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Problem 1: Gaussian models

Consider the following model,

xn,d
ind∼ N (0,σ2

d) for n= 1, . . . , N ; d = 1, . . . , D

σ2
d =

d
∏

k=1

λ−1
k for d = 1, . . . , D

λd
iid∼ Ga(α, 1) for d = 1, . . . , D

(a) Suppose α > 1. Describe how this multiplicative inverse gamma prior affects the distribution of the
data, xn,d . For example, how does the distribution of xn,1 generally compare to that of xn,D?

(b) Let λ = {λk}Kk=1 and X = {{xn,d}d = 1D}Nn=1. Derive a Gibbs sampler for the posterior distribu-
tion p(λ | X ;α).

Solution:

(a) E[λd] = α so when α > 1, we the precisions are generally greater than one as well. Thus, the
precision (σ2

d)
−1 =

∏d
k=1λk grows with d, and equivalently, the variance shrinks as d increases.

Thus, we expect xn,D to be more concentrated around the prior mean of 0 than xn,1.

(b) The joint probability is,

p(X ,λ;α) =
D
∏

d=1

Ga(λd ;α, 1)
N
∏

n=1

D
∏

d=1

N

�

xn,d | 0,
d
∏

k=1

λ−1
k

�

Note that λk appears in the likelihood for all xn,d where d ≥ k. Thus, the conditional distribution
of λk is proportional to,

p(λk | −)∝ Ga(λk;α, 1)
N
∏

n=1

D
∏

d=k

N

 

xn,d | 0,
d
∏

j=1

λ−1
j

!

∝ λα−1
k e−λk

N
∏

n=1

D
∏

d=k

λ
1
2
k exp







−
λk

�

∏k−1
i=1 λi

��

∏d
j=k+1λ j

�

x2
n,d

2







∝ Ga(λk;α′,β ′)

where

α′ = α+
N(D− k+ 1)

2

β ′ = 1+
N
∑

n=1

D
∑

d=k

�

∏k−1
i=1 λi

��

∏d
j=k+1λ j

�

x2
n,d

2

To implement a Gibbs sampler, iteratively sample each λk from its conditional, holding the others
fixed.

2



Problem 2: Hierarchical models.

Recall the probability density function of the gamma distribution, p(λ;α,β) = βα

Γ (α)λ
α−1e−βλ, where Γ (·)

is the gamma function. Now consider the following hierarchical model,

β ∼ Ga(α0,β0)

λg ∼ Ga(α,β) for g = 1, . . . , G

xg,n ∼ Po(λg) for g = 1, . . . , G; n= 1, . . . , N .

Using the Poisson probability mass function p(x | λ) = 1
x!λ

x e−λ, derive a Gibbs sampling algorithm for
this hierarchical model. Specifically, derive the conditional distributions,

• p(λg | {xg,n}Nn=1,βg ;α),

• p(β | {λg}Gg=1;α0,β0).

Solution: The first conditional is,

p(λg | {xg,n}Nn=1,βg ;α)∝ p(λg | βg ;α)
N
∏

n=1

p(xg,n | λg)

∝ Ga(λg ;α,βg)
N
∏

n=1

Po(xg,n | λg)

∝ λα−1
g e−βgλg

N
∏

n=1

λ
xg,n
g e−λg

∝ Ga(λg ;α′,β ′)

where

α′ = α+
N
∑

n=1

xg,n

β ′ = βg + N

The second is,

p(β | {λg}Gg=1;α0,β0,α)∝ Ga(β;α0,β0)
G
∏

g=1

Ga(λg ;α,β)

∝ βα0−1e−β0β
G
∏

g=1

βαe−βλg

∝ Ga(β;α′,β ′)

where

α′ = α0 +αG

β ′ = β0 +
G
∑

g=1

λg
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Problem 3: Graphical models.

(a) Draw the graphical model corresponding to this joint probability distribution,

p({xn, yn}Nn=1;α,β ,γ) = p(x1 | α)

� N
∏

n=2

p(xn | xn−1;β)

�� N
∏

n=1

p(yn | xn;γ)

�

.

