4. Sample data points given their assignments:
Xn"’P(X|92n) forn=1,...,N (4)

3/33



Joint distribution

» This generative model corresponds to the following factorization of the joint distribution
K N _
p(ﬂ:: {Hk}k:]_) {(Znaxn)}n:]_ | ¢9 Y, a) o
N K

pir(n | @) | [p(0, 16,9 | || [lmcpCxs 10017 (3)
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Joint distribution

» This generative model corresponds to the following factorization of the joint distribution
K N _
p(ﬂ:) {ek}k:]_) {(Znaxn)}n:]_ | ¢9 Y, a) o
N K

Dir(7 | a) l_[p(ﬂk | ¢, V) l_”_[ [t p(x), | Bk)]ﬂ[z”:k] (5)

> Let’s assume an exponential family likelihood,
p(x | 0,) = h(x,)exp {(t(x,),0,) —A(0,)}. (6)

» Then assume a conjugate prior,
1
Z(¢,v)

where Zy (¢, v) is the normalizing function.

exp {(¢,0,) —vA(8,)}. (7)

p(ek | ¢3 V) —
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“Collapsing” out variables

In some models, we can marginalize (aka collapse or integrate out) some variables to work on a lower
dimensional distribution.

Typically, this is possible in models constructed with conjugate exponential family distributions.
.r(g X) = ?(e\ ‘IFftx.\\e)
L <) §0-vA T A, PRI -He

- = 200
‘. i) o - g+N)A (e} 49
.@ ()() Sf(e )‘)d 3‘% SQX(’}(@ Ll \\6 ( X

Eﬂh(*ﬂ 7, (§+ E0W), ‘”“)
(&, 9)
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Collapsing out the parameters in a Bayesian mixture

Let’s marginalize the parameters {¢9k}f:1 in the exponential family mixture model,

p(n:{(znaxn)}g:1 | ¢, v, a) — Dir(ﬂ: | a) : |:f p(ok | ¢9 V) ; [Tckp(xn | ek)]ﬂ[zn:k] Cl0k:| (8)
1 [Tirote 0015

k=1 n=1

— 1~

o< Dir(7 | @)

1 ﬂng Ze(;), » exp{<¢ +n:znkt(Xn),0k>_(V+Nk)A(0k)}dek ()

|:7-.CN/<ZO(¢ +Zn:zn:k t(Xn)J V+Nk):| -
‘ 29(4): V)

— 1~ 7

= Dir(n | @) (10)

=
I

1

where Zy (¢, v) is the normalizing function of the conjugate prior p(0 | ¢, v).

N * 21‘}”1 \L} = 4 p%% in CMPW L%
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Collapsing out the cluster probabilities in a Bayesian mixture

While we're at it, let’s marginalize the mixture proportions 7, too. The Dirichlet density is,

l_[le 1_‘(O‘k)

where Z. (a) = (11)

) 1 T(Y e )

Plugging this in and integrating over 7t yields,

=

Dir(7 | a)

K
p({(zp X)) }_, | @, v, @) = JDir(Tc | a)l_[ﬂ:gk dn}
k=1

i Zo(9, V) o

_‘zn([a1+N1,...,a,<+NK]] K Zo(@+ 20, —tx n)V+Nk)}
G

ZTL' k=1 ZO(¢J 1))

[ﬁ29(¢+2nzk v+Nk):|
)

(13)
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The collapsed distribution in a Bayesian mixture model

We'll simplify the notation by writing,

 Zo(@) 77 Z0(95 7))
“ 7@ L 206 o

where
a/:[a1+N1,...,aK—|—NK] (15)
$,=0+ >, tx,) (16)
n:z,=k
v, = v+ N (17)

This is a general pattern: in exponential families, marginal likelihoods are given by ratios of posterior
and prior normalizing functions.
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Exponential family posterior predictive distributions
Exercise: Consider an exponential family model with a conjugate prior,

iid

0 ~p(0;¢,v), x,~p(x|0)

Derive an expression for the posterior predictive distribution,

p(XN+1 | {Xn}gzl; 4), V) — p(XN—I—l | H)P(O | {X rl\’l:1; ¢: V) de
addr

\/-v—*
in terms o%m log normalizing function of the conjugate prior. ??4;',\")
N+l
/ \ N*¢ \)
- 7, (b B 1, 7
© © @ - L\(xm) ! —

