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Last Time...

▶ Transformers

▶ Attention

▶ Some tricks
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Today...

Outline:

▶ Recurrent Neural Networks

▶ Backpropagation Through Time

▶ Vanishing Gradients and Gated RNNs

▶ Other Variations and Uses of RNNs

▶ Revisiting HMMs

▶ Linear RNNs and Parallel Inference
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Autoregressive Models
Consider a sequence of observations x1:T = (x1, . . . ,xT) with each xt ∈ RD. We can always factor a
joint distribution over observation into a product of conditionals using the chain rule,

p(x1:T) = p(x1)
T
∏

t=2

p(xt | x1:t−1).

This is called an autoregressive model since the conditional of xt depends only on previous
observations x1, . . . ,xt−1.

Autoregressive models are well-suited to sequential modeling since they make forward generation or
forecasting easy. As long as we have access to the conditionals, we can sample forward
indefinitely.

The question is, how should we parameterize these conditional distributions? It looks challenging
since each one takes in a variable-length history of previous observations.
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Recurrent Neural Networks
Recurrent Neural Networks (RNNs) are autoregressive models in which the conditional distributions
are functions of a finite-dimensional hidden state, ht ∈ RK ,

p(xt | x1:t−1) = p(xt | g(ht;θ )).

The hidden state is updated with each new observation as,

ht+1 = f (ht,xt;θ ).

Defining Property of an RNN The conditional distribution over the next observation is a function of hidden
state. The hidden state is updated recursively, and its size is fixed regardless of the sequence length.
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Vanilla RNNs
The standard, “vanilla” RNN consists of a linear-nonlinear state update. For example,

f (ht,xt;θ ) = tanh(Wht + Bxt) ,

where - W ∈ RK×K are the dynamics weights, - B ∈ RK×D are the input weights, - tanh(·) is the
hyperbolic tangent function.

Hyperbolic Tangent and the Logistic Function The hyperbolic tangent function equivalent is typically
written as,

tanh(a) =
ea − e−a

ea+ e−a
.
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Vanilla RNNs
We can rewrite tanh as,

tanh(a) = 1−
2e−a

ea+ e−a

= 1− 2σ(−2a)
= 1− 2(1−σ(2a))
= 2σ(2a)− 1.

Thus, we see that the the hyperbolic tangent is simply a scaled and shifted logistic function.

The “read-out” of a vanilla RNN is typically a simple linear or generalized linear model, depending on
the type of observations. For example,

g(ht,xt;θ ) = Cht + d,

where C ∈ RD×K is the read-out weight matrix and d ∈ RD is the bias.

Let θ = (W ,B,C,d) denote the set of parameters.
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Theoretical Neuroscience
In machine learning, RNNs are useful function approximators for sequential data. In neuroscience,
they have a long history as theoretical models of biological computation.

The hidden state ht ∈ RK corresponds to the relative firing rates of K neurons. With a tanh
nonlinearity, ht ∈ (−1,1)K , and negative rates don’t make sense. Instead, we think of ht as an offset to
a baseline firing rate.

The dynamics weights correspond to synaptic connections, with positive weights as excitatory
synapses and negative weights as inhibitory. When a presynaptic neuron spikes, it induces an electrical
current in postsynaptic neurons. The activation Wht is the input current from other neurons.

As a neuron receives input current, its voltage steadily increases until it reaches a threshold, at which
point the voltage spikes and the neuron fires an action potential. These spikes induce currents on
downstream neurons, as described above.

After a cell fires, there is a short refractory period before the neuron can spike again. Thus, there is an
upper bound on firing rates, which the hyperbolic tangent is meant to capture.

