STATS 305C: Practice Exam

Name:

Problem 1: Gaussian models

Consider the following model,

$$x_{n,d} \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \sigma_d^2) \qquad \text{for } n = 1, \dots, N; \ d = 1, \dots, D$$

$$\sigma_d^2 = \prod_{k=1}^d \lambda_k^{-1} \qquad \text{for } d = 1, \dots, D$$

$$\lambda_d \stackrel{\text{iid}}{\sim} \text{Ga}(\alpha, 1) \qquad \text{for } d = 1, \dots, D$$

- (a) Suppose $\alpha > 1$. Describe how this *multiplicative inverse gamma* prior affects the distribution of the data, $x_{n,d}$. For example, how does the distribution of $x_{n,1}$ generally compare to that of $x_{n,D}$?
- (b) Let $\lambda = {\lambda_k}_{k=1}^K$ and $X = {\{x_{n,d}\}d = 1^D\}_{n=1}^N$. Derive a Gibbs sampler for the posterior distribution $p(\lambda | X; \alpha)$.

Problem 2: Hierarchical models.

Recall the probability density function of the gamma distribution, $p(\lambda; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta\lambda}$, where $\Gamma(\cdot)$ is the gamma function. Now consider the following hierarchical model,

Using the Poisson probability mass function $p(x \mid \lambda) = \frac{1}{x!}\lambda^x e^{-\lambda}$, derive a Gibbs sampling algorithm for this hierarchical model. Specifically, derive the conditional distributions,

- $p(\lambda_g \mid \{x_{g,n}\}_{n=1}^N, \beta_g; \alpha),$
- $p(\beta_g \mid \lambda_g; \alpha_0, \beta_0).$

Problem 3: Graphical models.

(a) Draw the graphical model corresponding to this joint probability distribution,

$$p(\lbrace x_n, y_n \rbrace_{n=1}^N; \alpha, \beta, \gamma) = p(x_1 \mid \alpha) \left[\prod_{n=2}^N p(x_n \mid x_{n-1}; \beta) \right] \left[\prod_{n=1}^N p(y_n \mid x_n; \gamma) \right].$$

(b) Write the joint distribution corresponding to the graphical model in Figure 1.

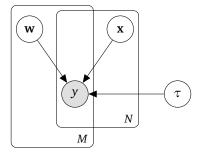


Figure 1

Problem 4: Continuous latent variable models

Canonical correlation analysis is a technique for paired datasets $\{(x_n, y_n\})\}_{n=1}^N$ where $x_n \in \mathbb{R}^{D_x}$ and $y_n \in \mathbb{R}^{D_y}$. Like PCA, it can be viewed as a limiting case of a linear Gaussian model latent variable model,

$$\begin{aligned} \boldsymbol{z}_n &\sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \\ \boldsymbol{x}_n &\sim \mathcal{N}(\boldsymbol{W}_{\boldsymbol{X}} \boldsymbol{z}_n + \boldsymbol{b}_{\boldsymbol{X}}, \boldsymbol{\Sigma}_{\boldsymbol{X}}) \\ \boldsymbol{y}_n &\sim \mathcal{N}(\boldsymbol{W}_{\boldsymbol{Y}} \boldsymbol{z}_n + \boldsymbol{b}_{\boldsymbol{Y}}, \boldsymbol{\Sigma}_{\boldsymbol{Y}}). \end{aligned}$$

Derive the conditional distribution $p(\mathbf{y}_n \mid \mathbf{x}_n; \boldsymbol{\theta})$ where $\boldsymbol{\theta} = (\mathbf{W}_x, \mathbf{W}_y, \mathbf{b}_x, \mathbf{b}_y, \boldsymbol{\Sigma}_x, \boldsymbol{\Sigma}_y)$.

Problem 5: The Bayesian Lasso

The Lasso problem is an L_1 penalized least squares problem,

$$\mathscr{L}(\boldsymbol{w}) = \sum_{n=1}^{N} \|\boldsymbol{y}_n - \boldsymbol{x}_n^{\top} \boldsymbol{w}\|_2^2 + \lambda_0 \sum_{d=1}^{D} |\boldsymbol{w}_d|.$$
(1)

From a Bayesian perspective, minimizing $\mathcal{L}(w)$ is equivalent to maximum a posteriori (MAP) estimation in the following Bayesian model,

$$w_{d} \stackrel{\text{iid}}{\sim} \text{Lap}(\lambda)$$
$$y_{n} \stackrel{\text{iid}}{\sim} \mathcal{N}(\boldsymbol{x}_{n}^{\top} \boldsymbol{w}, \sigma^{2}), \qquad (2)$$

where Lap(λ) denotes a Laplace distribution with density Lap($w; \lambda$) = $\frac{\lambda}{2}e^{-\lambda|w|}$.