Z(+ ‘iﬂlﬂ )

hat

(18)

(19)
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Collapsed Gibbs for Bayesian Mixtures

Now consider the conditional distribution of z,,, holding all the other assignments fixed,

I[Zh-w]
P(2y | X {(20:X0) Yo s 5 V2 @) < 2, (a)ﬁze(qbk, ;) (20)

where o/, qbz, and ”2 are computed with z, = k. To simplify, divide by a constant w.r.t. z,,

@) (5 B T
O\F ko Yk
p(zn # | Xn: {(Znaxn)}n’;én: ¢: v, a) ( /(_ln)) l_[ /(_ln), ;((_'”))X (21)

=112 (
where
a/CN =[ay + N+ N7 D~ > ) llze =K 22)
n'#n
" =y N7 N = Iz, = 4 (23)

n’#n
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Collapsed Gibbs for Bayesian Mixtures Il o o’ o o

° o
(') »
» Then many terms cancel. In the first ratio,
/ T T /(_'n)
Zn(a ) 1 .k 1 ( k) (Zk 1@ a/(—m) N N(—ln) (24)
7 (/0N K /(ﬁn ko k
(@) T )T, @)

In words, the first ratio is_ore adding the n-th data point.
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Collapsed Gibbs for Bayesian Mixtures I

» Then many terms cancel. In the first ratio,

/ K / K /(_'”)
Ze(a') | L= Pl ) T( Q=12 ) /(=n) _ (=n)
Zo(@C) " T e S oc = ath, (24)
& | L=y Tl ) I Zk:1 a,)

In words, the first ratio is proportion to the size of cluster k before adding the n-th data point.

» In the second ratio, all but the k-th term in the product cancel to leave:

K 2? (‘p/, /) 2? ((ﬁ/, /)
l_[ 0/(ﬁnl)< f(ﬁn) 0/(ﬁnl)< I;(ﬁn) o< p(x, | {xp : 2y =k}, @, ). (25)
k=1 Z ( 5 k ) Z (¢ ’ )

In other words, the second ratio is proportional to the posterior predictive density.
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Collapsed Gibbs for Bayesian Mixtures Il

Altogether, the conditional distribution of z,, is,

P(20 = K | X (23 X ) Yoo D5 72 @) 0 (e + NS ™) p(Xy | {0 2 200 = K}, b, ), (26)

a function of the size of the cluster and the probability of x, given other points in that cluster.

@ Y ey

- E)>D

M - W S:)
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The infinite limit: informally speaking

» Now consider a special case where a = %1K and, loosely speaking, take K — ©90. In this limit,
we obtain a Dirichlet process mixture model.

» Note how the collapsed Gibbs sampling algorithm changes.
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The infinite limit: informally speaking

» Now consider a special case where a = %1K and, loosely speaking, take K — ©90. In this limit,
we obtain a Dirichlet process mixture model.

» Note how the collapsed Gibbs sampling algorithm changes.

» The probability of assigning the n-th data point to a non-empty cluster is still,

p(zn =k | Xn> {(men)}n’#n: ¢: Vs a) o< (% + N/E_ln))p(xn | {Xn’ C Ly = k}: ¢: V). (27)

» But now there are only K ceq = #unique({zn/}n/#n) non-empty clusters, and the remaining
K — K seq Unoccupied clusters each have probability,

p(z0 =k | Xp, {(20%0) b ens @, v, @) < T p(%, [ D, 9). (28)

jf' (¥a\e) ?\G\W\ A®
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The infinite limit: informally speaking Il

P Since all the empty clusters are equivalent, we can combine them to get,

,D(Zn =k | Xn> {(men)}n’#n: ¢: v, a)

. {(% N p(xy | 0y 2 = K, %) iFKE (1, Kyseq)

. (29)
(K_Kused)%p(xn | ‘l): 1/) if k= Kused + 1:

where we assume that the cluster labels are permuted after each iteration so that only
k=1,...,K seq are non-empty.
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The infinite limit: informally speaking Il

