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Last Time...

… Metropolis-Hastings, Gibbs Sampling

… Probabilistic PCA, Factor Analysis, and Friends
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Today...

Outline:

… Hamiltonian Monte Carlo

Reading:

… MCMC using Hamiltonian dynamics [Neal, 2012]

… Optional: A Conceptual Introduction to Hamiltonian Monte Carlo [Betancourt, 2017]
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How Can We Make Smarter Proposals?
… Metropolis-Hastings with a symmetric Gaussian proposal behaves (kind of) like a random walk.

… Neal [2012] argues that in D dimensions, random walk MH needs O(D2) iterations to get an
independent sample.

… Can we develop more efficient transition distributions?

… Yes! If we have more information about the log probability.

… For example, suppose that the log probability log p(✓ ) is differentiable. We can use the gradient
to make proposals that move farther and are more likely to be accepted.
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Metropolis Adjusted Langevin Algorithm (MALA)

The Metropolis-Adjusted Langevin Algorithm uses the gradient of the log probability to make
asymmetric proposals,

q(✓ 0 | ✓ ) =N (✓ +⌧r✓ log p(✓ ,X), 2⌧2I) (1)

Note: q(✓ 0 | ✓ ) 6= q(✓ | ✓ 0)! To calculate the acceptance probability, you need the gradient at both
points.

MALA can be motivated as a discrete-time approximation to the Langevin diffusion, a continuous-time
stochastic differential equation for modeling molecular dynamics.

In high dimensions, the extra information provided by the gradient can lead to much more efficient
chains. Neal argues that MALA needs O(D4/3) computation to produce an independent sample.

But why stop at one gradient step?
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Hamiltonian Monte Carlo
Reference: Neal [2012] MCMC using Hamiltonian dynamics.

Idea: Think of negative log probability as an energy landscape. Now imagine a puck sliding around on this
bumpy surface. Give it random kicks; it will tend to slide downhill toward points of low potential energy
(high probability). Each kick can displace the puck by a large amount. Done properly, the puck will visit
points with probability proportional to the posterior probability.
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Notation

Following Neal [2012], let

… q 2 RD denote the position; i.e. the current parameters (previously ✓ )
… p 2 RD denote the momentum; auxiliary variables that we don’t care about, but which are
necessary for HMC.

… z = [q,p]> 2 R2D denote the combined state of the system.
… M denote the mass matrix, another artificial construct. Typically, this will be mI

… U(q) denote the potential energy

… K(p) = 1
2p
>M�1p denote the kinetic energy
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Hamiltonian Dynamics
The Hamiltonian is the sum of the potential H(q,p) = U(q) + K(p) = U(q) + 1

2p
>M�1p.

The partial derivatives determine how the state evolves over time,

dqd
dt

=
@ H
@ pd

= [M�1p]d (2)

dpd
dt

= � @ H
@ qd

= � @ U
@ qd

(3)

for d = 1, . . . ,D.

Compactly,

dz
dt

= JrH(z) (4)

where

J =

0, I
�I,0

�
(5)

8 / 24



One Dimensional Example
Consider the case where D= 1 and U(q) = 1

2q
2 and K(p) = 1

2p
2.

The partial derivatives are

@ H
@ p

= p (6)

�@ H
@ q

= �q (7)

so

dz
dt

= Jz. (8)

This is a linear dynamical system, and the state at time t+�t is z(t+�t) = eJ�tz(t).

Since J�t is skew-symmetric, the matrix exponential eJ�t is orthogonal. More precisely, z(t+�t) is a
rotation about the origin of z(t).
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Properties of Hamiltonian Dynamics

1. Reversibility: The mapping from z(t)! z(t+�t) is one-to-one and invertible. To go from
z(t+�t) to z(t), negate p(t+�t), apply the the Hamiltonian dynamics for �t time, and negate
the momentum again.

2. Conservation of energy: The Hamiltonian (which is the total energy in a closed system) is
conserved,

dH
dt

=
DX

d=1

dqd
dt
@ H
@ qd

+
dpd
dt
@ H
@ pd

(9)

=
DX

d=1

@ H
@ pd

@ H
@ qd
� @ H

dqd

@ H
@ pd

= 0. (10)
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Properties of Hamiltonian Dynamics II
3 Volume preserving: A set in (q,p) space will have the same volume after being mapped through
Hamiltonian dynamics. This follows from the fact that the divergence of the vector field is zero
everywhere:

div
dz
dt

=
DX

d=1

@

@ qd

dqd
dt

+
@

@ pd

dpd
dt

=
DX

d=1

@

@ qd

@ H
@ pd
� @

@ pd

@ H
@ qd

=
DX

d=1

@ 2H
@ qd@ pd

� @ 2H
@ qd@ pd

= 0.

(11)

4 Sympleticness Let B be the Jacobian of the transformation from z(t)! z(t+�t). It turns out
that,

B>J�1B = J�1 (12)

which implies that |B>||J�1||B|= |J�1| and thus |B|= 1. I.e. the dynamics preserve volume.
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Discretizing Hamilton’s Equations
The properties above apply to the continuous time Hamiltonian dynamics. Can we maintain them in
practice?

