
Lecture 5: Sparse GLMs
STATS305B: Applied Statistics II

Scott Linderman

January 22, 2025

1 / 37

Recap

Last time...

▶ Generalized Linear Models (GLMs)

▶ Canonical form

▶ Demo: Poisson GLM

▶ Non-canonical forms

▶ Model checking and comparison

2 / 37

Outline

Today...

▶ (Weighted) LASSO Regression

▶ Synthetic Demo

▶ The GLMNet Algorithm

▶ Why it Works: Proximal Methods

3 / 37

Motivation
We like linear and generalized linear models because the parameters are readily interpretable.

βj relates changes in covariate xj to changes in the natural parameter of the response
distribution.

One common application of such models is for variable selection, finding a subset of covariates that are
most predictive of the response.

For variable selection, we would like our estimates, β̂ , to be sparse.

When we have a vast number covariates — as in genome-wide association studies (GWAS) where we
aim to predict a trait given thousands of single nucleotide polymorphisms (SNPs) in the genome —
sparse solutions help focus our attention on the most relevant covariates.

4 / 37

Lasso Regression
Consider a linear Gaussian model,

yi
ind∼ N(β0+ x

⊤
i β ,1) for i = 1, . . . ,n,

where β0 is the intercept parameter, xi ∈ Rp are the covariates, and β ∈ Rp are the weights. We
factored out the intercept because we typically don’t regularize that parameter.

5 / 37

Lasso Regression
The Lasso yields sparse solutions for linear models like this by minimizing the (average) negative log
likelihood subject to ℓ1 regularization.

L (β0,β) = −
1
n

n
∑

n=1

logN(yi | β0+ x⊤i β ,1) +λ∥β∥1

=
1
2n

n
∑

i=1

(yi − β0 − x⊤i β)
2+λ∥β∥1

=
1
2n

n
∑

i=1

(yi − β0 − x⊤i β)
2+λ

p
∑

j=1

|βj|

This is still a convex objective function!

It’s tempting to just use vanilla gradient ascent to find the optimum,

β(t+1)← β(t) −αt∇L (β(t)),

6 / 37

Lasso Regression
Unfortunately, the Lasso objective it is not continuously differentiable: the gradient at βj = 0 is
discontinuous due to the absolute value in the ℓ1 norm. What can we do instead?

▶ You only live once. . . run gradient descent and hope for the best!

▶ Use subgradient descent, taking a step in the direction of any subgradient ofL , but that
approach can be much slower, with convergence rates of only O (1/ε2).

▶ Use proximal gradient descent, which amounts to iterative soft thresholding for the Lasso problem.
This has much better convergence rates, as we’ll discuss below.

▶ Use coordinate descent, which works very well in practice, even if it’s harder to prove convergence
rates.

7 / 37

Coordinate Descent
Fix all parameters except for βj for some j ∈ {1, . . . ,p}. As a function of βj, the average negative log
likelihood is,

L (βj;β¬j) =
1
2n

n
∑

i=1

(eyij − xijβj)2+λ|βj|+ c,

where

eyij = yi − β0 −
∑

k ̸=j

xikβk,

and where c is constant with respect to βj .

8 / 37

Coordinate Descent
This is just a scalar minimization problem. Completing the square, we can rewrite the objective
as,

L (βj;β¬j) =
1
2

(βj −µj)2

σ2j
+λ|βj|+ c′

Exercise: Solve for µj and σ
2
j .

9 / 37

Coordinate Descent
Let’s plot the objective for a few values of µj, fixing σ

2
j λ= 1.

Note that many of the minimizers (denoted by the red lines) are obtained at βj = 0!

10 / 37

The Soft-Thresholding Operator
With a bit of calculus, we can show that the minimizer is given by the soft-thresholding
operator,

β⋆j =











µj −σ2j λ if µj > σ
2
j λ

0 if |µj|< σ2j λ
µj +σ

2
j λ if uj < −σ2j λ

≜ Sσ2j λ(µj)

We can write the soft-thresholding operator more compactly as,

Sα(µ) = sign(µ)max{|µ| −α,0}.