- (a) Find a setting of λ such that the MAP estimate of model (2) is the same as the minimizer of eq. 1. Your solution should be in terms of λ_0 and σ^2 .
- (b) The Laplace density can also be written as a scale mixtures of Gaussians,

$$\operatorname{Lap}(w;\lambda) = \frac{\lambda}{2} e^{-\lambda|w|} = \int_0^\infty \mathcal{N}(w;0,\nu) \cdot \operatorname{Exp}\left(\nu;\frac{\lambda^2}{2}\right) \mathrm{d}\nu = \int_0^\infty \frac{1}{\sqrt{2\pi\nu}} e^{-\frac{w^2}{2\nu}} \cdot \frac{\lambda^2}{2} e^{-\frac{\lambda^2\nu}{2}} \mathrm{d}\nu$$

Let $y = \{y_n\}_{n=1}^N$ and $X = \{x_n\}_{n=1}^N$. Use the integral representation above to write a joint distribution,

$$p(\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{y} \mid \boldsymbol{X}; \lambda, \sigma^2)$$

on an extended space that includes the *augmentation variables* $v = (v_1, ..., v_D)$, such that the marginal distribution $p(w, y | X; \lambda, \sigma^2)$ matches that of the generative model described in eq. (2).

(c) What algorithm would you use to perform Bayesian inference to approximate the posterior distribution $p(w, v | X, y; \lambda, \sigma^2)$? Sketch out the steps involved.

Problem 6: Mixture Models

Consider the following zero-inflated Poisson regression model where $w, x_n \in \mathbb{R}_+, y_n \in \mathbb{N}$, and $z_n \in \{0, 1\}$,

$$w \mid \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$$
$$z_n \mid \gamma \stackrel{\text{iid}}{\sim} \text{Bern}(\gamma)$$
$$y_n \mid x_n, z_n, w \stackrel{\text{iid}}{\sim} \text{Poisson}(wx_n z_n).$$

(a) Sketch the probability mass function of the marginal distribution $p(y_n | x_n, w, \gamma)$ for $\gamma \in \{0, 0.5, 1\}$, assuming $wx_n = 5$. What is $p(y_n = 0 | x_n, w, \gamma)$? (Note: 0! = 1 and $0^0 = 1$.)

(b) Compute the conditional distribution $p(z_n = 1 | y_n, x_n, w, \gamma)$.

(c) Compute the expected log probability,

$$\mathscr{L}(w) = \mathbb{E}_{p(z|y,x,w',\gamma)} \Big[\log p(\{y_n, x_n, z_n\}_{n=1}^N, w \mid \alpha, \beta, \gamma) \Big],$$

where w' denotes a fixed weight. For notational simplicity, let $q_n \triangleq p(z_n = 1 | y_n, x_n, w', \gamma)$ denote the solution to part (c), and drop terms in $\mathcal{L}(w)$ that are constant with respect to w.

(d) Assume a > 1. Solve for $w^* = \arg \max \mathscr{L}(w)$ using the fact that the mode of the Gamma(a, b) distribution is at (a-1)/b when a > 1.

Problem 7: Mixed Membership Models

Latent Dirichlet allocation (LDA) corresponds to the following generative model,

$$\begin{split} \eta_k &\sim \operatorname{Dir}(\boldsymbol{\phi}) & \text{for } k = 1, \dots, K \\ \pi_n &\sim \operatorname{Dir}(\boldsymbol{\alpha}) & \text{for } n = 1, \dots, N \\ z_{n,\ell} &\sim \pi_n & \text{for } n = 1, \dots, N; \ \ell = 1, \dots, L \\ x_{n,\ell} &\sim \eta_{z_{n,\ell}} & \text{for } n = 1, \dots, N; \ \ell = 1, \dots, L \end{split}$$

where $\eta_k \in \Delta_V$ are the *topics* (i.e. distributions over words) and $\pi_n \in \Delta_K$ are the *topic proportions* (i.e. distributions over topics).