Solution:

y1 y2 y3

x1 x2 x3

Figure 1: Note: This omits the hyperparameters, which could be drawn as black dots.
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(b) Write the joint distribution corresponding to the graphical model in Figure 2.

ym,n

wm xn

τ

N

M

Figure 2

Solution:

p(τ)
M
∏

m=1

p(w m)
N
∏

n=1

p(x n)
M
∏

m=1

N
∏

n=1

p(ym,n | w m, x n)
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Problem 4: Continuous latent variable models

Canonical correlation analysis is a technique for paired datasets {(x n, yn})}Nn=1 where x n ∈ RDx and
yn ∈ RDy . Like PCA, it can be viewed as a limiting case of a linear Gaussian model latent variable
model,

zn ∼N (0, I)

x n ∼N (W x zn + bx ,Σx)

yn ∼N (W y zn + b y ,Σy).

Derive the conditional distribution p(yn | x n;θ ) where θ = (W x , W y , bx , b y ,Σx ,Σy).

Solution: Note that

p(yn | x n;θ ) =

∫

p(yn | zn;θ ) p(zn | x n;θ )dzn

since yn ⊥⊥ x n | zn. The conditional in the integrand is,

p(zn | x n;θ )∝ p(zn) p(x n | zn;θ )

=N (zn;0, I)N (x n | W x zn + bx ;Σx)

∝ exp
§

−
1
2

z⊤n J z zn + h⊤z zn

ª

where

J z = I +W⊤xΣ
−1
x W x

hz = W⊤x Σ
−1
x (x n − bx).

Completing the square, p(zn | x n;θ ) =N (µz ,Σz) where

µz = J−1
z hz = (I +W⊤x Σ

−1
x W x)

−1W⊤x Σ
−1
x (x n − bx) (1)

Σz = J−1
z = (I +W⊤x Σ

−1
x W x)

−1 (2)

Finally, we obtain the predictive distribution by marginalizing over zn under this Gaussian conditional
distribution,

p(yn | x n;θ ) =N (yn | W yµz + b y ,Σy +W yΣz W⊤y ).

An alternative way to obtain the same answer is to construct the joint multivariate normal distribution
over (zn, x n, yn), then use the rules of Gaussian marginalization and conditioning.
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Problem 5: The Bayesian Lasso

The Lasso problem is an L1 penalized least squares problem,

L (w ) =
N
∑

n=1

∥yn − x⊤n w∥22 +λ0

D
∑

d=1

|wd |. (3)

From a Bayesian perspective, minimizing L (w ) is equivalent to maximum a posteriori (MAP) estimation
in the following Bayesian model,

wd
iid∼ Lap(λ)

yn
iid∼ N (x⊤n w ,σ2), (4)

where Lap(λ) denotes a Laplace distribution with density Lap(w;λ) = λ
2 e−λ|w|.

(a) Find a setting of λ such that the MAP estimate of model (4) is the same as the minimizer of eq. 3.
Your solution should be in terms of λ0 and σ2.

(b) The Laplace density can also be written as a scale mixtures of Gaussians,

Lap(w;λ) =
λ

2
e−λ|w| =

∫ ∞

0

N (w; 0, v) · Exp
�

v; λ
2

2

�

dv =

∫ ∞

0

1
p

2πv
e−

w2
2v ·
λ2

2
e−

λ2 v
2 dv

Let y = {yn}Nn=1 and X = {x n}Nn=1. Use the integral representation above to write a joint distribu-
tion,

p(w , v , y | X ;λ,σ2)

on an extended space that includes the augmentation variables v = (v1, . . . , vD), such that the
marginal distribution p(w , y | X ;λ,σ2) matches that of the generative model described in eq. (4).

(c) What algorithm would you use to perform Bayesian inference to approximate the posterior distri-
bution p(w , v | X , y;λ,σ2)? Sketch out the steps involved.

Solution:

(a) The log joint probability of the Bayesian model as a function of w is,

J (w ) = log p(w , y | X)

=
D
∑

d=1

log Lap(wd ;λ) +
N
∑

n=1

logN (yn; w⊤x n,σ2) + c

= −λ
D
∑

d=1

|wd | −
N
∑

n=1

1
2σ2
∥yn − w⊤x n∥22 + c.