8 / 37



Backpropagation Through Time
Artificial RNNs are trained using stochastic gradient descent (SGD) to minimize the negative log
likelihood,

L (θ ) = −
T
∑

t=1

log p(xt | x1:t−1)

= −
T
∑

t=1

log p(xt | g(ht;θ ))

= −
T
∑

t=1

log p(xt | g(f (ht−1,xt−1;θ );θ ))

= −
T
∑

t=1

log p(xt | g(f (· · · f (h1,x1;θ ) · · · ,xt−1;θ );θ )).
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Backpropagation Through Time
Now, you would simply use automatic differentiation to compute the necessary gradients to minimize
this loss, but we can gain some insight by working them out manually.

With some algebra, we can show that the Jacobian of the loss with respect to the dynamics weights
(other parameters are similar) is,

∂L (θ )

∂W
=

T
∑

t=1

∂L (θ )

∂ ht

∂ ht
∂W

We need the Jacobian of the loss with respect to the hidden states. These can be computed recursively
by backpropagation through time (BPTT),

∂L (θ )

∂ ht
=
∂L (θ )

∂ ht+1

∂ ht+1
∂ ht
−
∂ log p(xt | g(ht;θ ))

∂ ht
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Backpropagation Through Time
For a vanilla RNN, the Jacobian of the next state with respect to the current state is,

∂ ht+1
∂ ht

= diag
�

1− h2t+1
�

W

since d
da tanh(a) = 1− tanh(a)2.
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BPTT is a linear dynamical system
The “state” of the BPTT recursions is the Jacobian, or equivalently its transpose, the gradient

st ≜
�

∂L (θ )
∂ ht

�⊤
. This state obeys a linear dynamical system,

st = Atst+1+ bt

where At =
�

∂ ht+1
∂ ht

�⊤
and bt = −
�

∂ log p(xt | g(ht;θ ))
∂ ht

�⊤
.
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Biological Plausibility
Backpropagation is the most effective way we know of to train artificial RNNs, so it’s reasonable to
think that the brain might be using a similar learning algorithm.

Unfortunately, it’s not clear how the backpropagation through time algorithm could be implemented
by a neural circuit.

The multiplication by At in the gradient recursions amounts to passing information backward across
synapses, and canonical synaptic models don’t have mechanisms to do this.

Recent years have seen a substantial amount of research into biologically plausible mechanisms of
backpropagation.
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Vanishing Gradients
When the Jacobians At have small eigenvalues (≪ 1), we run into problems of vanishing
gradients.

Consider the case of a linear RNN in which the tanh is replaced with identity: then the Jacobians are
At =W⊤ for all time steps.

If the eigenvalues of W are much less than one, the gradients will decay to zero exponentially quickly,
absent strong inputs bt .

Vanishing gradients are especially problematic when xt depends on much earlier observations, xs for
s≪ t. In that case, the hidden state must propagate information about xs for many time steps during
the forward pass, and likewise, the gradient must pass information backward many timesteps during
the backward pass.

If the weights have small eigenvalues, those gradients will decay and the learning signal will fail to
propagate.

14 / 37



Gated RNNs
One way to combat the vanishing gradient problem is by modifying the RNN architecture.
Architectures like long short-term memory (LSTM) networks achieve this via gated units.

Figure: An LSTM cell. Figure from
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
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Gated RNNs
An LSTM has internal (aka “cell”) states ct ∈ RK and hidden states ht ∈ RK . The internal states follow
conditionally linear dynamics,

ct = F tct−1+ bt

where

F t = diag(ft,1, . . . , ft,K)

ft,k = σ(W
(f )ht−1+ B

(f )xt−1).

The bounded entries ft,k ∈ [0,1] ensure stability. When ft,k ≈ 1, the state is propagated, and when
ft,k ≈ 0, the state is forgotten.

Thus, f t = (ft,1, . . . , ft,K)
⊤ ∈ [0,1]K are called the forget gates, and they are parameterized by the

matrices W (f ) and B(f ).
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Gated RNNs
The affine term is determined by,

bt = gt ⊙ it
gt = σ(W

(g)ht−1+ B
(g)xt−1)

it = σ(W
(i)ht−1+ B

(i)xt−1)

The vector gt ∈ [0,1]K plays the role of an input gate, and the input s themselves are given by
it ∈ [0,1]K .