However, this model fails to capture correlations in the topic proportions; for example, that a "finance" topic and a "government" topic may often co-occur in the same document. *Correlated topic models* address this limitation by replacing the Dirichlet prior on π_n with a logistic normal prior,

$$\pi_n = \operatorname{softmax}(u_n) = \left[\frac{e^{u_{n1}}}{1 + \sum_{k=1}^{K-1} e^{u_{nk}}}, \dots, \frac{e^{u_{n,K-1}}}{1 + \sum_{k=1}^{K-1} e^{u_{nk}}}, \frac{1}{1 + \sum_{k=1}^{K-1} e^{u_{nk}}}\right]$$
$$u_n \sim \mathcal{N}(\mu, \Sigma)$$

where $u_n \in \mathbb{R}^{K-1}$. The correlations in u_n due to the multivariate normal prior induce correlations in π_n as well.

- (a) Without doing any math, sketch the density of $\pi_n \in \Delta_3$ when $\mu = [0,0]^{\top}$ and $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Do the same for $\mu = [0,0]^{\top}$ and $\Sigma = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix}$. Explain your reasoning.
- (b) Try to derive CAVI updates for this model. Where do you run into trouble and why?

Problem 8: Variational autoencoders

Consider the following *deep mixture model*,

$$z_n \sim \pi$$

$$x_n \sim \mathcal{N}(\boldsymbol{\mu}_{z_n}, \boldsymbol{\Sigma}_{z_n})$$

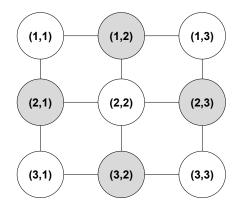
$$y_n \sim \mathcal{N}(f(\boldsymbol{x}_n; \boldsymbol{w}), \sigma^2 \boldsymbol{I})$$

where $z_n \in \{1, ..., K\}$ is a discrete latent variable, $x_n \in \mathbb{R}^M$ is a continuous latent variable, $y_n \in \mathbb{R}^D$ is an observed data point, and $f : \mathbb{R}^M \mapsto \mathbb{R}^D$ is a neural network with weights w. The generative model parameters are $\theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K, w)$.

- (a) Suppose you wanted to perform fixed form variational inference to approximate the posterior, $p(z_n, x_n | y_n; \theta) \approx q(z_n, x_n; \phi)$, with variational parameters ϕ . What challenges might you encounter when trying to maximize the local ELBO, $\mathcal{L}_n(\theta, \phi)$, using stochastic gradient ascent and the reparameterization trick (i.e. the pathwise gradient estimator)?
- (b) Suggest an alternative to the reparameterization trick that could allow you to fit θ and ϕ . What challenges might this alternative present?
- (c) Rewrite the generative model by marginalizing over z_n to obtain a collapsed model $p(x_n, y_n; \theta)$, and assume a variational posterior $q(x_n; \phi)$. Can you use the reparameterization trick now?

Problem 9: State space models

In class we studied state space models for sequential data, like hidden Markov models and linear dynamical systems. Here we will consider similar models for 2-dimensional data. Suppose we observe a image $y \in \mathbb{R}^{H \times W}$ which we believe to be a noisy version of an underlying binary image $x \in \{0, 1\}^{H \times W}$. Given y, we wish to recover the true image x which it was derived from. We formulate this as a probabilistic inference problem. We will assume the image is square and start by constructing a graph which connects neighboring pixels. The graph for H = W = 3 is shown below, with the node labels corresponding to the indices in the vectors y and x.



