Common Distributions

The notation $z \sim P(\theta)$ means that the random variable z is sampled from (or distributed according to) the distribution P, which is parameterized by θ . When we write $P(z; \theta)$ we refer to the density (assuming it exists) of P evaluated at z. Here, we provide a summary of common distributions and their parametric densities or mass functions.

Bernoulli For a binary random variable $x \in \{0, 1\}$ with $\rho \in [0, 1]$,

Bern(*x*;
$$\rho$$
) = $\rho^{x}(1-\rho)^{1-x}$.

Beta For a continuous random variable $\rho \in [0, 1]$ with a > 0 and b > 0,

Beta(
$$\rho$$
; a, b) = $\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\rho^{a-1}(1-\rho)^{b-1}$.

The beta distribution is a conjugate prior for the Bernoulli, binomial, and negative binomial distributions.

Binomial For an integer-valued random variable $x \in \{1, ..., N\}$ with $N \in \mathbb{N}$ and $\rho \in [0, 1]$,

$$\operatorname{Bin}(x;N,\rho) = \binom{N}{x} \rho^{x} (1-\rho)^{N-x}.$$

Dirichlet For a probability vector $\pi \in [0, 1]^K$ such that $\pi_k \ge 0$ and $\sum_k \pi_k = 1$, and parameter $a \in \mathbb{R}_+^K$,

$$\operatorname{Dir}(\boldsymbol{\pi};\boldsymbol{\alpha}) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \pi_k^{\alpha_k - 1}$$

The Dirichlet distribution is a conjugate prior to the discrete and multinomial distributions.

Exponential For a random variable $x \in \mathbb{R}_+$ with rate $\lambda \in \mathbb{R}_+$,

$$\operatorname{Exp}(x;\lambda) = \lambda e^{-\lambda x}.$$

Gamma For a nonnegative random variable $\lambda \in \mathbb{R}_+$ with shape parameter a > 0 and rate parameter b > 0,

Gamma
$$(\lambda; a, b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda}.$$

The gamma distribution may also be parameterized in terms of a scale parameter, $\theta = b^{-1}$, but we do not use that parameterization in this exam.

Inverse Wishart For a random variable $\Sigma \in \mathbb{R}^{D \times D}_{\geq 0}$ (a positive semidefinite matrix) with degrees of freedom $\nu \in \mathbb{R}_+$ and scale $\Sigma_0 \in \mathbb{R}^{D \times D}_{\geq 0}$,

$$\mathrm{IW}(\boldsymbol{\Sigma}; \nu_0, \boldsymbol{\Sigma}_0) = \frac{|\boldsymbol{\Sigma}_0|^{\frac{\nu_0}{2}}}{2^{\frac{\nu_0 D}{2}} \Gamma_D\left(\frac{\nu_0}{2}\right)} |\boldsymbol{\Sigma}|^{-\frac{\nu_0 + D + 1}{2}} e^{-\frac{1}{2} \mathrm{Tr}(\boldsymbol{\Sigma}_0 \boldsymbol{\Sigma}^{-1})}.$$

Laplace (a.k.a. Double Exponential) For a random variable $x \in \mathbb{R}$ with rate $\lambda \in \mathbb{R}_+$,

$$\operatorname{Lap}(x;\lambda) = \frac{\lambda}{2}e^{-\lambda|x|}.$$

Multinomial For a vector of discrete counts $\mathbf{x} \in \mathbb{N}^{K}$ with $\sum_{k} x_{k} = N$ and a probability vector $\pi \in [0, 1]^{K}$,

$$\operatorname{Mult}(\boldsymbol{x}; N, \boldsymbol{\pi}) = \binom{N}{x_1, x_2, \dots, x_K} \prod_{k=1}^K \pi_k^{x_k},$$

where

$$\binom{N}{x_1, x_2, \dots x_K} = \frac{N!}{x_1! \dots x_K!}.$$

Multivariate Normal For a random variable $x \in \mathbb{R}^D$ with mean $\mu \in \mathbb{R}^D$ and positive semidefinite covariance matrix $\Sigma \in \mathbb{R}^{D \times D}$,

$$\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-D/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}.$$

Negative Binomial For an integer-valued random variable $x \in \mathbb{N}$ with shape parameters $v \in \mathbb{R}_+$ and probability $\rho \in [0, 1]$,

$$\operatorname{NB}(x; \nu, \rho) = \binom{x + \nu - 1}{x} \rho^{x} (1 - \rho)^{\nu}.$$

Poisson For an integer random variable $x \in \mathbb{N}$ and a nonnegative rate parameters $\lambda \in \mathbb{R}_+$,

$$\operatorname{Po}(x;\lambda) = \frac{1}{x!}\lambda^{x}e^{-\lambda}.$$

Uniform For a continuous random variable $x \in \mathbb{R}$,

$$\operatorname{Unif}(x; a, b) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b, \\ 0 & \text{o.w.} \end{cases}$$