
STATS 305B: Final Exam

Write your name here:

Instructions:

• Your grade will come from your best 5 out of 7 questions. Each question is worth 20 points so
the max score is 100.

• Write on the exam. We will scan it. If you use the extra pages at the back, label clearly.

• You can bring handwritten notes on two sides of an 8.5x11" piece of paper.

• Unless otherwise specified, you can write your answers using the "named distribution PDF short-
hand," e.g. write the pdf of a Gaussian distribution with mean µ and variance σ2 as N (x;µ,σ2).

Some tips:

1. It’s usually a good idea to look through the whole exam before taking it to make sure there aren’t
missing pages; and so that you roughly know what you are up against.

2. Most questions have a relatively simple answer. If you find yourself doing integration by parts,
rethink your approach.

Stanford Honor Code

1. The Honor Code is an undertaking of the students, individually and collectively:

• that they will not give or receive aid in examinations; that they will not give or receive
unpermitted aid in class work, in the preparation of reports, or in any other work that is to
be used by the instructor as the basis of grading;

• that they will do their share and take an active part in seeing to it that others as well as
themselves uphold the spirit and letter of the Honor Code.

2. The faculty on its part manifests its confidence in the honor of its students by refraining from
proctoring examinations and from taking unusual and unreasonable precautions to prevent the
forms of dishonesty mentioned above. The faculty will also avoid, as far as practicable, academic
procedures that create temptations to violate the Honor Code.

3. While the faculty alone has the right and obligation to set academic requirements, the students
and faculty will work together to establish optimal conditions for honorable academic work.
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Problem 1: Exponential Family Distributions (20 pts)

Consider the negative binomial distribution for a random variable X ∈ N parameterized by r ∈ R+
and ρ ∈ [0,1]. Its pmf is,

NB(x; r,ρ) =
Γ (r + x)
x!Γ (r)

ρx(1−ρ)r ,

where Γ (·) is the gamma function.

(a) (4 pts) Assume r is fixed. Write the negative binomial pmf in exponential family form. What is its
natural parameter η, sufficient statistic t(x), and log normalizer A(η)?

(b) (4 pts) Using the log normalizer, compute the expected value E[X ] where X ∼ NB(r,ρ).

(c) (4 pts) Using the log normalizer, compute the variance Var[X ] where X ∼ NB(r,ρ).

(d) (4 pts) Suppose λ ∼ Ga(r, 1−ρ
ρ ) and X | λ ∼ Po(λ), where Ga denotes the gamma distribution

with density Ga(λ; a, b) = ba

Γ (a)λ
a−1e−bλ, and where Po denotes the Poisson distribution with pmf

Po(x;λ) = 1
x! e
−λλx . Compute the pmf of the marginal distribution,

p(x; r,ρ) =

∫

Po(x;λ)Ga(λ; r, 1−ρ
ρ )dλ

(e) (4 pts) The ratio of the variance to the mean is a common index of a distribution’s dispersion.
Consider a negative binomial distribution and a Poisson distribution with the same mean. Which
has higher dispersion? Explain why your answer makes sense in light of Problem 1d.

Solution:

(a)

NB(x; r,ρ) =
Γ (r + x)

Γ (x + 1)Γ (r)
· exp(log(ρ) · x + r log(1−ρ))

So, we see that

η= log(ρ)

t(x) = x

A(η) = −r log(1− exp(η)).

(b)
E[X ] = r

ρ

1−ρ

(c)
Var[X ] = r

ρ

(1−ρ)2
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(d)

p(x; r,ρ) =

∫

1
Γ (x + 1)

exp(−λ)λx ((1−ρ)/ρ)
r

Γ (r)
λr−1 exp(−(1−ρ)λ/ρ)

=
1

Γ (x + 1)Γ (r)
· (1−ρ)r ·

1
ρr

∫

λx+r−1 exp−(1/ρ)λ

=
1

Γ (x + 1)Γ (r)
· (1−ρ)r ·

1
ρr
· Γ (x + r) ·ρx+r

=
Γ (x + r)

Γ (x + 1)Γ (r)
(1−ρ)rρx .

= NB(x; r,ρ).

