
STATS305C: Applied Statistics III
Lecture 15: Gaussian processes

Scott Linderman

May 23, 2023

1 / 50

Where are we?

Model Algorithm Application
Multivariate Normal Models Conjugate Inference Bayesian Linear Regression

Hierarchical Models MCMC (MH & Gibbs) Modeling Polling Data
Probabilistic PCA & Factor Analysis MCMC (HMC) Images Reconstruction

Mixture Models EM & Variational Inference Image Segmentation
Mixed Membership Models Coordinate Ascent VI Topic Modeling
Variational Autoencoders Gradient-based VI Image Generation
State Space Models Message Passing Segmenting Video Data

Bayesian Nonparametrics Fancy MCMC Modeling Neural Spike Trains

2 / 50

Lecture 15: Gaussian processes

… Gaussian processes and kernels

… Gaussian process regression

… Gaussian process classification via augmentation

3 / 50

Gaussian processes

… Gaussian processes are distributions on
functions f : RD! R. (We can generalize to
other domains as well.)
… Equivalently, a GP is a continuous set of r.v.’s
{f (x) : x 2 RD}; i.e. a stochastic process.

https://www.researchgate.net/figure/
Illustration-of-Gaussian-process-regression-in-one-dimension-for-the-target-test_

fig1_327613136

4 / 50

https://www.researchgate.net/figure/Illustration-of-Gaussian-process-regression-in-one-dimension-for-the-target-test_fig1_327613136
https://www.researchgate.net/figure/Illustration-of-Gaussian-process-regression-in-one-dimension-for-the-target-test_fig1_327613136
https://www.researchgate.net/figure/Illustration-of-Gaussian-process-regression-in-one-dimension-for-the-target-test_fig1_327613136

Gaussian processes II

We say f ⇠ GP(µ(·),K(·, ·)) if
2
4
f (x1)
...

f (xN)

3
5 ⇠N

0
@
2
4
µ(x1)
...

µ(xN)

3
5 ,

2
4
K(x1,x1) · · · K(x1,xN)

...
...

K(xN,x1) · · · K(xN,xN)

3
5
1
A (1)

for all finite subsets of points {x1, . . . ,xN} ⇢ RD.
Here, µ : RD! R is the mean function and K : RD ⇥RD! R is the covariance function, or
kernel.

The covariance matrix obtained by applying the covariance function to each pair of data points above
is called the Gram matrix.

The covariance function must be positive definite; i.e. the Gram matrix must be positive definite for
any subset of points.

5 / 50

From linear regression to GPs

… Think back to HW1 on Bayesian linear
regression.

… Our motivating example was approximating a
D= 1 dimensional function f (x) : R! R
given noisy observations yn ⇠N (f (xn),�2).

… We can cast polynomial regression as linear
regression by encoding the inputs xn with
feature vectors,

�(xn) = (x0n , x
1
n , . . . , xP�1n) 2 RP.

<Draw the polynomial regression setup>

6 / 50

From linear regression to GPs II
More generally, let �(x) = (�1(x), . . . ,�P(x)) 2 RP be a function that encodes x in a P-dimensional
feature space.

With these features, our linear model was,

E[yn | xn] =
PX

p=1

wp�p(xn) = �(xn)
>w ¨ f (xn). (2)

Now assume a Gaussian prior, w ⇠N (0, �P I). Then for any {x1, . . . , xN} ⇢ R,
2
4
f (x1)
...

f (xN)

3
5=

2
4
�1(x1) · · · �P(x1)
...

...
�1(xN) · · · �P(xN)

3
5
2
4
w1
...
wP

3
5= �w ⇠N (0, �P��

>) (3)

The function f (·) is a GP! It has kernel K(xi, xj) = �
P�(xi)

>�(xj)

7 / 50

Example: radial basis functions
Instead of polynomial features, let’s use radial basis functions,

�p(x) = e�
1
2`2

(x�cp)2 . (4)

These are un-normalized Gaussian bumps of width ` located at c1, . . . , cP .

