
Lecture 5: Sparse GLMs
STATS305B: Applied Statistics II

Scott Linderman

January 27, 2025

1 / 46



Announcements

▶ Great work on HW1!

▶ Midterm next Wednesday in MCCULL 115

▶ HW2 to be posted tonight or early tomorrow. Due Mon, Feb 10
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Course Schedule

▶ Weeks 1-3: Classics: Exponential family distributions and GLMs

▶ Weeks 4-5: Bayesian Inference algorithms: MCMC and variational inference

▶ Weeks 6-7: Latent variable models: mixture models, HMMs, etc.

▶ Weeks 8-9: Deep generative models: VAEs, Transformers, Deep SSMs, Denoising diffusion models

▶ Week 10: Bonus: Point processes, survival analysis, etc.
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Learning Objectives

▶ Models: Exponential Family Distributions, (Sparse) GLMs

▶ Algorithms: Gradient Descent, Newton’s Method, IRLS, Proximal methods

▶ Code: Logistic regression from scratch in Python/PyTorch
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Outline

Today...

▶ Bayesian Inference

▶ Conjugate Priors

▶ Laplace Approximation

▶ Monte Carlo

▶ Start on MCMC
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Bayesian Inference
So far we’ve focused on frequentist inference techniques: asymptotically normal approximations, Wald
confidence intervals, etc.

Today we’ll discuss an alternative approach based on Bayesian inference.

While the two approaches are philosophically quite different, we’ll see that the statistical inferences
they lead to can be quite similar in many cases.
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Introduction
It is tempting to interpret the confidence interval as saying that θ is in a confidence interval with
probability 1−α given the observed data, but that is not justified!

In the setting above, the parameter θ is not a random variable. This fallacy is a common
misinterpretation of frequentist confidence intervals.

To make such a claim, we need to adopt a Bayesian perspective and reason about the posterior
distribution of the parameters, θ , given the data, x.
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Introduction
To obtain a posterior, we first need to specify a prior distribution on parameters, p(θ). Given a prior
and likelihood, the posterior follows from Bayes’ rule,

p(θ | x) =
p(x | θ)p(θ)

p(x)
,

where

▶ p(θ | x) is the posterior,

▶ p(x | θ) is the likelihood,

▶ p(θ) is the prior, and

▶ p(x) =
∫

p(x | θ)p(θ)dθ is the marginal likelihood
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What do we want from the Posterior?
Often, we are particularly interested in posterior expectations, like:

▶ Ep(θ |x)[θ ], the posterior mean,

▶ Ep(θ |x)[I[θ ∈A ]], the probability of the parameters being in setA ,

▶ Ep(θ |x)[p(x′ | θ)], the posterior predictive density of new data x′.

All of these can be written as Ep(θ |x)[f (θ)] for some function f .

For point estimation, we may choose the mode, θ̂MAP = argmaxp(θ | x) a.k.a., the maximum a
posteriori (MAP) estimate.

We can also obtain an analogue of frequentist confidence intervals by summarizing the posterior in
terms of a Bayesian credible interval: a set of parameters that captures 1−α probability under the
posterior.
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Conjugate Priors
The posterior distribution depends on the choice of prior. Indeed, the subjective choice of prior
distributions is the source of much of the criticism of Bayesian approaches.

▶ Uninformative priors: We can often specify “weak” or “uninformative” prior distributions. Then
we’ll find that Bayesian and frequentist approaches can yield similar estimates.

▶ Tractability The hard part of Bayesian inference is typically integration: to normalize the posterior
we need to compute the marginal likelihood, which is an integral over the parameter space. To
compute posterior expectations, we need to do the same.