(e) Negative binomial has higher dispersions. Makes sense bc problem 1d shows that NBin is mixture
of many different Pois w different rates, and some of those rates might be quite large, which will
make NB overdispersed relative to Pois.
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Problem 2: Logistic Regression (20 pts)

Consider a logistic regression model,

p(yi | x i) = Bern(yi | σ(β⊤x i))

where β ∈ R2 and x i ∈ R2 are two-dimensional weights and covariates, respectively, and where
σ(a) = 1/(1+ e−a) is the logistic function. Suppose you observe the following set of independent
observations,

x i,1 x i,2 yi

1 0 0
0 1 1
-1 0 0
0 -1 1

Table 1: Four data points for Problem 2

(a) (1 pt) Sketch the data with an "x" where yi = 1 and an "o" where yi = 0.

(b) (5 pts) Write the log likelihood function, L (β), and simplify.

(c) (5 pts) Sketch the function log(1+ ea) + log(1+ e−a) for a ∈ R. Label your axes and key features
of the graph, like the y-intercept.

(d) (5 pts) Sketch the contours of the log likelihood L (β) for β ∈ R2.

(e) (4 pts) Solve for the MLE β̂MLE.

Solution:

(a)
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(b)

L (β) = log((1−σ(β1))) + log((1−σ(−β1))) + log(σ(β2)) + log((σ(−β2)))

= log(σ(−β1)) + log(σ(β1)) + log(σ(β2)) + log(σ(−β2))

= −
�

log(1+ expβ1) + log(1+ exp−β1) + log(1+ expβ2) + log(1+ exp−β2)
�

.

(c)

(d)

(e) (0,0)
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Problem 3: Mixture Models (20 pts)

Let y i ∈ ND be a vector of counts. For example, it could correspond to the number of spikes measured in
each of D neurons in the i-th time bin. Let zi ∈ {1, . . . , K} denote a discrete class assignment for that
corresponding measurement. Consider the following mixture model,

p({y i , zi}ni=1 | π, {λk}Kk=1) =
n
∏

i=1

Cat(zi | π)
D
∏

d=1

Po(yi,d | λzi ,d)

where π ∈ ∆K−1 is a distribution over the K classes and λk = (λk,1, . . . ,λk,D)⊤ is a vector of rates
corresponding to class k. The goal is to obtain a maximum likelihood estimate of {λk}Kk=1, assuming π is
known.

(a) (10 pts) E step: Compute the responsibilities, ωi,k = Pr(zi = k | y i ,π, {λ j}Kj=1).

(b) (10 pts) M step: solve for the parameters λk that maximize the expected log likelihood, in terms
of the responsibilities from part (a).

Solution:

1. By Bayes’ rule

Pr(zi = k|yk,π, λ⃗)∝ πk

D
∏

d=1

Po(yi,d |λk,d).

So, it follows that

ωi,k =
πk
∏D

d=1 Po(yi,d |λk,d)
∑K

k=1πk
∏D

d=1 Po(yi,d |λk,d)
.

2. We are told to find λ⃗ that maximizes

E
�

log
n
∏

i=1

D
∏

d=1

Po(yi,d |λzi ,d)
�

= E
�∑

i,d

log Po(yi,d |λzi ,d)
�

=
∑

i,d,k

E[1(zi = k)] log Po(yi,d |λk,d)

=
∑

i,d,k

ωi,k logPo(yi,d |λk,d)

·
=
∑

i,d,k

ωi,k(−λk,d + yi,d logλk,d)

Taking the derivative of this quantity wrt λk,d gives
∑

i

ωi,k =
∑

i

ωi,k yi,d

λ∗k,d

or

λ∗k,d =

∑

iωi,k yi,d
∑

iωi,k
.
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Problem 4: Variational Autoencoders (20 pts)

Consider the following generative model for observations x ∈ RD and latent variables z ∈ R,

p(z, x ) = N(z | 0,1)N(x | θ · z,σ2I),

where the θ ∈ RD is a parameter to be learned, and σ2 is a fixed hyperparameter. Assume the amortized
posterior (aka encoder) is of the form,

q(z | x ) = N(z | φ⊤x ,ν2),

where φ ∈ RD and ν2 ∈ R+ are variational parameters to be learned. This is a variational autoencoder
(VAE) with a linear encoder and decoder.

(a) (7 pts) Write the local ELBO L (θ ,φ,ν) ≤ log p(x ;θ ) for a single observation x . Leave your
answer in terms of the Gaussian density function.