Finally, the hidden states ht are gated functions of the internal state passed through a
nonlinearity,

ht = ot ⊙ tanh(ct)

ot = σ(W
(o)ht−1+ B

(o)xt−1)
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Gated RNNs
where ot ∈ [0,1]K are the output gates. As in a vanilla RNN, the final prediction depends on a
(generalized) linear function of the hidden state, g(ht;θ ).

We can think of an LSTM as an RNN that operates on an extended state (ct,ht) ∈ RK+ × [−1,1]
K . The

forget gates let the eigenvalues of F t to be close to one, allowing cell states to be propagated for long
periods of time on the forward pass, and gradients to be backpropagated without vanishing on the
backward pass.

There are many variants of gated RNNs. Besides the LSTM, the most commonly used in the gated
recurrent unit (GRU), which has a slightly simplified architecture. See Goodfellow et al. (2016), Ch.
10,for more detail.
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Other Variations and Uses of RNNs
We motivated RNNs from an autoregressive modeling persepective, but they are useful in other
sequential data settings as well.

For example, suppose we want to predict the sentiment of a review y ∈ R given a variable-length
sequence of input words x1:T .

We can use an RNN to summarize the input sequence in terms of a hidden state for prediction,

p(y | x1:T) = p(y | g(hT ;θ )).
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Sequence to Sequence Models
Sometimes we want to map one sequence x1:T to another sequence y1:T ′ . The sequences may be of
different length; e.g., when we want to translate a sentence from English to French.

Again, we can train an encoder RNN to produce a hidden state hT that then becomes the initial
condition for a decoder RNN that generates the output sequence.

Formally,

p(y1:T ′ | x1:T) =
T ′
∏

t=1

p(yt | y1:t−1,x1:T)

=
T ′
∏

t=1

p(yt | h′t,hT)

where hT is the output of an RNN that processed x1:T , and h
′
t is the state of an RNN that runs over

y1:T .
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Bidirectional RNNs
In the example above, one challenge is that the hidden state hT obtained by processing x1:T may not
adequately represent early inputs like x1.

For these purposes, you can use a bidirectional RNN that runs one recursion forward x1, . . . ,xT and
another backward xT , . . . ,x1 to produce two hidden states at each time t.

These combined states can then be passed into the decoder.
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Deep RNNs
As with deep neural networks that stack layer upon layer, we can stack RNN upon RNN to construct a
deeper model.

In such models, the outputs of one layer, g(h(i)t ;θ (i)) become the inputs to the next layer,

x(i+1)t .

Then we can backpropagate gradients through the entire stack to train the model.
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HMMs Are RNNs Too!
We presented Hidden Markov Models (HMMs) as latent variable models with hidden states z1:T and
observations x1:T , but we can also view them as an autoregressive model,

p(xt | x1:t−1) =
K
∑

k=1

p(zt = k | x1:t−1)p(xt | zt = k)

=
∑

zt

αt,k p(xt | zt = k)

where, αt ∈∆K−1 are the normalized forward messages from the forward-backward algorithm.

They followed a simple recursion,

αt+1 = P⊤
�

αt ⊙ lt
α⊤t lt

�

with lt ∈ RK is the vector of likelihoods with entries lt,k = p(xt | zt = k) and P ∈ RK×K is the transition
matrix.
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Categorical HMMs
Consider an HMM with categorical emissions,

p(xt | zt) = Cat(xt | czt),

where xt is a one-hot encoding of a variable that takes values in {1, . . . ,V}, and ck ∈∆V−1 for
k = 1, . . . ,K are pmfs.

Define the matrix of likelihoods C ∈ RV×K to have columns ck ,

C =





| |
c1 · · · cK
| |



 .