P Since all the empty clusters are equivalent, we can combine them to get,

,D(Zn =k | Xn> {(Znsxn)}n’#n: ¢: v, a)

iy {(% N p(xy | 2 2 = K}, v) IFKE (L, ..., Kuseq) 9
(K_Kused)%p(xn | (l),V) ifk:Kused—i_]-:
where we assume that the cluster labels are permuted after each iteration so that only
k=1,...,K seq are non-empty.
» As K — o0, these updates simplify to the classic collapsed Gibbs updates for DPMMs,
,D(Zn = k| X, {(Znaxn)}n’;én: ?,, a)
- N p(xy | (X 2 = K}, 8, %) IfKE (L., Kysea) 0
ap(x,| ¢,v) if k= Kyeeq + 1.
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—
"w
As the Gibbs sampler runs, it has some probability of deleting a cluster (by removing its last data point)
and some probability (determined by a) of creating a new cluster with one data point. In this sense,

the model is nonparametric: it doesn’t require you to specify K in advance.

. "4
The infinite limit: informally speaking lll K I_'—’ L[_,. — %‘?( 0
\

These probabilities are size-biased, youre more likely to add a data point to a large cluster.
There are many other ways to arrive at the DPMM: QD—-) & @ @ - @
1. via an stochastic process on partitions called the Chinese restaurant process (CRP)

2. as a random measure on 6 with a countably infinite number of weighted atoms, only a finite
number of which are used.

3. via a stick-breaking construction to get the weights of the random measure.

Orbanz [2014] offers an accessible, book-length treatment of these important models.
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Outline

» Collapsed Gibbs sampling for Bayesian Mixture Models
P Dirichlet process mixture models and random measures

» Poisson random measures
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Random measure perspective

» Another way to arrive at the DPMM is by thinking in terms of random measures,

o0 \ a
©=> m by, ““w (31)
k=1

© %99 %,

where , € R, are the weights and 0 are the locations. Since the weights and locations are
random variables, © is a random measure.
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Random measure perspective

» Another way to arrive at the DPMM is by thinking in terms of random measures,

oY > 750, ’ﬂl.\f‘.._‘ (31)
k=1

where , € R, are the weights and 0 are the locations. Since the weights and locations are
random variables, © is a random measure.

» |n particular, it's a random measure on the space of 8 with a countably infinite number of atoms.

P If the weights sum to one, it’s a random probability measure.

P |n Bayesian mixture models, © serves as the random mixing measure in,

p(x) = > mep(x ] 0,) :JP(X| 0)©e(do). (32)
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Constructing a random measure

» The simplest way to construct a random measure is to sample the locations independently,

0,~p(0|9,). R ® 63

]

9‘01 o bu

Such a measure is called homogeneous.
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Constructing a random measure

» The simplest way to construct a random measure is to sample the locations independently,

iid

0,~p(6|¢,v). (33)
Such a measure is called homogeneous.

» The weights cannot be independent if theyre to sum to one. For finite mixtures, a simple
alternative is to sample weights and then normalize them,

Wi ~ p(W), T = (34)
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Zj:l Wi

Wi ~ p(W), T = (34)
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Constructing a random measure

» The simplest way to construct a random measure is to sample the locations independently,

iid

0,~p(6|¢,v). (33)
Such a measure is called homogeneous.

» The weights cannot be independent if theyre to sum to one. For finite mixtures, a simple
alternative is to sample weights and then normalize them,

Wi

2 .
Zj:l Wi

Wi ~ p(W), T = (34)

» Question: When p(w) = Gamma(w; a, 1), what distribution does this imply on 7t?
» Question: When p(w) = Gamma(w; a, ), what distribution does this imply on 7t? Dir (‘*)

)

\N"'C,G-lo‘.?) i ‘T’W ) oW~ C‘u(‘()‘)
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Constructing a random measure with an infinte number of atoms
This trick doesn’t work for infinite mixtures; the sum of weights diverges almost surely.

Question: how else could you sample 7t = (74, 7T5,...) so that Zzl m, =12

1T = [}T,)ffl, e = 1&
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Stick breaking construction of the Dirichlet process

> Stick breaking construction: think of the interval [0, 1] as a unit-length “stick.”