(b) (2 pts) When you maximize the ELBO, what quantity is minimized?

(c) (9 pts) Fixing θ , solve for the variational parameters φ⋆ and ν⋆ that maximize the ELBO.

(d) (2 pts) With the optimal variational parameters found above, is the ELBO tight? I.e., does
L (θ ,φ⋆,ν⋆) equal log p(x ;θ )?

Solution:

(a)

ln p(x ;θ ) = ln

�

∑

z

p(x , z;θ )

�

= ln
�

∑

p(x , z)
q(z|x )
q(z|x

�

= lnEq(z|x )

�

p(x , z)
q(z|x )

�

≥ Eq(z|x ) [ln p(x , z)− ln q(z|x )]

= Eq(z|x )
�

N(z|0,1) + ln N(x |θ · z,σ2I)− lnN(z|φ⊤x ,ν2)
�

(b)

ln p(x ;θ )≥ Eq(z|x ) [ln p(x) + ln p(z|x )− ln q(z|x )]
= ln p(x ) +Eq(z|x ) [ln p(z|x )− ln q(z|x )]
= ln p(x)− KL(qz|x )∥p(z|x ))

Maximizing the ELBO is equivalent to minimizing the KL divergence of the posterior p(z|x ) and
variational distribution q(z|x )
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(c) The prior and likelihood are both Normal so we can recognize that the posterior will also be normal.
We maximize the ELBO by finding the posterior parameters.

p(z|x )∝ p(z, x )

∝ exp
§

−
1
2

z2 −
1

2σ2
∥x − θ z∥2
ª

∝ exp

�

−
1
2

z2
�

1+
1
σ2
θ⊤θ

�

+ z

�

θ⊤x
σ2

��

∝ N

�

�

θ

σ2 + θ⊤θ

�⊤
x ,

σ2

σ2 + θ⊤θ

�

φ∗ =
θ

σ2 + θ⊤θ
, ν∗ =

σ
p

σ2 + θ⊤θ

(d) The ELBO is tight because the posterior and variational distribution are both Normal.
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Problem 5: Hidden Markov Models (HMMs) (20 pts)

A factorial HMM is a hidden Markov model with L ≥ 2 levels of latent states. The latent states evolve
independently at each level, but they all jointly determine the likelihood for the observations. Let
z(ℓ) = (z(ℓ)1 , . . . , z(ℓ)T ) denote the sequence of latent states at level ℓ. Assume that for all levels and time

steps, the discrete latent states take values z(ℓ)t ∈ {1, . . . , K}. Let x = (x1, . . . , xT ) denote the sequence of
observations. The joint distribution factors as,

p(x , {z(ℓ)}Lℓ=1) =

� L
∏

ℓ=1

p(z(ℓ)1 )
T
∏

t=2

p(z(ℓ)t | z
(ℓ)
t−1)

�

×
T
∏

t=1

p(x t | z
(1)
t , . . . , z(L)t ).

(a) (7 pts) Write the factorial HMM above as a standard HMM on an extended state space. (Define
your extended state space and the corresponding transition probabilities.)

(b) (6 pts) What is the time complexity of the forward-backward for a factorial HMM? Your answer
should be in terms of T , K , and L.

(c) (7 pts) Consider a factorial HMM with binary latent states, z(ℓ)t ∈ {0, 1}. Let z t = (z
(1)
t , . . . , z(L)t ) ∈

{0,1}L denote the vector of latent states at time t. Assume a Gaussian likelihood,

p(x t | z
(1)
t , . . . , z(L)t ;θ ) = N

�

x t | θ⊤z t , 1
�

.

where θ = (θ1, . . . ,θL) ∈ RL . Intuitively, the mean of x t is a sum of contributions θl for each level
that is "on" at time t.

With a small number of levels (say, L < 10), we can use the forward-backward algorithm to
compute posterior expectations ωt = E[z t | x ] and Ωt = E[z t z

⊤
t | x ] for all t = 1, . . . , T . Find a

closed-form solution for the M-step,

θ ⋆ = arg max
θ
Ep(z|x )

� T
∑

t=1

log p(x t | z
(1)
t , . . . , z(L)t ;θ )

�

.

Your answer should be in terms of ωt and/or Ωt .

