STATS 305C: Practice Exam

Name:



Problem 1: Gaussian models

Consider the following model,

xn’di}gﬂ(o,aﬁ) forn=1,...,N;d=1,...,D
d

0§=“A;1 ford=1,...,D
k=1

)Ldlnga(a,l) ford=1,...,D

(a) Suppose a > 1. Describe how this multiplicative inverse gamma prior affects the distribution of the
data, x, 4. For example, how does the distribution of x,, ; generally compare to that of x, ?

(b) Let A = {A; }Ille and X = {{x, 4}d = 1P }],;’:1. Derive a Gibbs sampler for the posterior distribu-
tion p(4 | X; a).



Problem 2: Hierarchical models.

Recall the probability density function of the gamma distribution, p(4; a, ) = %Aa_le_ﬁ . where T'(+)
is the gamma function. Now consider the following hierarchical model,

ﬁg ~ Ga(ay, o)
Ag ~ Ga(a, B,) forg=1,...,G
Xgn ~Po(Ag) forg=1,...,G;n=1,...,N.

Using the Poisson probability mass function p(x | A) = %A’“e_’l, derive a Gibbs sampling algorithm for
this hierarchical model. Specifically, derive the conditional distributions,

* P(Ag | {xgntnoys Bys ),
° p(ﬁg | Ag;%: ﬂO)



Problem 3: Graphical models.

(a) Draw the graphical model corresponding to this joint probability distribution,

N N
P, Yalo_y; @, B,7) = p(x; | @) [l_[p(xn | xn_l;/s)] [l_[p(yn | x,m].

n=2 n=1

(b) Write the joint distribution corresponding to the graphical model in Figure 1.

fﬁ*

S

k;;;;;;;l%,

Figure 1



Problem 4: Continuous latent variable models

Canonical correlation analysis is a technique for paired datasets {(x,, yn})}’g’:1 where x, € RPx and
¥, € RPr. Like PCA, it can be viewed as a limiting case of a linear Gaussian model latent variable
model,

zZ,~ JV(O;I)
x,~AN W,z,+b,,X,)
Yo~ A (Wyz,+b,, %))

Derive the conditional distribution p(y,, | x,; @) where § = (W ,,W,,b,,b,,%,,3%,).



Problem 5: The Bayesian Lasso

The Lasso problem is an L, penalized least squares problem,

D

N
Lw) =D llyn—x w3 +20 > Iwgl. &)

n=1 d=1

From a Bayesian perspective, minimizing ¢ (w) is equivalent to maximum a posteriori (MAP) estimation
in the following Bayesian model,

wq % Lap(A)

u~d</V(x w,o?), 2)

where Lap(2) denotes a Laplace distribution with density Lap(w; 1) = Ze",

(a) Find a setting of A such that the MAP estimate of model (2) is the same as the minimizer of eq. 1.
Your solution should be in terms of A, and o2.

(b) The Laplace density can also be written as a scale mixtures of Gaussians,

Lap(w; A) = A gl — f " N (w;0,v) - Exp( dv = . ’1_26—% dv
’ 2 0 77 \/_ 2
Lety = { yn}N ,and X = {xn}yzl. Use the integral representation above to write a joint distribu-
tion,
p(w,v,y | X;2,0%)
on an extended space that includes the augmentation variables v = (v4,...,vp), such that the

marginal distribution p(w,y | X; A, 02) matches that of the generative model described in eq. (2).

(c) What algorithm would you use to perform Bayesian inference to approximate the posterior distri-
bution p(w,v | X,y; A, 02)? Sketch out the steps involved.



Problem 6: Mixture Models

Consider the following zero-inflated Poisson regression model where w, x,, € R, y, € N, and z,, € {0, 1},

w| a,B ~Gamma(a, )
z, | 7 ~ Bern(y)

id
Yo | Xp, 24, w ~ Poisson(wx,z,).

(a) Sketch the probability mass function of the marginal distribution p(y,, | x,,w,y) for y € {0,0.5,1},
assuming wx,, = 5. What is p(y,, =0 | x,,,w,y)? (Note: 0! =1 and 0° = 1.)

(b) Compute the conditional distribution p(z, =1 | yp, Xp, W, 7).

(c) Compute the expected log probability,

z(w) = IEp(z|y,x,w’,}/) [IOgP({J’n, xnyzn}g:p w I a, ﬂ; Y)] 5

where w’ denotes a fixed weight. For notational simplicity, let q,, = p(z, = 1 | y,,, X, W, y) denote
the solution to part (c), and drop terms in £ (w) that are constant with respect to w.

(d) Assume a > 1. Solve for w* = argmax ¥ (w) using the fact that the mode of the Gamma(a, b)
distribution is at (a—1)/b when a > 1.



Problem 7: Mixed Membership Models

Latent Dirichlet allocation (LDA) corresponds to the following generative model,

N ~ Dir(¢) fork=1,...,K
7, ~ Dir(a) forn=1,...,N

Zng ~ Ty forn=1,...,.N;{=1,...,L
Xng ~ Ny, forn=1,...,N;{=1,...,L

where 7, € Ay, are the topics (i.e. distributions over words) and «,, € Ag are the topic proportions (i.e.
distributions over topics).