» Let £, denote the fraction of the remaining stick given to component k. Then sample,

k—1
G~ p(L) me= ] [a-¢). (35)
j=1
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> If we have finite K, setting 7ty = ]_[j/:ll(l —{;) yields a finite Dirichlet distribution on 7.
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Stick breaking construction of the Dirichlet process

> Stick breaking construction: think of the interval [0, 1] as a unit-length “stick.”

» Let £, denote the fraction of the remaining stick given to component k. Then sample,
k—1
G~ p(L) me= ] [a-¢). (35)
j=1

> When p({,) = Beta({,; 1, a), this yields a Dirichlet process.
> If we have finite K, setting 7ty = ]_[j/:ll(l —{;) yields a finite Dirichlet distribution on 7.

> We say © ~ DP(a, G) where G is the distribution with density p(0 | ¢, v).

‘“‘\ﬂ(\l \\ ( LX/

%N .. 20,53




Naive Gibbs sampling in the DPMM

» We can equivalently sample a Bayesian mixture model as,
0. <o (36)
Xy~ p(X | on) (37)
forn=1,...,N

» Since © is an atomic measure, there is some probability that 8, = 0, for two different data
points.
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Naive Gibbs sampling in the DPMM

» We can equivalently sample a Bayesian mixture model as,

0. <o (36)
Xy~ p(X | on) (37)

forn=1,...,N

» Since © is an atomic measure, there is some probability that 8, = 0, for two different data
points.

» Now we can run a Gibbs sampler on {Hn}gzl, sampling their conditionals,

P8, 110, b o IXa}_) o< ap(x, 1 0,)p(0, | 6, %)+ D p(x, 1 0,)80,(0,),  (38)
n’'#n
which is an uncollapsed Gibbs sampler.
» When p(x | ) is an exponential family distribution and p(0 | ¢, v) is its conjugate prior, the first

term is available in closed form.
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Collapsed Gibbs sampling in the DPMM

» Unfortunately, the uncollapsed Gibbs sampler tends to mix slowly.
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Collapsed Gibbs sampling in the DPMM
» Unfortunately, the uncollapsed Gibbs sampler tends to mix slowly.
» As before, we can marginalize over (“collapse out”) the cluster parameters 6.
» This is equivalent to performing Bayesian inference over a partition of indices [N] ={1,...,N}.
> A partition is a set of disjoint, non empty sets whose union is [N]:

where 6, ={n:z,=k}. (40)
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Collapsed Gibbs sampling in the DPMM
» Unfortunately, the uncollapsed Gibbs sampler tends to mix slowly.
» As before, we can marginalize over (“collapse out”) the cluster parameters 6.
» This is equivalent to performing Bayesian inference over a partition of indices [N] ={1,...,N}.
> A partition is a set of disjoint, non empty sets whose union is [N]:

where 6, ={n:z,=k}. (40)

» The Gibbs sampler over partitions reduces to a straightforward update,

a . .
=P, | ¢, 7) if k is in a new cluster
p(Zn — k | X, {Zn’}n’;én) < { NlEﬁn) (41)
a—l—N—lp(Xn | {Xn/ Ly = k}, ¢, V) 0.W.
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The Chinese Restaurant Process (CRP)
> Another way to sample a DPMM is to first sample the partition of [N],

€ ~p(€;N,a) (42)
and then for each 6, € 6 sample,

0, ~G (43)

x,~p(x|0,) forne 6, (44)
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» The prior distribution on partitions is called a Chinese restaurant process (CRP).

Initialize € = &. Foreachn=1,...,N:

1. insert n into existing block 6, with probability %, or
a
a+n—1-

2. create a new block with probability
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The Chinese Restaurant Process (CRP)
> Another way to sample a DPMM is to first sample the partition of [N],

€ ~p(€;N,a) (42)

and then for each 6, € 6 sample,
0, ~G (43)
x,~p(x|0,) forne 6, (44)

» The prior distribution on partitions is called a Chinese restaurant process (CRP).