Idea: In practice, to simulate �t elapsed time, we break it down into steps of size �t/✏.

Euler’s method: Update the state as,

z(t+ ✏) = z(t) + ✏
dz
dt

���
z(t)

(13)

) pd(t+ ✏) = pd(t)� ✏
@ U
@ qd

���
q(t)

(14)

qd(t+ ✏) = qd(t) + ✏
pd(t)
md

(15)

Simple Euler integration does not preserve volume: trajectories
eventually diverge, even with small ✏.
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The Leapfrog Integrator

Instead, alternate updates of p and q

pd(t+
✏
2) = pd(t)�

✏

2
@ U
@ qd

���
q(t)

(16)

qd(t+ ✏) = qd(t) + ✏
pd(t+

✏
2)

md
(17)

pd(t+ ✏) = pd(t+
✏
2)�

✏

2
@ U
@ qd

���
q(t+✏)

(18)

(19)

Each update is a shear transformation in which only some variables
change, by amounts that depend on the other, fixed variables. The
determinant of such a transformation is one, so it preserves volume.
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Using Hamiltonian Dynamics for Posterior Inference
Define a joint distribution on positions and momenta as,

p(q,p)/ exp
�
�H(q,p)

 
/ exp

�
�U(q)� K(p)

 
. (20)

Now let U(q) = � log p(✓ = q,X) be the negative log joint probability. Then,

p(q,p) = p(✓ = q | X)⇥ p(p) (21)

Samples of q will be marginally distributed according to the posterior p(✓ = q | X).

Samples of p will be marginally distributed p(p) = exp{�K(p)}R
RD exp{�K(p)}dp

. These are auxiliary variables that

we don’t really care about—they’re just there to help us construct MH proposals.

We choose K(p) so p(p) is convenient; e.g. if K(p) = 1
2p
>M�1p then

p(p) =N (p | 0,M). (22)
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Hamiltonian Monte Carlo (HMC)
Hamiltonian Monte Carlo (HMC) is Metropolis-Hastings on the joint distribution of (q,p) with
proposals based on Hamiltonian dynamics.

Starting at point (q0,p0), sample the proposal distribution:

1. Throw away p0 and sample new momenta from their marginal distribution p⇠N (0,M).

2. Approximate Hamiltonian dynamics on (q,p) for �t time using L=�t/✏ Leapfrog steps each of
size ✏. Call the resulting point (q,p).

3. Flip the momentum p �p to make the proposal symmetric.
Then accept the proposed point (q,p) with probability,

a((q0,p0)! (q,p)) = min

⇢
1,

exp{�H(q,p)}q(q0,p0 | q,p)
exp{�H(q0,p0)}q(q,p | q0,p0)

�
=min

⇢
1,

exp{�H(q,p)}
exp{�H(q0,p0)}

�
. (23)

If the Hamiltonian dynamics were simulated exactly, HMC would always accept. In practice,
differences arise from numerical integration errors.
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HMC Dynamics on a Correlated 2D Gaussian
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HMC vs Random Walk MH

17/24



HMC vs Random Walk MH II
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HMC vs Random Walk MH in 100D
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HMC vs Random Walk MH in 100D II
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Benefits of Avoiding Random Walks
… To maintain reasonably high acceptance probability, random walk MH needs proposal standard
deviation (s.d.) comparable to the s.d. in the most constrained dimension (0.14 in the 2D Gaussian
example and 0.01 in the 100D example).

… Num. iterations needed for RW-MH to reach an approximately independent state is proportional
to the square of the largest standard deviation to the smallest; i.e. to the condition number of the
covariance matrix.

… In contrast, integrating the Hamiltonian makes many steps in the same direction. The number of
integration steps to reach an independent state is about the ratio of the largest s.d. to the
smallest; i.e. the square root of the condition number.

… Neal [2012] argues that the number of leapfrog updates to reach an independent point scales as
O(D5/4), better than the O(D2) and O(D4/3) estimates for random walk MH and MALA,
respectively.

… However, we still need to tune the step size ✏ to be comparable to the smallest s.d.
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Adapting the step size

… A simple strategy is to tune the step size adaptively during the initial run of the Markov chain.

… For example, set a target acceptance rate (Neal argues that it should be around 0.65), then
increase the step size if you’re accepting too often and decrease if you’re rejecting too often.

… Andrieu and Thoms [2008] proposed a widely-used multiplicative update scheme; it is the
default in tfp.mcmc.SimpleStepSizeAdaptation. Pyro defaults to a similar “dual
averaging” scheme.

… The No U-Turn Sampler (NUTS) [Hoffman and Gelman, 2014] adapts the distance traveled in
response to the curvature of the target density. Conceptually, it continues until the trajectory
turns back on itself (hence the name, “No U-Turn”)

… More details can be found in Betancourt [2017].
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https://www.tensorflow.org/probability/api_docs/python/tfp/mcmc/SimpleStepSizeAdaptation
https://num.pyro.ai/en/v0.2.0/mcmc.html#hamiltonian-monte-carlo


Demos

https://chi-feng.github.io/mcmc-demo/app.html
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https://chi-feng.github.io/mcmc-demo/app.html
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