Multiplying by 2σ2 does not change the arg max of this objective (i.e. MAP estimate), so define,

J ′(w ) = −2λσ2
D
∑

d=1

|wd | −
N
∑

n=1

∥yn − w⊤x n∥22 + c.

Note, if λ0 = 2λσ2 then J ′(w ) = −L (w ). With this setting of λ0, the Lasso estimate that
minimizes L (w ) coincides the MAP estimate that maximizes J ′(w ).
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(b) With this integral representation of the Laplace distribution,

p(w , y | X) =
D
∏

d=1

�∫ ∞

0

N (wd ; 0,νd)Exp(νd ; λ
2

2 )dνd

� N
∏

n=1

N (yn; w⊤x n,σ2)

=

∫ ∞

0

· · ·
∫ ∞

0

D
∏

d=1

N (wd ; 0,νd)Exp(νd ; λ
2

2 )
N
∏

n=1

N (yn; w⊤x n,σ2)dν1 . . . dνD

=

∫

p(w ,ν, y | X)dν

where

p(w ,ν, y | X) =
D
∏

d=1

N (wd ; 0,νd)Exp(νd ; λ
2

2 )
N
∏

n=1

N (yn; w⊤x n,σ2)

(c) The simple answer is you could do HMC, but you could have done that on the original model
anyway. (There’s a slight complication with the prior being non-differentiable at wd = 0, but you
could throw HMC at it anyway.) However, this augmentation scheme presents an opportunity to
introduce a pretty cool trick. It turns out that in the augmented model, the conditional distributions
of w and ν are tractable, and we can use them to perform Gibbs sampling. We have,

p(w | y , X ,ν) =N (w ; J−1h, J−1)

where

J = diag(ν)−1 +
1
σ2

N
∑

n=1

x nx⊤n

h =
1
σ2

N
∑

n=1

x n yn.

The conditional distribution of νd is,

p(νd | wd)∝N (wd ; 0,νd)Exp(νd ; λ
2

2 )

∝
1
p
νd

exp

�

−
w2

d

2νd
−
λ2νd

2

�

This is a strange looking conditional... in exponential family form, its sufficient statistics are logνd ,
ν−1

d , and νd .

You wouldn’t be expected to know this for the actual final, but it turns out that this conditional
distribution can be rewritten as a (somewhat) standard density. Instead of the variance νd , let’s do
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a change of variables to consider the conditional distribution of the precision τd = ν−1
d ,

p(τd | wd)∝

�

�

�

�

�

dτ−1
d

dτd

�

�

�

�

�

N (wd ; 0,τ−1
d )Exp(τ−1

d ; λ
2

2 )

∝
1

τ2
d

p

τd exp

�

−
1
2

�

τd w2
d +

λ2

τd

��

∝ τ
− 3

2
d exp

�

−
w2

d

2τd

�

τ2
d +

λ2

w2
d

��

∝ IG
�

τd ;
λ

wd
,λ2

�

where IG(x;µ,κ) denotes the inverse Gaussian distribution with mean µ and shape κ. This isn’t
a distribution that came up in class, but it appears in the context of stochastic processes. For
example, the time a Brownian motion with positive drift takes to reach a fixed positive level is
inverse-Gaussian distributed.
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Problem 6: Mixture Models

Consider the following zero-inflated Poisson regression model where w, xn ∈ R+, yn ∈ N, and zn ∈ {0,1},

w | α,β ∼ Gamma(α,β)

zn | γ
iid∼ Bern(γ)

yn | xn, zn, w
iid∼ Poisson(wxnzn).

(a) Sketch the probability mass function of the marginal distribution p(yn | xn, w,γ) for γ ∈ {0, 0.5, 1},
assuming wxn = 5. What is p(yn = 0 | xn, w,γ)? (Note: 0!= 1 and 00 = 1.)

(b) Compute the conditional distribution p(zn = 1 | yn, xn, w,γ).

