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Last Time...

… Directed Graphical Models

… Hierarchical Gaussian Model

… MCMC: MH and Gibbs
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Today...

Outline:

… Principal Components Analysis (PCA)

… PCA as a linear autoencoder

… PCA as a linear Gaussian latent variable model

… Factor analysis

… Other continuous latent variable models

Reading:

… Required: Bishop, Ch 12
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Motivating Example: More scores
Continuing on our academic theme, suppose we have not only SAT scores but entire transcripts,
{xn}Nn=1 where xn 2 RD is a vector of D grades from one student. For example, we might have grades
for all their classes throughout the four years of high school. (Assume all students took the same D
classes.)

We might have a few objectives in mind:

… Dimensionality reduction: are there a few dimensions along which the students primarily vary?
E.g. do students vary along a “mathy” to “artsy” axis? Are there “late bloomers” and “senioritis
sufferers”?

… Visualization: Like above, but how can we embed these points in 2 or 3 dimensions to best
visualize them?

… Compression: Like above, but how can I best summarize the D scores if I am willing to sacrifice
some reconstruction accuracy?
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Principal Components Analysis (PCA)
Two classical definitions:

1. An orthogonal projection of the data onto a lower dimensional linear space, known as the
principal subspace, such that the variance of the projected data is maximized (Hotelling, 1933).

2. The linear projection that minimizes the average projection cost, defined as the mean squared
distance between the data points and their projections (Pearson, 1901).

(Quoted from Bishop, Ch 12)
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PCA: Maximum Variance Formulation
Goal: Project data {xn}Nn=1 onto a lower dimensional space of dimension M < D while maximizing the
variance of the projected data.

Illustration:
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PCA: Maximum Variance Formulation II
To start, assume M = 1. The principal subspace is defined by a unit vector u1 2 RD. This is called the
first principal component.

Projecting a data point xn onto this subspace amounts to taking an inner product, u>1 xn. These is
variously called the scores, embeddings, or signals.
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PCA: Maximum Variance Formulation III
The mean of the projected data is,

1
N

NX

n=1

u>1 xn = u>1

Ç
1
N

NX

n=1

xn

å
= u>1 x̄, (1)

where x̄ is the sample mean.

The variance is

1
N

NX

n=1

⇥
u>1 xn � u>1 x̄
⇤2

=
1
N

NX

n=1

⇥
u>1 (xn � x̄)
⇤2

(2)

=
1
N

NX

n=1

u>1 (xn � x̄)(xn � x̄)>u1 (3)

= u>1 Su1 (4)

where S = 1
N

PN
n=1(xn � x̄)(xn � x̄)> 2 RD⇥D is the sample covariance matrix.
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PCA: Maximum Variance Formulation IV
Now maximize the projected variance wrt u1, subject to the constraint that u>1 u1 = 1

L (u1) = u>1 Su1+�1(1� u>1 u1). (5)

Taking the gradient wrt u1 and setting to zero,

rL (u1) = 2Su1 � 2�1u1 = 0) Su1 = �1u1. (6)

So u1 must be an eigenvector of S. Left multiplying by u>,

u>1 Su1 = �1, (7)

so the projected variance u>1 Su1 is maximized when we choose u1 to be the eigenvector with the
largest eigenvalue �1.

More generally, to find an M dimensional principal subspace, take the M eigenvectors u1, . . . ,uM with
the largest eigenvalues �1, . . . ,�M .
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PCA: Linear Autoencoder Formulation
Now consider Pearson’s formulation of PCA as the linear projection that minimizes the average
projection cost, defined as the mean squared distance between the data points and their
projections.

Illustration:
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PCA: Linear Autoencoder Formulation II
To formalize this, let

W =

2
4
| |
w1 · · · wM
| |

3
5 2 RD⇥M with W>W = I (8)

be an orthogonal basis for the principal subspace.