Solution:

(a)

p(x , {z(ℓ)}Lℓ=1) =
T
∏

t=1

p(x t |z
(1)
t , . . . , z(L)t )p(z

(1)
t , . . . , z(L)t )

= p(z(1)1 , . . . , z(L)1

T
∏

t=2

p(z(1)t , . . . , z(L)t )
T
∏

t=1

p(x t |z
(1)
t , . . . , z(L)t )

We can define z̃ t := (z(1)t , . . . , z(L)t ) :

= p(z̃1)
T
∏

t=2

p(z̃ t |z t−1)
T
∏

t=1

p(x t |z t)

Let Pℓ be the K × K transition matrix for the Markov chain at level ℓ. The new transition matrix P
will be K L × K L and can be written using a Kronecker product: P = P1 ⊗ · · · ⊗ PL .
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(b) We want to compute forward messages αt+1 = P⊤(αt ⊙ ℓt)

The dominant term at each time step is computing P⊤v where v is some K L dimensional vector.
Let V be such that v = vec(V ). Then (P1⊗ P2)v = vec(P2V P⊤1 ) and the complexity of this operation
is O(K L). We can use this to write a recurrence for our time complexity. Let T(L) be the time it
takes to compute (P1 ⊗ · · · ⊗ PL)v. Then T (L) = KT (L − 1) + K L+1. Solving this recurrence gives
T(L) = K(KT(L − 2) + K L) + K L+1 = K2T(L − 2) + 2K L+1 = ...= O(LK L+1). Repeating for each

time step gives O(T LK L+1)

Naive solution that only receives most points: Computing αt · ℓt takes O(K L), P⊤(αt · ℓt) takes
O(K2L). Iteratively computing forward messages for T observations costs a total of O(T K2L)

(c)

L := Ep(z|x )

� T
∑

t=1

log p(x t | z
(1)
t , . . . , z(L)t ;θ )

�

=

∫

�

T
2

ln(2π)−
1
2

T
∑

t=1

(x t − θ⊤z t)
2

�

p(z|x)dz

=
T
2

ln(2π)−
∫

�

1
2

T
∑

t=1

(x t − θ⊤z t)
2

�

p(z|x)dz

∇θL = −
1
2

T
∑

t=1

∫

∇θ
�

(x t − θ⊤z t)
2p(z|x)
�

dz

= −
1
2

T
∑

t=1

∫

�

∇θ
�

(x t − θ⊤z t)
2
��

p(z|x)dz −
1
2

T
∑

t=1

∫

(x t − θ⊤z t)
2∇θ [p(z|x)] dz

= −
1
2

T
∑

t=1

∫

2(x t − θ⊤z t)z t p(z|x)dz

= −
T
∑

t=1

Ep(z|x)
�

x t z t − z t z
⊤
t θ
�

= −
T
∑

t=1

x tωt +Ωtθ

θ ∗ =

� T
∑

t=1

Ωt

�−1� T
∑

t=1

x tωt

�
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Problem 6: Recurrent Neural Networks (RNNs) (20 pts)

Consider a linear RNN that consumes a sequence of inputs x = (x1, . . . , xL) with xℓ ∈ R and produces a
single output at the end, y ∈ R. The log likelihood is,

p(y | x ) = N(y | hL+1, 1)

where the hidden states hℓ ∈ R obey deterministic, linear dynamics for ℓ= 0, . . . , L,

hℓ+1 = whℓ + bxℓ.

Assume h0 = 0. The model has three real-valued parameters w, b, and x0.

(a) (5 pts) Write the model as a linear regression,

p(y | x ) = N(y | θ0 + θ
⊤x , 1)

where θ0 ∈ R is a scalar intercept and θ ∈ RL is a vector of weights. Give an expression for θ0 and
the entries of θ .

(b) (5 pts) Plot the weights θℓ as a function of ℓ for ℓ= 0, 1, . . . , L = 20 assuming w= e−1/20 ≈ 0.95,
b = 1, and x0 = 1. Label your axes and key points like the y-intercept.

(c) (5 pts) Compute the derivative of the log likelihood with respect to the initial condition x0.

(d) (5 pts) Why is the solution to part (c) problematic for learning x0 with simple gradient descent?