(c) Compute the expected log probability,

L (w) = Ep(z|y,x ,w′,γ)
�

log p({yn, xn, zn}Nn=1, w | α,β ,γ)
�

,

where w′ denotes a fixed weight. For notational simplicity, let qn ≜ p(zn = 1 | yn, xn, w′,γ) denote
the solution to part (c), and drop terms in L (w) that are constant with respect to w.

(d) Assume α > 1. Solve for w⋆ = arg maxL (w) using the fact that the mode of the Gamma(a, b)
distribution is at (a− 1)/b when a > 1.

Solution:

(a) The marignal distribution is,

p(yn | wxn = 5;γ) =
∑

zn

Po(yn; wxnzn) p(zn;γ)

= γPo(yn; 5) + (1− γ)Po(yn; 0)

= γPo(yn; 5) + (1− γ)I[yn = 0]

It looks like a re-scaled Poisson pmf with an extra mass of (1− γ) added to p(yn = 0 | −).

(b) The conditional is,

p(zn = 1 | yn, xn, w;γ)∝ p(zn = 1;γ) p(yn | zn = 1, xn, w)

∝ γPo(yn; wxn)

Likewise,

p(zn = 0 | yn, xn, w;γ)∝ p(zn = 0;γ) p(yn | zn = 0, xn, w)

∝ (1− γ)Po(yn; 0)

∝ (1− γ)I[yn = 0].

Normalizing yields,

p(zn = 1 | yn, xn, w;γ) =
γPo(yn; wxn)

γPo(yn; wxn) + (1− γ)I[yn = 0]
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(c) The expected log probability is,

L (w) = Ep(z|y,x ,w′,γ)
�

log p({yn, xn, zn}Nn=1, w | α,β ,γ)
�

= Ep(z|y,x ,w′,γ)

�

log p(w;α,β) +
N
∑

n=1

log p(yn | w, xn, zn)

�

+ c

= logGa(w;α,β) +
N
∑

n=1

Ep(zn|−) [log Po(yn | wxnzn)] + c

= (α− 1) log w− βw+
N
∑

n=1

Ep(zn|−) [yn log(wxnzn)−wxnzn] + c

= (α− 1) log w− βw+
N
∑

n=1

yn log w−wxnqn + c

= logGa(w;α′,β ′)

where

α′ = α+
N
∑

n=1

yn

β ′ = β +
N
∑

n=1

xnqn.

(d) The mode of the gamma is at

w⋆ =
α′ − 1
β ′

=
α+

∑N
n=1 yn − 1

β +
∑N

n=1 xnqn

As a sanity check, consider the case where xn = 1 for all n. Then the maximum likelihood
estimate of w under a standard Poisson model (equivalently, with zn = 1 for all n), would be
wMLE =

1
N

∑

n yn. With the zero-inflated model, some of the observations where yn = 0 are
attributed to zn being zero. Thus, we should expect our estimate of w to be a bit higher. Indeed,
under an uninformative prior (α = 1,β = 0), we would have w∗ = (

∑

n yn)/(
∑

n qn) ≥ wMLE,
since the denominator is at most N .
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Problem 7: Mixed Membership Models

Latent Dirichlet allocation (LDA) corresponds to the following generative model,

ηk ∼ Dir(φ) for k = 1, . . . , K

πn ∼ Dir(α) for n= 1, . . . , N

zn,ℓ ∼ Cat(πn) for n= 1, . . . , N ; ℓ= 1, . . . , L

xn,ℓ ∼ ηzn,ℓ
for n= 1, . . . , N ; ℓ= 1, . . . , L

where ηk ∈∆V are the topics (i.e. distributions over words) and πn ∈∆K are the topic proportions (i.e.
distributions over topics).

However, this model fails to capture correlations in the topic proportions; for example, that a “finance”
topic and a “government” topic may often co-occur in the same document. Correlated topic models
address this limitation by replacing the Dirichlet prior on πn with a logistic normal prior,

πn = softmax(un) =

�

eun1

1+
∑K−1

k=1 eunk

, . . . ,
eun,K−1

1+
∑K−1

k=1 eunk

,
1

1+
∑K−1

k=1 eunk

�⊤

un ∼N (µ,Σ)

where un ∈ RK−1. The correlations in un due to the multivariate normal prior induce correlations in πn
as well.