With this feature encoding, the kernel is,

K(xi, xj) =
�
P�(xi)

>�(xj) =
�

P

PX

p=1

e�
1
2`2

(xi�cp)2e�
1
2`2

(xj�cp)2 (5)

Now take the limit of having P!1 equally spaced centers. Then,

lim
P!1

K(xi, xj) = �

Z 1

�1
e�

1
2`2

(xi�c)2e�
1
2`2

(xj�c)2 dc =
p
⇡`�e

� 1
2(
p
2`)2

(xi�xj)2
(6)

This is called a squared exponential kernel with length scale
p
2` and variance

p
⇡`�.

8 / 50

Demo: sampling GPs with squared exponential kernels

https://slinderman.github.io/stats305c/notebooks/15_gps.html

9 / 50

https://slinderman.github.io/stats305c/notebooks/15_gps.html

The Matérn family of kernels
The Matérn family of kernels is defined by

K(xi, xj) =
21�⌫

� (⌫)

Çp
2⌫�ij
`

å⌫
K⌫

Çp
2⌫�ij
`

å
, (7)

where

… �ij = xi � xj is the difference of the points,
… ` is a positive length scale,
… the positive parameter ⌫ controls the smoothness of the function, and

… and K⌫ (in a potentially confusing overloading of notation) denotes the modified Bessel function.

When ⌫!1, the Matérn kernel converges to the squared exponential.

When ⌫= 1
2 the kernel is K(xi, xj) = e�

�ij
` , the covariance function of the Ornstein-Uhlenbeck (OU)

process, a continuous-time AR(1) process.

When ⌫= p� 1
2 , the kernel is the covariance of a continuous-time AR(p) process. 10 / 50

The Matérn family of kernels II

11 / 50

Stationary kernels and Bochner’s theorem
Note that both the squared exponential and the Matérn kernels are stationary in that K(xi,xj) only
depends on �ij = xi � xj .
Stationary kernels are particularly interesting because they can be defined by their power
spectrum.

Theorem (Bochner’s Theorem)

A complex-valued function K(�) on RD is the covariance function of a weakly stationary mean square
continuous complex valued random process on RD if and only if it can be represented as

K(�) =

Z

RD
e2⇡is·� dµ(s) (8)

where µ is a positive finite measure.

If µ has a density S(s) then S is known as the spectral density or power spectrum corresponding
to K(�). (This is Theorem 4.1 of Williams and Rasmussen [1996].)

12 / 50

Power spectrum intuition
Think of µ(s) as the power put into frequency s. The constraint that it be positive is akin to requiring
that the covariance be positive definite.

The Wiener-Khintchine theorem says that covariance function and the spectral density (assuming it
exists) are Fourier duals of one another,

K(�) =

Z
S(s)e2⇡is·� ds, (9)

S(s) =
Z
K(�)e�2⇡is·� d� (10)

The variance of the process is K(0) =
R
S(s)ds so the spectral density must be integrable (it must

decay sufficiently fast as |s|!1) to define a valid process.

One nice consequence: the Gram matrix of a stationary kernel evaluated at evenly spaced points
x1, . . . , xN in 1D is a Toeplitz matrix, which can be inverted in only O(N logN) time using the Fourier
transform [Storkey, 1999, Cunningham et al., 2008]

13 / 50

Common kernels

From Williams and Rasmussen [1996] 14 / 50

Adding and multiplying kernels

https://www.cs.toronto.edu/~duvenaud/cookbook/

15 / 50

https://www.cs.toronto.edu/~duvenaud/cookbook/

The “Automated Statistician”
Duvenaud et al. [2013] proposed a method to search over compositions of kernels to best fit the data.
The idea is very cool, but unfortunately they came up with the worst name ever.

16 / 50

Outline

… Gaussian processes and kernels

… Gaussian process regression

… Gaussian process classification via augmentation

17 / 50

Gaussian process regression
Now that we have a prior distribution on functions, suppose we observe (yn,xn) pairs. Assume,

f ⇠ GP(µ(·),K(·, ·)) yn ⇠N (f (xn),�
2) (11)

independently for n= 1, . . . ,N.