Initialize € = &. Foreachn=1,...,N:

1. insert n into existing block 6, with probability %, or
a
a+n—1-

2. create a new block with probability

» Question: Why doesn’t the CRP prior depend on G? (l.e. on the hyperparameters ¢ and v.)
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The CRP suggests a way of sampling a DPMM one data point at a time
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The CRP as a prior on binary matrices with one-hot rows
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The Indian Buffet Process (IBP) as a prior on binary feature matrices
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Pitman-Yor processes
The Pitman-Yor process (PYP) generalizes the DP to allow for more general distributions over cluster
sizes.

We say © ~ PYP(a, d, G) is a Pitman-Yor process with concentration a, discount d, and base measure
G if

0=> mdy, (45)
k=1

¢, ~Beta(1—d,a + kd) (46)
k—1

mo=L] [(1-¢) (47)
j=1

iid
0,~G (48)

When d = 0 we recover the DP; when d > 0 the PY produces a power law distribution over cluster

sizes.
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Mixture of finite mixture models

» DPMMs are often used to select the number of mixture components automatically, but they are
actually misspecified for this task.

» The DP random measure has an infinite number of atoms almost surely. As N — o0, we get an
infinite number of clusters with probability one.

» When we believe the data to have an unknown but finite number of clusters, mixture of finite
mixture models (MFMMs) [Miller and Harrison, 2018] are more appropriate,

K ~ p(K) [e.g. K—1 ~ Po(A)] (49)
nt ~ Dir(aly) (50)
0, <G fork=1,...,K (51)
2. N forn=1,...,N (52)
x,~p(x|0,) forn=1,...,N (53)

» Surprisingly, very similar collapsed Gibbs sampling algorithms can be derived for MFMMs,
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Outline

» Collapsed Gibbs sampling for Bayesian Mixture Models
» Dirichlet process mixture models and random measures

» Poisson random measures
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Poisson random measures

» Dirichlet processes and Poisson processes are closely related. In fact, DPs are instances of
Poisson random measures.

P Consider the unnormalized weights and parameters to be a realization of a marked point process,
{wy, 0, }:_, ~PP(A(w,0)) (54)

where A : R, x R® - R, and define,

K
,u:ZWk59k. (55)
k=1

This is an unnormalized random measure on R”.
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Poisson random measures Il
» A Poisson random measure is homogeneous if the intensity factors as,

A(w, 8) = A(w) - A(8). (56)
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Poisson random measures Il
» A Poisson random measure is homogeneous if the intensity factors as,

A(w,8) = A(w) - 1(8). (56)

> Now suppose the weight intensity is,
A(w) = aw e P, (57)

Then fooo A(w)dw = o0, so the random measure has infinitely many atoms almost surely.

31/33



Poisson random measures Il
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A(w,8) = A(w) - 1(8). (56)

» Now suppose the weight intensity is,
A(w) = aw e P, (57)

Then fooo A(w)dw = o0, so the random measure has infinitely many atoms almost surely.

» However, the measure assigned to any set .o/ C RP is,

u()= > w,~Ga(aG(.),1). (58)
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and the total measure W = >~ w, ~ Ga(a, 1) is almost surely finite.
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Poisson random measures Il
» A Poisson random measure is homogeneous if the intensity factors as,

A(w,8) = A(w) - 1(8). (56)

» Now suppose the weight intensity is,
A(w) = aw e P, (57)

Then fooo A(w)dw = o0, so the random measure has infinitely many atoms almost surely.

» However, the measure assigned to any set .o/ C RP is,

u()= > w,~Ga(aG(.),1). (58)
k:0,€.of

and the total measure W = >~ w, ~ Ga(a, 1) is almost surely finite.

> Wesayu=>., w6, is a gamma process because A(w) o< Ga(w; 0, f3).
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Dirichlet processes are normalized gamma processes

» If u is a gamma process, the normalized random measure is a Dirichlet process,

oo (e @)
w
u=> wdy ~GaP(a,G) = ©= ) Wk50k ~ DP(a, G). (59)

> We can get other Poisson random measures by changing the weight intensity. E.qg.
> A(w) = yw (@) yields a stable process, and
> A(w) = yw (1—w)* ! yields a beta process.

> Completely random measures further generalize Poisson random measures.

» If uisa CRM, then ® = % is independent of W iff u is @ gamma process; i.e. © is a DP.
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