(a) Without doing any math, sketch the density of πn ∈∆3 when µ = [0, 0]⊤ and Σ =

�

1 0
0 1

�

. Do the

same for µ= [0,0]⊤ and Σ=

�

1 1
2

1
2 1

�

. Explain your reasoning.

(b) Try to derive CAVI updates for this model. Where do you run into trouble and why?

Solution:

(a) See the following figure from from Blei, David and John Lafferty. "Correlated topic models."
Advances in Neural Information Processing Systems 18 (2005). When the first two coordinates are
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uncorrelated, the distribution is essentially symmetric. (The figure here shows what happens when
the mean is nonzero — it’s pulled toward one of the simplex vertices.) When the two coordinates
of the Gaussian are anti-correlated, you end up with a multi-modal distribution on the simplex
with modes toward one vertex or another. When the two coordinates are positively correlated, the
mass is pulled toward the midline. That’s because both Gaussian coordinates are large and positive,
it maps to πn = [0.5,0.5, 0]; when both coordinates are negative, it maps to πn = [0,0, 1].

(b) We can work with either un or πn. Since the prior is specified on un, let’s go with that. The
problem is that we have a Gaussian prior and a categorical likelihood. The optimal CAVI updates
are still,

q(un)∝ exp
�

Eq(zn)[log p(un) + log p(zn | un)]
	

∝N (un;µ,Σ)exp

¨ L
∑

l=1

Eq(zn,l )[log Cat(zn,l ; softmax(un))]

«

∝N (un;µ,Σ)exp

¨ L
∑

l=1

V
∑

v=1

qn,l,v

�

un,v − log(1+
V
∑

v′=1

eun,v′ )

�«

where qn,l,v = q(zn,l = v). The problem is that the log-sum-exp of un in the exponent is not
conjugate with the Gaussian prior.
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Problem 8: Variational autoencoders

Consider the following deep mixture model,

zn ∼ π
x n ∼N (µzn

,Σzn
)

yn ∼N ( f (x n; w ),σ2I)

where zn ∈ {1, . . . , K} is a discrete latent variable, x n ∈ RM is a continuous latent variable, yn ∈ RD is
an observed data point, and f : RM 7→ RD is a neural network with weights w . The generative model
parameters are θ = (π, {µk,Σk}Kk=1, w ).

(a) Suppose you wanted to perform fixed form variational inference to approximate the poste-
rior, p(zn, x n | yn;θ ) ≈ q(zn, x n;φ), with variational parameters φ. What challenges might
you encounter when trying to maximize the local ELBO, Ln(θ ,φ), using stochastic gradient ascent
and the reparameterization trick (i.e. the pathwise gradient estimator)?

(b) Suggest an alternative to the reparameterization trick that could allow you to fit θ and φ. What
challenges might this alternative present?

(c) Rewrite the generative model by marginalizing over zn to obtain a collapsed model p(x n, yn;θ ),
and assume a variational posterior q(x n;φ). Can you use the reparameterization trick now?

Solution:

(a) Since zn is a discrete variable, we cannot reparameterize it as a differentiable transformation of
“noise.” That prevents us from using the standard pathwise gradient estimator/reparameterization
tricks.

(b) We could use the score-function gradient estimator, since that works for discrete latent variables.
However, without good control variates it can lead to higher variance estimates. Alternatively, we
could use a continuous relaxation of the discrete variables, as in the Concrete or Gumbel-softmax
approximations for discrete VAEs.

(c) Marginalizing out zn yields,

p(x n, yn;θ ) =

� K
∑

k=1

πkN (x n; uk,Σk)

�

N (yn | f (x n; w ),σ2I).