Conjugate priors are distributions on θ that often render these integrals tractable and can vary in
informativeness.
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Example: Bernoulli Likelihood with a Beta Prior
The beta distribution is a conjugate prior for a Bernoulli likelihood,

θ ∼ Beta(α,β)

with support on θ ∈ [0,1]. Its probability density function (pdf) is,

Beta(θ ;α,β) =
1

B(α,β)
θα−1(1− θ)β−1,

where B(α,β) is the beta function and the hyperparameters α,β ∈ R+ determine the shape of the
prior. When α= β = 1, the prior reduces to a uniform distribution on [0,1].
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Example: Bernoulli Likelihood with a Beta Prior
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Example: Bernoulli Likelihood with a Beta Prior
Under the beta prior, the posterior distribution over θ is,

p(θ | {xi}ni=1)∝ Beta(θ ;α,β)
n
∏

i=1

Bern(xi | θ)

∝ θα−1(1− θ)β−1
n
∏

i=1

θ xi(1− θ)1−xi

= θ x+α−1(1− θ)n−x+β−1

∝ Beta(θ ;α′,β ′)

where x =
∑n
i=1 xi is the number of coins that came up heads and

α′ = x+α

β ′ = n− x+ β
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Example: Bernoulli Likelihood with a Beta Prior
The posterior mode — i.e., the maximum a posteriori (MAP) estimate — is

θ̂MAP =
α′ − 1

α′+ β ′ − 2
=

x+α− 1
n+α+ β − 2

.

Under an uninformative prior with α= β = 1, it is equivalent to the MLE, θ̂MLE = x/n.

Bayesian credible intervals can be derived using the cumulative distribution function (cdf) of the beta
distribution, which is given by the incomplete beta function.

In the large sample limit, the beta posterior is approximately Gaussian. The variance of the posterior
beta distribution is,

Var[θ | X] =
α′β ′

(α′+ β ′)2(α′+ β ′+ 1)
=

(x+α)(n− x+ β)
(n+α+ β)2(n+α+ β + 1)

14 / 46



Example: Bernoulli Likelihood with a Beta Prior
In this limit, α and β are much smaller than n and x. Thus, the posterior variance is
approximately

Var[θ | X]≈
x(n− x)
n3

=
θ̂MLE(1− θ̂MLE)

n
= I (θ̂MLE)−1/n,

and the Bayesian credible intervals match the Wald confidence interval.
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Example: Bernoulli Likelihood with a Beta Prior
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Exponential Family Likelihoods
Consider a general exponential family likelihood with natural parameter θ ,

p(x | θ) = h(x) exp
�

〈t(x),θ 〉 − A(θ)
	

.

Exponential family distributions have conjugate priors,

p(θ ;χ,ν)∝ g(θ) exp
�

〈χ,θ 〉 − νA(θ)
	

= g(θ) exp
�

〈χ,θ 〉+ 〈ν,−A(θ)〉 − B(χ,ν)
	

.

We recognize the conjugate prior as another exponential family distribution in which,

▶ the natural parameter χ are pseudo-observations of the sufficient statistics,

▶ the natural parameter ν is a pseudo-count (like the number of fake data points),

▶ the prior sufficient statistics are (θ ,−A(θ)),

▶ the prior log normalizer is B(χ,ν)
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Exponential Family Likelihoods
With a conjugate prior, the posterior distribution belongs to the same family as the prior,

p(θ | {xi}ni=1;χ,ν)∝ p(θ ;χ,ν)
n
∏

i=1

p(xi | θ)

∝ exp

¨

χ +
n
∑

i=1

t(xi),θ 〉+ 〈ν+ n,−A(θ)〉

«

= p(θ | χ ′,ν′)

where

χ ′ = χ +
n
∑

i=1

t(xi)

ν′ = ν+ n.

Question: With a conjugate prior, the posterior is just a function of χ ′ and ν′, regardless of how many
data points are observed.. Does that make it computationally tractable?
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Laplace Approximation
Conjugate priors are a common choice for simple exponential family models, but we need more
general approaches for more complex models.

Suppose you wanted to perform Bayesian inference of the weights in a logistic regression
model,

p(y | x,β) =
n
∏

i=1

Bern(yi | σ(x⊤i β)).