We will encode each data point by subtracting the mean and projecting onto the principal subspace to
obtain zn =W>(xn � x̄).
Since W is an orthogonal matrix, all we need to do to decode the encoded data point is multiply Wzn
and add back the mean. That gives us,

x̂n =Wzn+ x̄ =WW>(xn � x̄) + x̄. (9)
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PCA: Linear Autoencoder Formulation III
Goal: Find an orthogonal matrix W that minimizes the mean squared reconstruction error,

L (W) =
1
N

NX

n=1

kxn � x̂nk22 (10)

We can write this in matrix notation instead. Let X 2 RN⇥D be the centered data matrix with
rows (xn � x̄)>. Then,

L (W) =
1
N

Tr[(X � X̂)>(X � X̂)] (11)

=
1
N

Tr[(X � XWW>)>(X � XWW>)] (12)

=
1
N

Tr[(X(I �WW>))>(X(I �WW>))] (13)

= Tr[(I �WW>)>S(I �WW>)] (14)

where S = 1
NX
>X is the sample covariance matrix.
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PCA: Linear Autoencoder Formulation IV
Now apply the circular trace property,

L (W) = Tr[S(I �WW>)(I �WW>)>] (15)

Question: What does (I �WW>)(I �WW>)> equal?
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PCA: Linear Autoencoder Formulation V
Thus, the objective simplifies to,

L (W) = Tr[S(I �WW>)] = Tr[S]� Tr[SWW>] = const� Tr[W>SW ]. (16)

Let U⇤U> be the eigendecomposition of S. (Since it is a covariance matrix, the eigenvectors are
orthogonal.) Plugging in,

L (W) = const� Tr[W>U⇤U>W ] (17)

= const� Tr

ñ
W>
Ç DX

d=1

�dudu
>
d

å
W

ô
(18)

= const�
MX

m=1

DX

d=1

�dw
>
mudu

>
d wm (19)

= const�
MX

m=1

DX

d=1

�d(w
>
mud)

2 (20)

Question: We want to minimize L (W) subject to W being orthogonal. What is the solution?
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PCA and the Singular Value Decomposition
We’ve seen two formulations of PCA, both showing us that the first M principal components are the
leading M eigenvectors of the covariance matrix.

Let

Y =
1p
N
X =

1p
N

2
4
� (x1 � x̄)> �

...
� (x>N � x̄)> �

3
5 (21)

be the centered and scaled data matrix. Then Y>Y = 1
NX
>X = S is the covariance matrix.

The singular value decomposition (SVD) of Y is,

Y = V⇤
1
2U> ) Y>Y =

1
N
U⇤

1
2V>V⇤

1
2U> =

1
N
U⇤U> (22)

I.e. the right singular vectors of Y are the same (up to sign flips) as the eigenvectors of S, and singular
values of Y are the square root of the eigenvalues of S.
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PCA Explained Variance
How well do the M principal components explain the data?

Let zn = U>M(xn � x̄) 2 RM . Its covariance is,

Cov[z] = Cov[U>M(x � x̄)] = U>MCov[x]UM = diag([�1, . . . ,�M]). (23)

Of course, if we let M = D, then we have Cov(z) = diag([�1, . . . ,�D]).

One way of assessing how well M components fits the data is via the fraction of variance
explained,

variance explained=
Tr(Cov[z;M components])
Tr(Cov[z;D components])

=

PM
m=1�mPD
m=1�m

2 [0,1]. (24)
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Scree Plots

Figure: “Scree” plot showing percent variance explained per component and cumulatively.
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Probabilistic PCA: A Continuous Latent Variable Model
The previous two formulations cast the principal components as the solutions to optimization
problems: maximize the projected variance or minimize the reconstruction error.

A more modern view of PCA is as the maximum likelihood estimate of a latent variable model.

Probabilistic PCA (PPCA) has many advantages:

… It’s a multivariate normal model with low-rank plus diagonal covariance, which takes only O(MD)
parameters.

… We can fit the model using a host of inference algorithms.

… It can handle missing data.

… We can obtain posterior distributions of the principal components and scores.

… It can be embedded in larger probabilistic models.
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Probabilistic PCA: A Continuous Latent Variable Model
The PPCA model is quite simple,

zn
iid⇠N (0, I) (25)

xn | zn ⇠N (Wz+µ,�2I), (26)

where zn 2 RM is a latent variable, W 2 RD⇥M are the weights, µ 2 RD is the bias parameter, and
�2 2 R+ is a variance.
Equivalently, we can think of xn as a linear function of zn with additive noise,

xn =Wzn+µ+ ✏n, (27)

where ✏n ⇠N (0,�2I) 2 RD.
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Maximum likelihood estimation of the parameters
Suppose we only need a point estimate of the parameters W , µ, and �2.