Our prior on x will be given as an *Ising model*, which encodes our belief that nearby pixels are likely to be similar:

$$p(\mathbf{x}) = \frac{1}{Z(\theta)} \prod_{(ij,kl) \in \mathscr{E}} \psi_{\theta}(x_{ij}, x_{kl})$$

Here, \mathscr{E} is the edge set of the pixel graph, $Z(\theta)$ is a normalizing constant, and $\psi_{\theta} : \{0, 1\} \times \{0, 1\} \rightarrow \mathbb{R}_{++}$ is defined by:

$$\psi_{\theta}(x_{ij}, x_{kl}) = \begin{cases} e^{\theta} & , x_{ij} = x_{kl} \\ 1 & , x_{ij} \neq x_{kl} \end{cases}$$

where $\theta > 0$ is a hyperparameter. We assume a Gaussian noise model, which gives us a likelihood over *y* given *x* as:

$$p(\mathbf{y} \mid \mathbf{x}) = \prod_{i=1}^{H} \prod_{j=1}^{W} \mathcal{N}(y_{ij} \mid x_{ij}, \sigma^2)$$

where σ^2 is a hyperparameter. Given y, we will obtain our denoised image by sampling from the posterior $p(\mathbf{x} | \mathbf{y})$ using Gibbs sampling

(a) Given a pixel (i, j), let $\mathscr{E}(i, j)$ denote its neighbors in the pixel graph. Similarly, given $\mathbf{x} \in \{0, 1\}^{H \times W}$, let $N_1(i, j, \mathbf{x}_{-ij}) = \sum_{(k,l) \in \mathscr{E}(i,j)} x_{k,l}$ denote the number of neighbors of pixel (i, j) set to 1 and let $N_0(i, j, \mathbf{x}_{-ij}) = \sum_{(kl) \in \mathscr{E}(i,j)} 1 - x_{kl}$ denote the number of neighbors of pixel (i, j) set to 0.

Show that the complete conditional of x_{ij} is given by:

$$p(x_{ij} = 1 | \mathbf{x}_{-ij}, \mathbf{y}) = \frac{e^{\phi_1}}{e^{\phi_0} + e^{\phi_1}}$$

where

$$\phi_1 = \theta N_1(i, j, \mathbf{x}_{-ij}) + \log \mathcal{N}(y_{ij} \mid x_{ij} = 1, \sigma^2)$$

$$\phi_0 = \theta N_0(i, j, \mathbf{x}_{-ij}) + \log \mathcal{N}(y_{ij} \mid x_{ij} = 0, \sigma^2)$$

- (b) Suppose we also incorporate a prior p(θ) on θ, e.g. p(θ) = Gamma(θ; α, β). It is not possible to derive a closed form for θ's complete conditional p(θ | x, y). Explain what we may do instead to approximately sample from this conditional. Why might this be computationally challenging for large images (i.e. when D is large)?
- (c) [Bonus] Consider the pixel graph, and let S be a maximal set of nodes such that E(i, j) ∩ S = Ø for all (i, j) ∈ S. For the example graph, we could use S as the shaded set of nodes, so S = {(1,2), (2,1), (2,3), (3,2)}. Explain why we have x_S ⊥ x_{-S} | y, θ and how we can exploit this for an efficient parallel block Gibbs update.

Problem 10: Bayesian nonparametrics

In class we said that a Dirichlet random variable equal in distribution to a normalized vector of independent gamma random variables,

$$\gamma_k \stackrel{\text{ind}}{\sim} \text{Ga}(\alpha_k, 1)$$
$$\pi = \left[\frac{\gamma_1}{\sum_{k=1}^K \gamma_k}, \dots, \frac{\gamma_K}{\sum_{k=1}^K \gamma_k}\right]^\top$$
$$\Rightarrow \pi \sim \text{Dir}(\boldsymbol{\alpha}).$$

It turns out there are many other useful properties of the gamma distribution, like

$$\gamma_k \stackrel{\text{ind}}{\sim} \operatorname{Ga}(\alpha_k, 1) \Rightarrow \sum_{k=1}^K \gamma_k \sim \operatorname{Ga}\left(\sum_{k=1}^K \alpha_k, 1\right).$$

Moreover, the normalized vector of gammas is independent of the sum, $\pi \perp \sum_{k=1}^{K} \gamma_k$. Finally, the gamma is also related to the beta distribution,

$$\gamma_k \sim \operatorname{Ga}(\alpha_k, 1); \quad k \in \{0, 1\}$$
$$\beta = \frac{\gamma_1}{\gamma_0 + \gamma_1}$$
$$\Rightarrow \beta \sim \operatorname{Beta}(\alpha_1, \alpha_0).$$

Use these properties to derive a stick breaking procedure for sampling a (finite) Dirichlet distribution with concentration $\boldsymbol{\alpha} \in \mathbb{R}_+^K$.