Assume a Gaussian prior,

β ∼ N(0,γ−1I).
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Laplace Approximation
Unfortunately, the posterior does not have a closed formation solution. Instead, a common form of
approximate posterior inference is the Laplace approximation,

p(β | x, y)≈ N(β̂MAP, bΣ)

where

β̂MAP = argmax
β
L (β)

is the maximum a posteriori (MAP) estimate,

bΣ= −[∇2L(β̂MAP)]
−1

is an approximation of the posterior covariance,
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Laplace Approximation
and

L (β) = log p(β) +
n
∑

i=1

log p(yi | xi,β)

= logN(β ;0,γ−1I) +
n
∑

i=1

logBern(yi | σ(x⊤i β))

is the log joint probability, not the loss function from previous chapters!
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Synthetic Demo
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Synthetic Demo
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Bernstein-von Mises Theorem
In the large data limit (as n→∞), the posterior is asymptotically normal, justifying the Laplace
approximation in this regime.

Consider a simpler setting in which we have data {xi}ni=1
iid∼ p(x | θ ⋆).

Under some conditions (e.g. θ ⋆ not on the boundary of Θ and θ ⋆ has nonzero prior probability), then
the MAP estimate is consistent. As n→∞, θMAP→ θ ⋆.

Likewise,

p(θ | {xi}ni=1)→ N
�

θ | θ ⋆, 1nI (θ
⋆)−1
�

where I (θ) is the Fisher information matrix.
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Approximating Posterior Expectations
Generally, we can’t analytically compute posterior expectations. In these cases, we need to resort to
approximations. For example, we could use quadrature methods like Simpson’s rule or the trapezoid
rule to numerically approximate the integral over Θ.

Roughly,

Ep(θ |x)[f (θ)]≈
M
∑

m=1

p(θm | x) f (θm)∆m

where θm ⊂ Θ is a grid of points and ∆m is a volume around that point.

This works for low-dimensional problems (say, up to 5 dimensions), but the number of points (M)
needed to get a good estimate grows exponentially with the parameter dimension.
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Monte Carlo Approximations
Idea: approximate the expectation via sampling,

Ep(θ |x)[f (θ)]≈
1
M

M
∑

m=1

f (θm) where θm ∼ p(θ | x).

Let f̂ = 1
M

∑M
m=1 f (θm) denote the Monte Carlo estimate. It is a random variable, since it’s a function of

random samples θm. As such, we can reason about its mean and variance.
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Unbiasedness
Clearly,

E[̂f ] =
1
M

M
∑

m=1

Ep(θ |x)[f (θ)] = Ep(θ |x)[f (θ)].

Thus, f̂ is an unbiased estimate of the desired expectation.
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Monte Carlo Variance
What about its variance?

Var[̂f ] = Var

�

1
M

M
∑

m=1

f (θm)

�

=
1
M2

�

M
∑

m=1

Var[f (θ)] + 2
∑

1≤m<m′≤M
Cov[f (θm), f (θm′)]

�
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Comparison to Numerical Quadrature
▶ If the samples are not only identically distributed but also uncorrelated, then Var[̂f ] = 1

MVar[f (θ)].

▶ In this case, the root mean squared error (RMSE) of the estimate is
q

Var[̂f ] = O(M−
1
2 ).

▶ Compare this to Simpson’s rule, which for smooth 1D problems has an error rate of O(M−4).
That’s roughly 8 times better than Monte Carlo!

▶ However, for multidimensional problems, Simpson’s rule is O(M−
4
D ), whereas the error rate of

Monte Carlo does not depend on the dimensionality!
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The Catch
So far so good: we’ll just draw a lot of samples to drive down our Monte Carlo error.

Here’s the catch! How do you draw samples from the posterior p(θ | x)?

We’re interested in Monte Carlo for cases where the posterior does not admit a simple closed
form!