A natural approach is the maximum likelihood estimate (MLE),

WML,µML,�
2
ML = argmaxL (W ,µ,�2), (28)

where L is the marginal likelihood,

L (W ,µ,�2) = log p(X | W ,µ,�2) (29)

= log

Z NY

n=1

p(xn | zn,W ,µ,�2)p(zn)dzn (30)

= log

Z NY

n=1

N (xn | Wzn+µ,�2I)N (zn | 0, I)dzn (31)

Exercise: Simplify this expression.
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Maximum likelihood estimation of the parameters II
The log likelihood simplifies to,

L (W ,µ,�2)� ND
2

log2⇡� N
2
log |C|� 1

2

NX

n=1

(xn �µ)>C�1(x �µ) (32)

where C =WW>+�2I.

Setting the derivative wrt µ to zero and solving yields µML = x̄, the sample mean.

Maximizing wrt W and �2 is more complex but still has a closed form solution,

WML = UM(⇤M ��2I)
1
2R, (33)

where UM 2 RD⇥M has columns given by the leading eigenvectors of the sample covariance matrix S,
where ⇤M = diag([�1, . . . ,�M]), and where R 2 RM⇥M is an arbitrary orthogonal matrix.
Put differently, the MLE weights are only identifiable up to orthogonal transformation. Or, only the
subspace spanned by UM is identifiable.
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Maximum likelihood estimation of the parameters III
Finally, the MLE of the variance is,

�2ML =
1

D�M
DX

m=M+1

�m, (34)

the average variance in the remaining dimensions.

Question: What is the marginal covariance C using the MLE WML and �
2
ML?

Question: Intuitively, why is the marginal covariance invariant to rotations of the weights?
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The Posterior Distribution on the Latent Variables
Now fix W , µ, and �2 (e.g. to their maximum likelihood values). What is the posterior of zn?

p(zn | xn,W ,µ,�2)/N (zn | 0, I)N (xn | Wzn+µ,�2I) (35)

/ exp
ß
�1
2
z>n zn �

1
2
(xn �Wzn �µ)>(�2I)�1(xn �Wzn �µ)

™
(36)

/ exp
ß
�1
2
z>n Jnzn+ h

>
n zn

™
(37)

(38)

where Jn = I+ 1
�2W

>W and hn =
1
�2W

>(xn �µ)
Completing the square,

p(zn | xn,W ,µ,�2) =N (zn | J�1n hn, J�1n ). (39)
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The Posterior Distribution in the Zero Noise Limit
In the limit where �2! 0, the posterior mean of zn is,

lim
�2!0
E[zn | xn,W ,µ,�2] = lim

�2!0
(I+

1
�2
W>W)�1[

1
�2
W>(xn �µ)] (40)

= lim
�2!0

(�2I+W>W)�1W>(xn �µ) (41)

= (W>W)�1W>(xn �µ) (42)

Now suppose W =WML = UM(⇤M ��2I)
1
2R and set R= I. This goes to W = UM⇤

1
2
M . Then,

lim
�2!0
E[zn | xn,W ,µ,�2] = (W>W)�1W>(xn �µ) (43)

= ⇤
� 12
M U>M(xn �µ) (44)

This is the same as zn from the linear autoencoder formulation, except here the zn’s are scaled by ⇤�
1
2

to be unit variance in all dimensions.
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Gibbs Sampling for Probabilistic PCA I
For simplicity, assume the data is centered and fix µ= 0. Now let’s put a prior on the
parameters,

p(W ,�2) = ��2(�2 | ⌫0,�20)
DY

d=1

N (wd | 0, �
2

0
I), (45)

where wd 2 RM are the rows of W .
Under this prior, the complete conditional distribution of the parameters is,

p(wd | {xn, zn}Nn=1,�2,0)/N (wd | 0, �
2

0
I)

NY

n=1

N (xn,d | w>d zn,�2) (46)