11 / 37

Coordinate ascent step for the intercept
Exercise: Show that the coordinate update for the intercept is,

β⋆0 =
1
n

n
∑

i=1

eyi0,

where eyi0 = yi − x⊤i β .

12 / 37

Weighted Lasso Regression
Finally, suppose we have heteroskedastic noise,

yi ∼ N(β0+ x
⊤
i β ,w−1i)

where wi is the inverse variance (precision) of the i-th observation.

Then the objective would become,

L (β0,β) = −
1
n

n
∑

n=1

logN(yi | β0+ x⊤i β ,w−1i) +λ∥β∥1

=
1
2n

n
∑

i=1

wi(yi − β0 − x⊤i β)
2+λ∥β∥1

Note that the wi ’s become the weights in the objective.

13 / 37

Weighted Lasso Regression
Following the same steps as above, we can write the objective as a function of βj,

L (βj;β¬j) =
1
2

(βj −µj)2

σ2j
+λ|βj|+ c′

where

µj =
hj
Jj

σ2j =
1
Jj

Jj =
1
n

n
∑

i=1

wix
2
ij

hj =
1
n

n
∑

i=1

wieyijxij.

14 / 37

Weighted Lasso Regression
Again, the coordinate-wise minimum is obtained at β⋆j = Sσ2j λ(µj).

For the intercept, β⋆0 =
∑n
i=1 wieyi0
∑n
i=1 wi

.

15 / 37

Synthetic Demo
See Colab

16 / 37

Questions
1. Can you identify two was in which the Lasso estimate differs from the OLS estimate?

2. What estimate do you get if you set λ= 0?

3. What if you take λ→∞?

17 / 37

Fitting Sparse GLMs
Now let’s generalize this approach to fit ℓ1-regularized GLMs! This is exactly what the glmnet
package (Friedmann et al., 2010) solves.

Suppose we have a GLM with the canonical mean function,

E[Yi] = f (β0+ x
⊤
i β)

where we have again factored out the intercept.

The regularized objective is,

L (β0,β) = −
1
n

n
∑

i=1

log p(yi | f (β0+ x⊤i β)) +λ∥β∥1.

18 / 37

Review: Iteratively Reweighted Least Squares
Recall that Newton’s method for canonical GLMs (without regularization) is equivalent to iteratively
reweighted least squares. The (t+ 1)-th step of Newton’s method is equivalent to solving a weighted
least squares problem to find the minimum of an objective,

fL (β0,β ;β
(t)
0 ,β(t)) =

1
n

n
∑

i=1

w(t)
i (z(t)i − β0 − x

⊤
i β)

2

where the working responses are

z(t)i = β
(t)
0 + x⊤i β

(t) +
yi − ŷ

(t)
i

w(t)
i

,

the predictions are,

ŷ(t)i = f (β(t)0 + x⊤i β
(t)),

19 / 37

Review: Iteratively Reweighted Least Squares
and the weights are equal to the conditional variances,

w(t)
i = Var[Yi | xi,β

(t)
0 ,β(t)].

For example, in a logistic regression,

ŷ(t)i = σ(β
(t)
0 + x⊤i β

(t))

wi = ŷ(t)i (1− ŷ(t)i).

20 / 37

The Algorithm
From here, we can sketch out a pretty straightforward algorithm for fitting sparse GLMs.

Within each Newton iteration, solve a weighted least squares problem, subject to the ℓ1-regularization
penalty, using coordinate descent.

Once the coordinate descent procedure converges, update the working responses and weights, then
repeat.

This is essentially the algorithm in glmnet (Friedmann et al., 2010)!

21 / 37

Synthetic Demo
See Colab

22 / 37

Computational Tricks
There are several simple tricks to speed it up.

▶ Rather than recomputing the residual for each coordinate, we can update and downdate the
residual after each coordinate update.

▶ You can show that the coordinate updates only depend on sufficient statistics
∑

i wixijxik and
∑

i wizixij, and these statistics don’t change within the each outer loop. We can save some time
by precomputing these at the start of the _glmnet_step function. This trick is referred to as
using covariance updates.

▶ When X is sparse, we can implement the sufficient statistics calculations even more efficiently.