In general, sampling the posterior is as hard as computing the marginal likelihood.
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Markov Chains
A Markov chain is a joint distribution of a sequence of variables, π(θ1,θ2, . . . ,θM). (To avoid confusion
with the model p, we denote the densities associated with the Markov chain by π.) The Markov chain
factorizes so that each variable is drawn conditional on the previous variable,

π(θ1,θ2, . . . ,θM) = π1(θ1)
M
∏

m=2

π(θm | θm−1).

This is called the Markov property.

▶ The distribution π1(θ1) is called the initial distribution.

▶ The distribution π(θm | θm−1) is called the transition distribution. If the transition distribution is
the same for each m, the Markov chain is homogeneous.
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Stationary distributions
Let πm(θm) denote the marginal distribution of sample θm. It can be obtained recursively as,

πm(θm) =

∫

πm−1(θm−1)π(θm | θm−1)dθm−1.

We are interested in the asymptotic behavior of the marginal distributions as m→∞.

A distribution π⋆(θ) is a stationary distribution if,

π⋆(θ) =

∫

π⋆(θ ′)π(θ | θ ′)dθ ′.

That is, suppose the marginal of sample θ ′ is π⋆(θ). Then the marginal of the next time point is also
π⋆(θ).

32 / 46



Detailed balance
How can we relate transition distributions and stationary distributions? A sufficient (but not necessary)
condition for π⋆(θ) to be a stationary distribution is that it satisfies detailed balance,

π⋆(θ ′)π(θ | θ ′) = π⋆(θ)π(θ ′ | θ).

In words, the probability of starting at θ ′ and moving to θ is the same as that of starting at θ and
moving to θ ′, if you draw the starting point from the stationary distribution.

To see that detailed balance is sufficient, integrate both sides to get,
∫

π⋆(θ ′)π(θ | θ ′)dθ ′ =

∫

π⋆(θ)π(θ ′ | θ)dθ ′ = π⋆(θ).

Thus, π⋆(θ) is a stationary distribution of the Markov chain with transitions π(θ | θ ′).
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Ergodicity
Detailed balance can be used to show that π⋆(θ) is a stationary distribution, but not that it is the
unique one. This is where ergodicity comes in. A Markov chain is ergodic if πm(θm)→ π⋆(θ)
regardless of π1(θ1). An ergodic chain has only one stationary distribution, π

⋆(θ).

The easiest way to prove ergodicity is to show that it is possible to reach any θ ′ from any other θ . E.g.
this is trivially so if π(θ ′ | θ)> 0.

Note: A more technical definition is that all pairs of sets communicate, in which case the chain is
irreducible, and that each state is aperiodic. The definitions can be a bit overwhelming.
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Markov Chain Monte Carlo (MCMC)
Finally, we come to our main objective: designing a Markov chain for which the posterior is the unique
stationary distribution. That is, we want π⋆(θ) = p(θ | x).

Recall our constraint: we can only compute the joint probability (the numerator in Bayes’ rule), not the
marginal likelihood (the denominator). Fortunately, that still allows us to compute ratios of posterior
densities! We have,

p(θ | x)
p(θ ′ | x)

=
p(θ , x)

p(x)

p(x)

p(θ ′, x)
=
p(θ , x)

p(θ ′, x)
.

Now rearrange the detailed balance condition to relate ratios of transition probabilities to ratios of
joint probabilities,

π(θ | θ ′)
π(θ ′ | θ)

=
π⋆(θ)

π⋆(θ ′)
=
p(θ | x)
p(θ ′ | x)

=
p(θ , x)

p(θ ′, x)
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The Metropolis-Hastings algorithm
To construct such a transition distribution π(θ | θ ′), break it down into two steps.