If we then choose a Gaussian variational posterior for q(x n;φ), then we can use the reparameteri-
zation trick since there are no longer any discrete variables to worry about.
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Problem 9: State space models

In class we studied state space models for sequential data, like hidden Markov models and linear
dynamical systems. Here we will consider similar models for 2-dimensional data. Suppose we observe a
image y ∈ RH×W which we believe to be a noisy version of an underlying binary image x ∈ {0, 1}H×W .
Given y , we wish to recover the true image x which it was derived from. We formulate this as a
probabilistic inference problem. We will assume the image is square and start by constructing a graph
which connects neighboring pixels. The graph for H = W = 3 is shown below, with the node labels
corresponding to the indices in the vectors y and x .

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Our prior on x will be given as an Ising model, which encodes our belief that nearby pixels are likely to
be similar:

p(x ) =
1

Z(θ )

∏

(i j,kl)∈E

ψθ (x i j , xkl)

Here, E is the edge set of the pixel graph, Z(θ ) is a normalizing constant, and ψθ : {0, 1}× {0, 1} → R++
is defined by:

ψθ (x i j , xkl) =

¨

eθ , x i j = xkl

1 , x i j ̸= xkl

where θ > 0 is a hyperparameter. We assume a Gaussian noise model, which gives us a likelihood over
y given x as:

p(y | x ) =
H
∏

i=1

W
∏

j=1

N (yi j | x i j ,σ
2)

where σ2 is a hyperparameter. Given y , we will obtain our denoised image by sampling from the
posterior p(x | y) using Gibbs sampling

(a) Given a pixel (i, j), let E (i, j) denote its neighbors in the pixel graph. Similarly, given x ∈ {0, 1}H×W ,
let N1(i, j, x−i j) =

∑

(k,l)∈E (i, j) xk,l denote the number of neighbors of pixel (i, j) set to 1 and let
N0(i, j, x−i j) =

∑

(kl)∈E (i, j) 1− xkl denote the number of neighbors of pixel (i, j) set to 0.
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Show that the complete conditional of x i j is given by:

p(x i j = 1 | x−i j , y) =
eφ1

eφ0 + eφ1

where

φ1 = θN1(i, j, x−i j) + logN (yi j | x i j = 1,σ2)

φ0 = θN0(i, j, x−i j) + logN (yi j | x i j = 0,σ2)

(b) Suppose we also incorporate a prior p(θ ) on θ , e.g. p(θ ) = Gamma(θ ;α,β). It is not possible to
derive a closed form for θ ’s complete conditional p(θ | x , y). Explain what we may do instead to
approximately sample from this conditional. Why might this be computationally challenging for
large images (i.e. when D is large)?

(c) [Bonus] Consider the pixel graph, and let S be a maximal set of nodes such that E (i, j)∩S = ;
for all (i, j) ∈ S . For the example graph, we could use S as the shaded set of nodes, so S =
{(1,2), (2,1), (2,3), (3,2)}. Explain why the random variables {x i j : (i, j) ∈ S} are independent
given x−S , y ,θ and how we can exploit this for an efficient parallel block Gibbs update.

Solution:

(a) We have,

p(x i j | x¬i j , y)∝

 

∏

k,l∈E (i, j)

ψθ (x i j , xkl)

!

N (yi j | x i j ,σ
2)

∝

 

∏

k,l∈E (i, j)

eθ I[x i j=xkl]

!

N (yi j | x i j ,σ
2)

∝ eθ
∑

k,l∈E (i, j) I[x i j=xkl]N (yi j | x i j ,σ
2)

For the two cases we have,

p(x i j = 1 | x¬i j , y)∝ eθN1(i, j,x¬i, j)N (yi j | 1,σ2)

p(x i j = 0 | x¬i j , y)∝ eθN0(i, j,x¬i, j)N (yi j | 0,σ2)

Normalizing and writing in terms of the logs yields the desired answer.

(b) The hard part about inferring θ is that it appears in the log normalizer,

Z(θ ) =
∑

x∈{0,1}H×W

∏

(i j,kl)∈E

ψθ (x i j , xkl),

and the log normalizer consists of a sum with 2HW terms. For small lattices we can enumerate all
these terms, evaluate Z(θ ), and do inference with algorithms like HMC. However, this won’t scale
to even moderately sized grids.
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