Solution:

(a) We can write out the formula for some of the hℓs to look for a pattern:

h0 = 0

h1 = bx0

h2 = w+wbx0 + bx1

...

ht = wt−1 bx0 +
t−1
∑

i=1

wt−1−i bx i

p(y|x ) = N

�

y
�

�wL bx0 +
L
∑

i=1

wL−i bx i , 1

�

Then θ0 = wL bx0 and θ = (θ1, . . . ,θL)⊤ where θℓ = wL−ℓb

(b)
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The y-intercept is e−1

(c)

L = −
1
2
(y −wL bx0 − θ⊤x )2 + C

∂

∂ x0
L = −(y −wL bx0 − θ⊤x )wL b

(d) When L is large, the gradient will vanish.
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Problem 7: Transformers (20 pts)

Instead of the standard softmax attention, consider a more general form of kernel attention,

At,s =
sim(Uqx t , Ukx s)
∑T

s′=1 sim(Uqx t , Ukx s′)
,

where Uqx t ∈ RK are the queries and Ukx s ∈ RK are the keys. Assume K < D. The function sim(·, ·) is a
kernel that measures similarity between two vectors. (Softmax attention corresponds to the exponential
kernel, sim(a, b) = exp{a⊤b}.) Here, we will consider the quadratic kernel instead,

sim(a, b) = (a⊤b)2.

(a) (4 pts) Show that with the quadratic kernel, sim(a, b) can be written as an inner productφ(a)⊤φ(b)
where φ : RK 7→ RP maps the vectors into a feature space of possibly higher dimension. Hint: note
that Tr(A⊤B) = vec(A)⊤vec(B) is an inner product.

(b) (6 pts) In class, we wrote the output of a single-headed self-attention step as Y = AX where
X , Y ∈ RT×D are matrices with rows x⊤t and y⊤t , respectively, and A ∈ RT×T is the matrix of
attention weights. Show that with the quadratic kernel, the outputs matrix can be written as,

y t =
Vφ(Uqx t)

w⊤φ(Uqx t)

for some matrix V ∈ RD×P and vector w ∈ RP that are the same for all outputs t. (Here, x t and
y t are column vectors.)

(c) (4 pts) What is the computational complexity of the single headed self-attention step using the
quadratic kernel? Your answer should be in terms of T , D, and/or K , but not P.

(d) (4 pts) What is the computation complexity of the single headed self-attention step using standard
softmax attention? Your answer should be in terms of T , D, and/or K .

(e) (2 pts) In what regimes is quadratic attention more efficient? Do you expect Transformers to often
be in this regime?

Solution:

(a)

sim(a, b) = (a⊤b)2

= Tr((a⊤b)2)

= Tr(a⊤bb⊤a)

= Tr(aa⊤bb⊤)

= vec(aa⊤)⊤vec(bb⊤)

Therefore φ(a) = vec(aa⊤)
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(b)

y t =
T
∑

s=1

At,sx s

=
∑

s

x s
φ(Uqx t)⊤φ(ukx s)
∑

s′ φ(Ukx⊤s′φ(Ukx s′)

=
∑

s

x s
φ(Ukx s)⊤φ(Uqx t)
�∑

s′ φ(Ukx s′)⊤
�

φ(Uqx t)

V =
∑

s

x sφ(Ukx s)
⊤, w=
∑

s

φ(Ukx s)

(c) Computing V costs O(T DP) because sum over T outer products of a D dimensional vector and a
P dimensional vector. Computing w costs O(T P)

To compute the y ts, it takes O(DP) to multiply the numerator and O(P) to compute the dot
product in the denominator. Overall, the cost of computing V dominates so computing all y ts is

O(T DP) = O(T DK2) because φ(a) is K × K matrix flattened into a K2 dimensional vector.

(d) Recall the standard softmax attention

At,s =
exp
�

(Uqx t)⊤(Ukx s)
	

∑T
s′ exp{(Uqx t)⊤(Ukx s′)}

For each t the cost of computing the denominator and numerator or O(T K) and O(K) respectively.
The total time to compute A is O(T(T K + K)) = O(T2K). To compute Y , we multiply a T × T

matrix and a T × D which costs O(T2D). The overall cost is O(T2(D+ K)) = O(T2D) because
we assume K < D.

(e) Quadratic kernel is faster when K2 < T . Quadratic attention is faster in the regime where
embedding dimension K is much smaller than context size T .

14