=N (wd | J�1d hd, J�1d ) (47)

where Jd =
0
�2 I+

1
�2

PN
n=1 znz

>
n and hd =

1
�2

PN
n=1 xn,dzn.
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Gibbs Sampling for Probabilistic PCA II
For the variance,

p(�2 | {xn, zn}Nn=1W ,0,⌫0,�
2
0)/ ��2(�2 | ⌫0,�20)

DY

d=1

N (wd | 0, �
2

0
I)

NY

n=1

N (xn | Wzn,�2I)

(48)

/ ��2(�2 | ⌫N,�2N) (49)

where

⌫N = ⌫0+ DM+ DN (50)

�2N = ⌫
�1
N

ñ
⌫0�

2
0 + 0

DX

d=1

w>d wd +
NX

n=1

(xn �Wzn)>(xn �Wzn)
ô

(51)

Note: It’s a little strange to put a prior on the rows of W ; it’s more natural to put a prior on the columns.
We only did this for simplicity. It turns out you can put a conjugate prior on (W ,�2) that specifies the
conditional variance of the columns. It’s called a matrix normal inverse Wishart prior.
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Connection to Bayesian Linear Regression
Question: How does Gibbs sampling in Probabilistic PCA relate to Bayesian linear regression from
HW1?
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Factor Analysis
Factor analysis is another continuous latent variable model. In fact, it’s almost the same as
probabilistic PCA!

The difference is that FA allows �2 to vary across output dimensions. The generative model is,

zn
iid⇠N (0, I) (52)

xn ⇠N (Wzn+µ, diag(�2)) (53)

where �2 = [�21, . . . ,�2D]
>.

Put a similar prior on the parameters as before,

p(W ,�2) =
DY

d=1

h
��2(�2d | ⌫0,�20)N (wd | 0,

�2d
0
I)
i

. (54)

Exercise: without doing any math, derive a Gibbs sampler for this factor analysis model.
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Independent Components Analysis (PCCA)
Independent Components Analysis (ICA) is yet another linear latent variable model. It aims to find
independent factors of variation in the data. One probabilistic formulation is,

zn
iid⇠ p(z) (55)

xn ⇠N (Wzn+µ, diag(�2)) (56)

where the prior distribution on z assumes the coordinates are independent,

p(z) =
MY

m=1

p(zm). (57)

The success of this approach requires that p(z) be non-Gaussian; otherwise, we could always reduce it
to factor analysis by moving any correlation in p(z) into the weights.

Instead, we typically choose priors that have heavy tails, like a Laplace distribution.
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Probabilistic Canonical Correlations Analysis
Now consider a slightly different setting in which we have two types of observations, x 2 RDx and
y 2 RDy .

Goal: find shared latent variables z(s)n that capture common factors of variation across domains, as
well as private latent variables z(x)n and z(y)n that capture domain-specific variation.

Model:

z(s)n
iid⇠N (0, IMs) z(x)n

iid⇠N (0, IMx) z(y)n
iid⇠N (0, IMy) (58)

and

xn ⇠N (Wxxz
(x)
n +Wxsz

(s)
n +µx,�

2IDx) (59)

yn ⇠N (W yyz
(y)
n +W ysz

(s)
n +µy,�

2IDy) (60)

where Ms, Mx , and My are the dimensions of z
(s)
n , z

(x)
n , and z(y)n , respectively, and the parameters

consist of Wxx , Wxs, µx , W yy , W ys, µy , and �
2.
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Probabilistic Canonical Correlations Analysis II
Exercise: Draw the graphical model for probabilistic CCA.
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Probabilistic Canonical Correlations Analysis III
Just as the MLE for probabilistic PCA yields the classical PCA solution, Bach and Jordan [2005] showed
that the MLE for probabilistic CCA yields the classical CCA solution,

wxs,1,wys,1 = argmax corr(w>xs,1x,w
>
ys,1y), (61)

where wxs,1 and wys,1 are the first columns of Wxs and W ys respectively; aka the first pair of canonical
variables.

Subsequent pairs of canonical variables are found by maximizing the same objective, subject to being
orthogonal to previous pairs.

As with PCA, the classical CCA solution can be found with an SVD. Here, Wxs and W ys are the left and

right singular vectors of the sample correlation matrix diag(Sxx)�
1
2 Sxydiag(Syy)�

1
2 .

See Witten et al. [2009] for (non-Bayesian) sparse extensions to PCA and CCA.
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