However, this model fails to capture correlations in the topic proportions; for example, that a “finance”
topic and a “government” topic may often co-occur in the same document. Correlated topic models
address this limitation by replacing the Dirichlet prior on 7, with a logistic normal prior,

u u T
eltnl eltnk-1 1 :|
K—1 ERRRE K—1 g K—1

14D, etnk T4 etk 14>, etk

n, = softmax(u,) = [
u, ~ A X)

where u,, € RK71. The correlations in u,, due to the multivariate normal prior induce correlations in 7,
as well.

1
(a) Without doing any math, sketch the density of 7, € A; when u=1[0,0]" and % = [ 0 (1)] Do the
1
1

2

= N=

same for u=[0,0]" and & = [ ] Explain your reasoning.

(b) Try to derive CAVI updates for this model. Where do you run into trouble and why?



Problem 8: Variational autoencoders

Consider the following deep mixture model,

2y~ T
xp~ N (u, ;)
Yo~ N(f(xpsw),0?I)

where z, € {1,...,K} is a discrete latent variable, x,, € R is a continuous latent variable, y, € R” is
an observed data point, and f : RM — RP? is a neural network with weights w. The generative model
parameters are 6 = (7, {, Zk}llle, w).

(a) Suppose you wanted to perform fixed form variational inference to approximate the poste-
riot, p(2z,,x, | ¥,;0) ~ q(2,,x,; @), with variational parameters ¢. What challenges might
you encounter when trying to maximize the local ELBO, %,(8, ¢ ), using stochastic gradient ascent
and the reparameterization trick (i.e. the pathwise gradient estimator)?

(b) Suggest an alternative to the reparameterization trick that could allow you to fit 8 and ¢. What
challenges might this alternative present?

(c) Rewrite the generative model by marginalizing over z,, to obtain a collapsed model p(x,,y,; @),
and assume a variational posterior q(x,; ¢ ). Can you use the reparameterization trick now?



Problem 9: State space models

In class we studied state space models for sequential data, like hidden Markov models and linear
dynamical systems. Here we will consider similar models for 2-dimensional data. Suppose we observe a
image y € R¥*" which we believe to be a noisy version of an underlying binary image x € {0, 1}’*V,
Given y, we wish to recover the true image x which it was derived from. We formulate this as a
probabilistic inference problem. We will assume the image is square and start by constructing a graph
which connects neighboring pixels. The graph for H = W = 3 is shown below, with the node labels
corresponding to the indices in the vectors y and x.

Our prior on x will be given as an Ising model, which encodes our belief that nearby pixels are likely to
be similar:

p(x) = [T voCeixw)

Z( ) (ij,k)e&

Here, & is the edge set of the pixel graph, Z(6) is a normalizing constant, and Yy : {0,1} x {0,1} - R,
is defined by:

6 —
", Xjj = Xy

1 x5 #F X

1,Ue(xij:xkz)I{

where 0 > 0 is a hyperparameter. We assume a Gaussian noise model, which gives us a likelihood over
y given x as:

H W
p(y I x) l_”_[%/(}’ij | x;j,02)

i=1 j=1

where o2 is a hyperparameter. Given y, we will obtain our denoised image by sampling from the

posterior p(x | ¥) using Gibbs sampling

(a) Given a pixel (i, j), let &(i, j) denote its neighbors in the pixel graph. Similarly, given x € {0, 1}*W,
let Ny(7,j,x_;) = Z(k,l)eé’(i,j) Xy, denote the number of neighbors of pixel (i, j) set to 1 and let
No(i, j,x_;;) = Z(kl)eé’(i,j) 1 — x;; denote the number of neighbors of pixel (i, j) set to O.
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(b)

@

Show that the complete conditional of x;; is given by:

e¢1

plx;j=1]x_,y)= Py

where

¢1=ON,(i,j,x_;;) +log N (y;; | x;;=1,07)
¢ = ONy(i,j,x_;;) +log N (¥ | x;; =0,07)

Suppose we also incorporate a prior p(6) on 6, e.g. p(0) = Gamma(6; a, ). It is not possible to
derive a closed form for 6’s complete conditional p(6 | x,y). Explain what we may do instead to
approximately sample from this conditional. Why might this be computationally challenging for
large images (i.e. when D is large)?

[Bonus ] Consider the pixel graph, and let ¥ be a maximal set of nodes such that &(i,j)N < =0
for all (i, j) € &. For the example graph, we could use & as the shaded set of nodes, so & =
{(1,2),(2,1),(2,3),(3,2)}. Explain why we have x, 1L x_ | ¥, 0 and how we can exploit this
for an efficient parallel block Gibbs update.
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Problem 10: Bayesian nonparametrics

In class we said that a Dirichlet random variable equal in distribution to a normalized vector of indepen-
dent gamma random variables,

Yk i’IL Ga(ak’ 1)

T
n=|: Y1 Yk :|
Ve yi TR

Zk:1Yk Zk:1Yk

= 1 ~ Dir(a).

It turns out there are many other useful properties of the gamma distribution, like

K K
Yk I’Il('i Ga(ak, ].) = Z’)/k ~ Ga (Z ag, 1) .
k=1 k=1

Moreover, the normalized vector of gammas is independent of the sum, 7t L 211;1 Y- Finally, the gamma
is also related to the beta distribution,

vr ~ Ga(ag,1); ke{0,1}
__n
Yot T
= f3 ~ Beta(ay, agp).

Use these properties to derive a stick breaking procedure for sampling a (finite) Dirichlet distribution
with concentration a € ]Rf.
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