The HMM parameters are θ = (P,C). (Assume the initial distribution is fixed, for simplicity.)
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Categorical HMMs
For a categorical HMM, we can write the likelihoods as lt = C⊤xt so that the the forward recursions
simplify to,

αt+1 = P⊤
�

αt ⊙ C⊤xt
α⊤t C

⊤xt

�

= f (αt,xt;θ )

Likewise, the autoregressive distributions reduce to,

p(xt | x1:t−1) = Cat(xt | Cαt)
= Cat(xt | g(αt;θ )).

Framed this way, a categorical HMM can be seen as a simple recurrent neural network!
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A Cool Trick for Computing the Gradients
This formulation suggests that we could estimate the parameters of an HMM by directly maximizing
the log likelihood,

L (θ ) = log p(x1:T ;θ ) =
T
∑

t=1

log p(xt | x1:t−1;θ ).

With automatic differentiation at our disposal, this sounds like it might be a lot easier!

Let’s pursue this idea a little further. First, we’d prefer to do unconstrained optimization, so let’s
parameterize the model in terms of logP and logC .
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Aside: The softmax function
When we need the constrained versions, we will just apply the softmax to obtain simplex
vectors:

softmax(log ck) =

�

elog ck,1
∑V
v=1 e

log ck,v
, . . . ,

elog ck,V
∑V
v=1 e

log ck,v

�⊤

Softmax is translation invariant Note that the softmax operation is translation invariant,

softmax(log ck) = softmax(log ck + a)

for any constant a ∈ R.

Thus, we will call our optimization variables logC and logP, but they are not actually the log of
matrices with simplex columns or rows; they are unconstrained parameters that become properly
normalized via the softmax.
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A Cool Trick for Computing the Gradients
To maximize the likelihood with gradient ascent, we need the Jacobians, ∂L (θ )

∂ logP and
∂L (θ )
∂ log C . For the

RNNs above, we computed them using backpropagation through time, but here we can use an even
cooler trick.
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A Cool Trick for Computing the Gradients
First, note that the posterior distribution in an HMM can be written as an exponential family,

p(z1:T | x1:T ;θ ) = exp
�

log p(z1:T ,x1:T ;θ )− log p(x1:T ;θ )
	

= exp

¨

log p(z1;π0) +
T
∑

t=2

log p(zt | zt−1;P) +
T
∑

t=1

log p(xt | zt;C)− log p(x1:T ;θ )

«

= exp

§ K
∑

k=1

〈I[z1 = k], logπ0,k〉

+
T
∑

t=2

K
∑

i=1

K
∑

j=1

〈I[zt−1 = i ∧ zt = j], log Pi,j〉

+
T
∑

t=1

V
∑

v=1

K
∑

k=1

〈I[xt = v ∧ zt = k], logCv,k〉

− A(θ )
ª

where the log marginal likelihood A(θ ) = log p(x1:T ;θ ) is the log normalizer. 29 / 37



A Cool Trick for Computing the Gradients
Recall that for exponential family distributions, gradients of the log normalizer yield expected
sufficient statistics. Thus,

∂ A(θ )

∂ logCv,k
=

T
∑

t=1

I[xt = v] ·Ep(z1:T | x1:T ;θ ) [I[zt = k]]

and

∂ A(θ )

∂ log Pi,j
=

T
∑

t=2

Ep(z1:T | x1:T ;θ ) [I[zt−1 = i ∧ zt = j]]

The gradients are essentially the posterior marginals and pairwise marginals we computed in the EM
algorithm!

In the M-step of EM, we solve for the parameters that satisfy the constrained optimality conditions,
whereas in SGD we just take a step in the direction of the gradient. EM tends to converge must faster
in practice for this reason.
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Linear RNNs
Consider the special case of linear RNNs,

ht = Aht−1+ Bxt.

with outputs yt = Cht + d.

Since a linear operators compose, the mapping from x1:T to y1:T is a linear function,

yt = Cht + d

= C(Aht−1+ Bxt) + d

= C(A(Aht−2+ Bxt−1) + Bxt) + d

= C

�

t−1
∑

s=0

AsBxt−s

�

+ d

with the convention that h0 = 0.
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Linear RNNs
This is a convolution,

yt = [K ⊛ x]t

with kernel,

K =
�

CB CAB CA2B · · · CAT−1B
�

.