Let y = [y1, . . . , yN]>, µ= [µ(x1), . . . ,µ(xN)]>, f = [f (x1), . . . , f (xN)]>, and K denote the Gram
matrix of x1, . . . ,xN . Under the GP prior,

p(f | {xn, yn}Nn=1)/
ñ NY

n=1

p(yn | f (xn))
ô
p(f)df (12)

=N (y | f ,�2I)N (f | µ,K)df (13)

/N (f | µ0,K0), (14)

where

K0 = (K�1+��2I)�1 µ0 = K0(K�1µ+��2y) (15)

18 / 50

Marginal distribution

Likewise, we can integrate over the random function to obtain the marginal distribution,

p(y) =
Z
p(y | f)p(f)df (16)

=

Z
N (y | f ,�2I)N (f | µ,K)df (17)

=N (y | µ,K +�2I). (18)

This allows us to compute the marginal likelihood of the data exactly.

19 / 50

Posterior predictive distribution
What is the posterior predictive distribution p(yN+1 | xN+1, {xn, yn}Nn=1)?
It’s one big Gaussian model,
2
664

y1
...
yN
yN+1

3
775 ⇠N

0
BB@

2
664

µ(x1)
...

µ(xN)
µ(xN+1)

3
775 ,

2
664

K(x1,x1) · · · K(x1,xN) K(x1,xN+1)
...

...
K(xN,x1) · · · K(xN,xN) K(xN,xN+1)
K(xN+1,x1) · · · K(xN+1,xN) K(xN+1,xN+1)

3
775+�

2I

1
CCA (19)

We obtain the predictive likelihood via a Schur complement,

yN+1 | xN+1, {xn, yn}Nn=1 ⇠N (mN+1, vN+1) (20)

mN+1 = µ(xN+1) + k
>(K +�2I)�1(y �µ) (21)

vN+1 = K(xN+1,xN+1)� k>(K +�2I)�1k+�2. (22)

where k = [K(x1,xN+1), . . . ,K(xN,xN+1)]> 2 RN .
20 / 50

GPs are linear predictors

Assume that µ(x) = 0 everywhere. Then we can write the predictive mean as,

mN+1 =
NX

n=1

↵nyn, (23)

where

↵n = [K�1k]n (24)

Question: what is the complexity of computing the predictive mean?

21 / 50

Recall the posterior predictive distribution in Bayesian linear regression

In Bayesian linear regression, we first compute the posterior mean of the weights.

In our notation from Slide 7, the posterior mean (under an uninformative prior) was,

E[w | {xn, yn}Nn=1] =
�
�>�+ I
��1 �

�>y
�

(25)

so the prediction would be

E[yN+1 | xN+1, {xn, yn}Nn=1] = �(xN+1)>
�
�>�+ I
��1 �

�>y
�

(26)

Question: what is the complexity of computing the predictive mean in Bayesian linear
regression?

Question: When is it more efficient to work with kernels rather than weights?

22 / 50

Lap 8: Gaussian processes

… Gaussian processes and kernels

… Gaussian process regression

… Gaussian process classification via augmentation

23 / 50

GP Classification

We’ve seen how Gaussian processes can be used for regression problems with yn 2 R. What if we have
binary observations under the following model,

f ⇠ GP(µ(·),K(·, ·)) yn ⇠ Bern(g(f (xn))) (27)

where g : R! [0,1] is, for example, the logistic or probit function.

This is the GP analog of logistic regression or probit regression.

As in standard logistic regression, the posterior is not available in closed form. All we know is,

p(f | {xn, yn}Nn=1)/
ñ NY

n=1

Bern(yn | g(f (xn)))
ô
N (f | µ,K) (28)

We will show how one can perform Bayesian inference in these models via augmentation.

24 / 50

GP Classification with a probit mean function
First, consider the probit function, a.k.a. the normal c.d.f.

g(f (x)) = Pr(z f (x)) where z ⇠N (0,1). (29)

Exercise: Show that g(f (x)) =
R1
0 N (z | f (x),1)dz.