Friedmann et al (2010) describe several other implementation-level details for making the code as fast
as possible. You should also check out James Yang’s thesis and his amazing adelie package for
LASSO problems.

23 / 37

https://github.com/JamesYang007/adelie
https://github.com/JamesYang007/adelie

Proximal Methods
The glmnet algorithm is intuitive, but why the heck does it work?! To gain a deeper theoretical
understanding, let’s take a step back and talk about proximal methods.

24 / 37

Proximal Gradient Descent
Proximal gradient descent is an optimization algorithm for convex objectives that decompose into a
differentiable part and a non-differentiable part,

L (β) =Ld(β) +Lnd(β)

whereLd is convex and differentiable, whereasLnd is convex but not differentiable. The idea is to stick
as close to vanilla gradient descent as possible, while correcting for the non-differentiable part of the
objective.

If we just had the differentiable part,Ld, we could perform gradient descent. One way to think about
the gradient descent update is as the solution to a quadratic minimization problem,

β(t+1)← argmin
z
Ld(β(t)) +∇Ld(β(t))⊤(z−β(t)) +

1
2αt
∥z−β(t)∥22

We can think of the surrogate problem as a second order approximation of the objective in which the
Hessian is replaced with 1

αt
I.

25 / 37

Proximal Gradient Descent
Proximal gradient descent follows the same logic, but it keeps the non-differentiable part,

β(t+1)← argmin
z
Ld(β(t)) +∇Ld(β(t))⊤(z−β(t)) +

1
2αt
∥z−β(t)∥22+Lnd(β

(t))

= argmin
z

1
2αt
∥z− (β(t) −αt∇Ld(β(t)))∥22+Lnd(z)

The resulting update balances two parts:

1. Stay close to the vanilla gradient descent update, β(t) −αt∇Ld(β(t)).

2. Also minimize the non-differentiable part of the objective,Lnd(β(t)).

As a sanity check, note that we recover vanilla gradient descent withLnd(β(t)) = 0.

26 / 37

Proximal Mapping
We call the function,

prox(u;αt) = argmin
z

1
2αt
∥z− u∥22+Lnd(z) (1)

the proximal mapping.

Notes

▶ The proximal mapping depends on the form of the non-differentiable part of the objective, even
though we have suppressed that in the notation.

▶ However, it does not depend on the form of the continuous part of the objective.

27 / 37

Algorithm
With this definition, the proximal gradient descent algorithm is,

Proximal Gradient Descent

Input: Initial parameters β(0), proximal mapping prox(·; ·).

▶ For t = 1, . . . ,T

▶ Set β (t)← prox(β (t−1) −αt∇Ld(β (t−1));αt).

Return β(T).

So far, it’s not obvious that this framing is helpful. We still have a potentially challenging optimization
problem to solve in computing the proximal mapping. However, for many problems of interest, the
proximal mapping has simpled closed solutions.

28 / 37

Proximal Gradient Descent for Lasso Regression
Consider the Lasso problem. The objective decomposes into convex differentiable and
non-differentiable parts,

Ld(β) =
1
2
∥y − Xβ∥22

Lnd(β) = λ∥β∥1.

29 / 37

Proximal Mapping
The proximal mapping is,

prox(u;αt) = argmin
z

1
2αt
∥z− u∥22+λ∥z∥1

= argmin
z

p
∑

j=1

1
2αt

(zj − uj)2+λ|zj|

It separates into optimization problems for each coordinate, and each coordinate has a closed-form
solution in terms of the soft-thresholding operator!

[prox(u;αt)]j = Sαtλ(uj)

30 / 37

Iterative Soft-Thresholding Algorithm
Now let’s plug in the gradient of the differentiable part,

∇Ld(β) = X⊤(y − Xβ).

Substituting this into the proximal gradient descent algorithm yields what is sometimes called the
iterative soft-thresholding algorithm (ISTA),

Iterative Soft-Thresholding

Input: Initial parameters β(0), covariates X ∈ Rn×p, responses y ∈ Rn

▶ For t = 1, . . . ,T

▶ Set β (t)← Sαtλ(β
(t−1) −αtX⊤(y − Xβ (t−1))).