PyTorch and JAX have highly optimized, parallel convolution routines for evaluating the hidden states.
Likewise, sampling the model is straightforward and efficient using the RNN formulation.

While these simple linear RNNs may seem too simple to capture complex sequential dependencies, it
turns out that stacks of linear layers with simple nonlinearities in between — a deep linear state space
model (Gu et al., 2021) — can be highly expressive!

Matrix Powers Note that the kernel involves matrix powers At , which typically are cubic in the hidden
state dimension. Gu et al. (2021) derived clever algorithms for efficiently computing the kernel and
evaluating the convolution for certain structured classes of dynamics matrices.
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Input-dependent dynamics with parallel scan
One limitation of the convolutional formulation above is that it requires the dynamics matrix A to be
the same at all time-steps. Smith et al. (2023) showed an alternative way to evaluate the linear RNN
that relaxes this constraint.

Consider two consecutive state updates, now with time-dependent dynamics matrices At and affine
terms bt = Btxt ,

ht = Atht−1+ bt
= At(At−1ht−2+ bt−1) + bt
= At−2:tht−2+ bt−2:t

where At−2:t ≜ AtAt−1 and bt−2:t ≜ Atbt−1+ bt .
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Input-dependent dynamics with parallel scan
This is just another affine map, but now it takes ht−2 to ht . In parallel, we can compute the maps from
time t to t+ 2, from t+ 2 to t+ 4, and so on.

In the next iteration, we can combine these linear maps to obtain (At−4:t,bt−4:t), and so on.

After log2 T iterations, we obtain a map from h0 to hT . With O (log T) more work, we can obtain maps
from h0 to all intermediate times t as well.

This algorithm is called a parallel scan or binary associative scan, since it is based on a binary
associative operator, ◦, of the form,

(Ai,j,bi,j) ◦ (Aj,k,bj,k) = (Ai,k,bi,k)

With T parallel processors, it requires only O (log T) time and O (T) memory.

Complex Diagonal Matrices Again, notice that each update requires matrix multiplication, which is
typically cubic in the state dimension. Smith et al. (2023) proposed to work with complex diagonal
matrices instead, which keeps the time and memory costs in check.
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Parallelizing Nonlinear RNNs
The parallel scan relied on the linearity of the RNN dynamics. Can the same be applied to nonlinear
RNNs?

It turns out that yes, in many cases we can speed up the evaluation of nonlinear RNNs using a similar
trick!

Consider an RNN with nonlinear dynamics function f (ht). Form a first-order Taylor approximation

arond an initial guess, h(0)t ,

ef (ht) = f (h(0)t ) + Jf (h
(0)
t )
�

ht − h
(0)
t

�

.

where Jf (h
(0)
t ) = ∂ f

∂ ht

�

�

�

�

ht=h
(0)
t

is the Jacobian of f evaluated at h(0)t .
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Parallelizing Nonlinear RNNs
The Taylor approximations yield a linear RNN with time-varying dynamics, which can be evaluated
with a parallel scan to obtain a new sequence of latent states, (h(1)1 , . . . ,h(1)T ), which can be used as
the guess for the next iteration.

Repeating this process until convergence is equivalent to the Gauss-Newton method for minimizing
the sum of squares loss function,

L (h1:T) =
T
∑

t=1

∥ht − f (ht−1)∥22.

This idea was proposed by Lim et al (2023) and called DEER. Gonzalez et al (2024) explained the
connection to the Gauss-Newton method and proposed an extension called ELK.
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Conclusion
Recurrent neural networks are foundational models for sequential data.

They’re useful machine learning models, and they’re standard models in theoretical
neuroscience.

While Transformers are the star of modern large language models, RNNs are making a comeback as
efficient techniques for capturing long range dependences in sequential data.
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