25 / 50

GP Classification with a probit mean function II
Now plug this identity into the likelihood from (28),

p(yn | f ,xn)/ Bern(yn | g(f (xn))) (30)

= g(f (xn))
I[yn=1](1� g(f (xn))I[yn=0] (31)

=

✓Z 1

0
N (zn | f (xn),1)dzn

◆I[yn=1]ÇZ 0

�1
N (zn | f (xn),1)dzn

åI[yn=0]
(32)

=

Z 1

�1
p(yn | zn)N (zn | f (xn),1)dzn (33)

=

Z 1

�1
p(yn, zn | f ,xn)dzn (34)

where

p(yn | zn) =
®
I[zn > 0] if yn = 1
I[zn 0] if yn = 0

(35)

26 / 50

GP Classification with a probit mean function III

Figure: Augmentation scheme for GP Probit Classification [Albert and Chib, 1993, Girolami and Rogers, 2006]
27 / 50

GP Classification with a probit mean function IV
This suggests the following augmentation scheme [Albert and Chib, 1993, Girolami and Rogers, 2006].
Design a Gibbs sampler to target the augmented posterior distribution,

p(f , {zn}Nn=1 | {xn, yn}Nn=1)/
NY

n=1

h
p(yn | zn)N (zn | f (xn),1)

i
N (f | µ,K). (36)

Exercise: Derive the conditional distributions,

p(zn | f , {xn, yn}Nn=1) = (37)

and

p(f | {xn, yn, zn}Nn=1) = (38)

28 / 50

Extra Slides

… Elliptical slice sampling

… Sparse GPs and inducing points

… Stochastic variational inference for sparse GPs

29 / 50

Slice sampling intuition

30/50

Slice sampling
Slice sampling [Neal, 2003] is a MCMC algorithm for distributions with intractable normalization
constants.

Suppose we want to sample a posterior distribution,

p(✓ | y) = p(✓ , y)
p(y)

. (39)

Assume we can evaluate the joint probability (numerator) but not the marginal (denominator).

Slice sampling works by introducing an auxiliary variable u 2 R so that,

p(u,✓ | y) =
® 1
p(y) if 0 u p(✓ , y)

0 o.w.
(40)

Note that marginalizing over u recovers the posterior,
Z
p(u,✓ | y)du=

Z p(✓ ,y)

0

1
p(y)

du=
p(✓ , y)
p(y)

= p(✓ | y). (41)

If we can sample p(u,✓ | y), we can simply throw away the u’s to get samples from p(✓ | y).
31 / 50

Slice sampling II

Gibbs sampling is often easy in the augmented space of (u,✓):

Given ✓ , the auxiliary variable u follows a uniform distribution,

p(u | ✓ , y)/ p(u,✓ | y) = 1
p(y)
I[0 u p(✓ , y)]/ Unif(u; [0,p(✓ , y)]). (42)

Given u, the variable of interest ✓ is uniformly distributed as well,

p(✓ | u, y)/ p(u,✓ | y) = 1
p(y)
I[p(✓ , y)� u]/ Unif(✓ ;⇥(u)), (43)

where ⇥(u) = {✓ 0 : p(✓ 0, y)� u} is a slice of parameter space with joint probability at least u.
If we can find that slice and sample uniformly from it, we’re in business!

32 / 50

Slice sampling III

⇥(u) is generally a complex subset that is hard to sample uniformly.

Instead, we typically sampling one coordinate of ✓ at a time, holding the rest of fixed. (This is also a
valid Gibbs update.)

Still, we need some way of finding the slice. Neal [2003] proposes a “stepping out” procedure to
compute a 1D slice.

33 / 50

Slice sampling for GPs
Consider a GP classification with 2 data points (x1, x2). Assume they are close relative to the
length-scale of a squared exponential kernel.

34 / 50

Accounting for the correlated Gaussian prior

Single variable slice sampling, like all Gibbs sampling methods, suffers when the coordinates are
correlated.

For Gaussian processes, the prior induces correlations between the function values, and this can
serious impair such coordinate-wise update algorithms.

Can we reparameterize the problem so that our 1D slice is better aligned with the prior?