Return β(T).

31 / 37

Convergence
If ∇Ld is L-smooth then proximal gradient descent with fixed step size αt = 1/L then,

f (β(t))− f (β⋆)≤
L
2t
∥β(0) −β⋆∥22,

so it matches the gradient descent convergence rate of O (1/ε). (With Nesterov’s accelerated gradient
techniques, you can speed this up to O (1/

p
ε).

32 / 37

Proximal Newton Method
One great thing about proximal gradient descent is its generality. We could easily apply it to
ℓ1-regularized GLMs, substituting the gradient of the negative log likelihood, which also has a simple
closed form expression. The proximal operator remains the same, and we obtain the same converge
rates as gradient descent on standard GLMs.

However, we saw that Newton’s method yielded significantly faster convergence rates of O (log log 1
ε).

Can we obtain similar performance for ℓ1-regularized GLMs?

To obtain a proximal Newton method, we proceed in the same fashion as above, but rather than
approximating the second order term with α−1t I, we will use the Hessian ofLd. That leads to a
proximal mapping of the form,

prox(u;Ht) = argmin
z

1
2
∥z− u∥2Ht +Lnd(z)

where ∥x∥2Ht = x⊤Htx is a squared norm induced by the positive definite matrix Ht .

33 / 37

Proximal Newton Method
Note: the proximal mapping for proximal gradient descent corresponds to the special case in which
Ht =

1
αt
I.

Let gt =∇Ld(β
(t)) and Ht =∇2Ld(β(t)) denote the gradient and Hessian, respectively. The

undamped proximal Newton update is,

β̂
(t+1)

← argmin
z
Ld(β(t)) + (z−β(t))⊤gt +

1
2
(z−β(t))⊤Ht(z−β(t)) +Lnd(z)

= argmin
z

1
2
∥z− (β(t) − H−1t gt)∥

2
Ht
+Lnd(z)

= prox(β(t) − H−1t gt;Ht)

As with Newton’s method, however, we often need to use damped updates,

β(t+1) = β(t) +αt(β̂
(t+1)

−β(t)),

However, solving the proximal Newton mapping can be more challenging.
34 / 37

Proximal Newton for Sparse GLMs
Let’s consider the proximal Newton mapping for ℓ1-regularized GLMs, like logistic regression. Here,
the non-differentiable part of the objective isLnd(β) = λ∥β∥1. Unfortunately, the proximal Newton
update no longer has a closed form solution because when we introduce the Hessian, the problem no
longer separates across coordinates since the Hessian is generally not diagonal.

However, note that the proximal Newton step minimizes a second-order Taylor approximation of the
log likelihood plus an ℓ1-regularization penalty,

prox(u;Ht) = argmin
z
Ld(β(t)) + (z−β(t))⊤gt +

1
2
(z−β(t))⊤Ht(z−β(t)) +Lnd(z)

This is exactly the same problem in the inner loop of the glmnet algorithm! In particular, we can
view the second-order Taylor approximation of the log likelihood as a weighted least squares objective
with working responses and weights. We can solve that inner problem with coordinate ascent, just like
above.

TL;DR: the intuitive algorithm we derived above is really a proximal Newton algorithm.
35 / 37

Caveats
As with regular Newton’s method, proximal Newton exhibits local quadratic convergence to obtain
error ε in O (log log1/ε) iterations. Though here, each iteration requires an inner coordinate descent
loop to solve the proximal mapping.

Warning: In practice, you may need to also implement a backtracking line search to choose the step
size αt , since you may not start in the local quadratic regime. Logistic regression with decent
initialization is reasonably well behaved, but Poisson regression with log link functions can be
sensitive.

36 / 37

Conclusion
The proximal methods disussed today are what run behind the scenes of modern packages for sparse
linear and logistic regression.

In particular, sklearn.linear_model.Lasso uses a fast coordinate descent algorithm like
discussed above, and GLMNet (Friedmann et al., 2010) uses a proximal Newton algorithm with
coordinate descent for the proximal step.

37 / 37

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://glmnet.stanford.edu/articles/glmnet.html