35 / 50

A strange way to sample a Gaussian...
Suppose f ⇠N (0,⌃). A strange but interesting way to sample f is via the following program:

⌫0 ⇠N (0,⌃) (44)

⌫1 ⇠N (0,⌃) (45)

✓ ⇠ Unif([0,2⇡)) (46)

f = ⌫0 sin✓ + ⌫1 cos✓ (47)

To see this, define ⌫0 =
⇥
⌫0 ⌫1
⇤>
and note that for any ✓ 2 [0,2⇡)

⌫0 ⇠ N
✓
0
0

�
,

⌃ 0
0 ⌃

�◆
, (48)

f =
⇥
sin✓ I cos✓ I
⇤
⌫0 ⇠ N
✓
0,
⇥
sin✓ I cos✓ I
⇤⌃ 0
0 ⌃

�
sin✓ I
cos✓ I

�◆
(49)

⇠N (0, (sin2 ✓ +cos2 ✓)⌃) =N (0,⌃). (50)

36 / 50

Elliptical slice sampling

With this sampling procedure in mind, Murray et al. [2010] proposed elliptical slice sampling.

Reparameterize f in terms of ⌫0,⌫1,✓ and sample the posterior,

p(⌫0,⌫1,✓ | y)/N (⌫0 | 0,⌃)N (⌫1 | 0,⌃)Unif(✓ | [0,2⇡))p(y | f (⌫0,⌫1,✓)) (51)

Their sampling algorithm consists of two steps:

1. Sample ⌫0,⌫1,✓ | y, f = ⌫0 sin✓ + ⌫1 cos✓
1.1 Sample ⌫⇠N (0,⌃) and ✓ ⇠ Unif([0,2⇡)).

1.2 Set ⌫0 = f sin✓ + ⌫cos✓ and ⌫1 = f cos✓ � ⌫0 sin✓ .

2. Sample ✓ | ⌫0,⌫1, y by slice sampling its conditional
p(✓ | ⌫0,⌫1, y)/ p(y | ⌫0 cos✓ + ⌫1 sin✓).

We can think of step 2 as slice sampling on an elliptical slice, hence the name.

37 / 50

Elliptical slice sampling II

This formulation is a little complicated. There’s no
need to actually instantiate ⌫0 and ⌫1. Instead, we
can just work with ⌫ and ✓ .

38 / 50

Elliptical slice sampling III

39 / 50

Computational complexity
Question: What is the computational complexity of one elliptical slice sampling update? Assume
conditionally independent Bernoulli observations, as in GP classification.

40 / 50

Lap 8: Gaussian processes, elliptical slice sampling, and Bayesian optimization

… Model: Gaussian processes

… Algorithm: Elliptical slice sampling

… Algorithm: Variational Inference with Sparse GPs

… Application: Bayesian optimization

41 / 50

Inducing point methods

The key limitation of GPs is the cubic complexity of inference (with quadratic memory
complexity).

One way of circumventing this complexity is via inducing points [???]. These form the basis of an
approximate model called Sparse GPs.

We follow the presentation by Hensman et al. [2013].

42 / 50

Sparse GPs and Inducing Points
Consider a Gaussian process regression with inputs {xn}Nn=1 ⇢ RD and observations {yn}Nn=1 ⇢ R. As
above, let y = [y1, . . . , yN]> and f = [f (x1), . . . , f (xN)]>

Introduce a set of inducing points {zm}Mm=1 ⇢ RD with corresponding function values
um = f (zm).

Using the GP predictive distribution, we can write,

p(y | f) =N (y | f ,�2I) (52)

p(f | u) =N (f | KnmK�1mmu, K̃) (53)

where Knm is the Gram matrix of kernel evaluations for each (xn, zm) pair, Kmm is the Gram matrix for
each (zm, zm) pair, and

K̃ = Knn � KnmK�1mmKmn. (54)

Note that K̃ 2 RN⇥N , so we’re still looking at O(N3) complexity.
43 / 50

Variational inference for Sparse GPs

Now we will lower bound the marginal log likelihood using Jensen’s inequality,

log p(y | u) = log

Z
p(y, f | u)df (55)

= logEp(f |u)[p(y | f)] (56)

� Ep(f |u)[log p(y | f)] (57)

¨L1. (58)

Assume p(y | f) =
QN

n=1 p(yn | f (xn)); i.e. the observations are conditionally independent.
Question: what is the complexity of evaluating the bound in eq. (57)?

Question: when is the bound maximized?

44 / 50

Variational inference for Sparse GPs II
Using the bound from above, we can obtain a lower bound on the marginal likelihood of the data,
integrating out the inducing variables [Titsias, 2009],

log p(y | X) = log

Z
p(y | u)p(u)du (59)

� log

Z
exp{L1}p(u)du (60)

¨L2. (61)

After some algebra, this bound equals,

L2 = logN (y | 0,KnmK
�1
mmKmn+�

2I)� 1
2�2

Tr(K̃). (62)

We can view this bound as arising from a variational approximation q(u) =N (û,⇤�1) where

⇤= ��2K�1mmKmnKnmK
�1
mm+ K

�1
mm (63)

û= ��2⇤�1K�1mmKmny. (64)

Question: what is the complexity of computing L2? 45 / 50

Stochastic variational inference for Sparse GPs

Marginalizing over u coupled the observations y so that the likelihood was a multivariate Gaussian
(albeit with a low rank plus diagonal covariance).

As we briefly discussed in Lap 5: Mixed Membership Models, if the likelihood factors into a product
over data points we can use stochastic variational inference, operating on mini-batches of data
instead.

Can we do something similar here?

46 / 50

Stochastic variational inference for Sparse GPs II
Hensman et al. [2013] showed that if we explicitly represent q(u), the likelihood p(y | u) factors into a
product over the N data points.

Define a new lower bound,

log p(y | X)� Eq(u) [log p(y | u) + log p(u)� log q(u)] (65)

� Eq(u) [L1+ log p(u)� log q(u)] (66)

¨L3, (67)

and assume q(u) =N (m,S). Then the bound simplifies to,

L3 =
NX

n=1

ï
logN (yn | k>n K�1mmm, �2)� 1

2�2
K̃n,n �

1
2

Tr(S⇤n

ò
� DKL (q(u) k p(u)) (68)

where kn is the k-th column of Kmn and ⇤n = ��1K�1mmknk
>
n K
�1
mm.

This lower bound and its gradients wrt m and S can be approximated with Monte Carlo using
mini-batches. Hensman et al. [2013] used this trick to fit sparse GPs to millions of data points.

47 / 50

Choosing the inducing points
Question: how should we obtain the inducing points?

48 / 50

References I
Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for regression. MIT Press, 1996.

Amos J Storkey. Truncated covariance matrices and toeplitz methods in gaussian processes. In Artificial
Neural Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No. 470), volume 1,
pages 55–60 vol.1. unknown, February 1999.

John P Cunningham, Krishna V Shenoy, and Maneesh Sahani. Fast Gaussian process methods for point
process intensity estimation. In Proceedings of the 25th International Conference on Machine Learning,
pages 192–199, New York, NY, USA, July 2008. Association for Computing Machinery.

David Duvenaud, James Lloyd, Roger Grosse, Joshua Tenenbaum, and Ghahramani Zoubin. Structure
discovery in nonparametric regression through compositional kernel search. In International
Conference on Machine Learning, pages 1166–1174. PMLR, 2013.

James H Albert and Siddhartha Chib. Bayesian analysis of binary and polychotomous response data.
Journal of the American statistical Association, 88(422):669–679, 1993.

49 / 50

References II
Mark Girolami and Simon Rogers. Variational Bayesian multinomial probit regression with Gaussian
process priors. Neural Computation, 18(8):1790–1817, 2006.

Radford M Neal. Slice sampling. Annals of Statistics, 31(3):705–767, June 2003.

Iain Murray, Ryan Adams, and David MacKay. Elliptical slice sampling. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, pages 541–548. jmlr.org, March 2010.

James Hensman, Nicolò Fusi, and Neil D Lawrence. Gaussian processes for big data. In Proceedings of
the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI’13, pages 282–290, Arlington,
Virginia, USA, August 2013. AUAI Press.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In David van
Dyk and Max Welling, editors, Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages 567–574,
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 2009. PMLR.

50 / 50