1. Sample a proposal θ from a proposal distribution q(θ | θ ′),

2. Accept the proposal with acceptance probability a(θ ′→ θ). (Otherwise, set θ = θ ′.)

Thus,

π(θ | θ ′) =

¨

q(θ | θ ′)a(θ ′→ θ) if θ ′ ̸= θ
∫

q(θ ′′ | θ ′) (1− a(θ ′→ θ ′′))dθ ′′ if θ ′ = θ

Detailed balance is trivially satisfied when θ = θ ′. When θ ̸= θ ′, we need

π(θ | θ ′)
π(θ ′ | θ)

=
q(θ | θ ′)a(θ ′→ θ)
q(θ ′ | θ)a(θ → θ ′)

=
p(θ , x)

p(θ ′, x)
⇒
a(θ ′→ θ)
a(θ → θ ′)

=
p(θ , x)q(θ ′ | θ)
p(θ ′, x)q(θ | θ ′)
︸ ︷︷ ︸

≜A(θ ′→θ)
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The Metropolis-Hastings algorithm
WLOG, assume A(θ ′→ θ)≤ 1. (If it’s not, its inverse A(θ → θ ′) must be.) A simple way to ensure
detailed balance is to set a(θ ′→ θ) = A(θ ′→ θ) and a(θ → θ ′) = 1.

We can succinctly capture both cases with,

a(θ ′→ θ) = min
�

1, A(θ ′→ θ)
	

=min

�

1,
p(θ , x)q(θ ′ | θ)
p(θ ′, x)q(θ | θ ′)

�

.
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The Metropolis algorithm
Now consider the special case in which the proposal distribution is symmetric;
i.e. q(θ | θ ′) = q(θ ′ | θ). Then the proposal densities cancel in the acceptance probability and,

a(θ ′→ θ) = min

�

1,
p(θ , x)

p(θ ′, x)

�

.

In other words, you accept any proposal that moves “uphill,” and only accept “downhill” moves with
some probability.

This is called the Metropolis algorithm and it has close connections to simulated annealing.
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Synthetic Demo
Let’s implement a simple Metropolis-Hastings sampler for the logistic regression model above.

We’ll use a spherical Gaussian proposal and play with the proposal variance.
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Synthetic Demo

40 / 46



Synthetic Demo
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Gibbs Sampling
Gibbs is a special case of MH with proposals that always accept. Gibbs sampling updates one
“coordinate” of θ ∈ RD at a time by sampling from its conditional distribution. The algorithm is:

Algorithm: Gibbs Sampling

Input: Initial parameters θ (0), observations x

▶ For t = 1, . . . ,T

▶ For d = 1, . . . ,D

▶ Sample θ (t)d ∼ p(θd | θ
(t)
1 , . . . ,θ (t)d− ,θ (t−1)d+1 , . . . ,θ (t−1)D , x)

▶ Return samples {θ (t)}Tt=1
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Gibbs Sampling
You can think of Gibbs as cycling through D Metropolis-Hastings proposals, one for each coordinate
d ∈ 1, . . . ,D,

qd(θ | θ ′) = p(θd | θ ′¬d, x)δθ ′¬d(θ¬d),

where θ¬d = (θ1, . . . ,θd−1,θd+1, . . . ,θD) denotes all parameters except θd .

In other words, the proposal distribution qd samples θd from its conditional distribution and leaves all
the other parameters unchanged.
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Gibbs Sampling
What is the probability of accepting this proposal?

ad(θ
′→ θ) = min

�

1,
p(θ , x)qd(θ

′ | θ)
p(θ ′, x)qd(θ | θ ′)

�

=min

¨

1,
p(θ , x)p(θ ′d | θ¬d, x)δθ¬d(θ

′
¬d)

p(θ ′, x)p(θd | θ ′¬d, x)δθ ′¬d(θ¬d)

«

=min

¨

1,
p(θ¬d, x)p(θd | θ¬d, x)p(θ ′d | θ¬d, x)δθ¬d(θ

′
¬d)

p(θ ′¬d, x)p(θ
′
d | θ

′
¬d, x)p(θd | θ

′
¬d, x)δθ ′¬d(θ¬d)

«

=min {1,1}= 1

for all θ ,θ ′ that differ only in their d-th coordinate.

The Godfather: The Gibbs proposal is an offer you cannot refuse.
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Gibbs Sampling
Of course, if we only update one coordinate, the chain can’t be ergodic. However, if we cycle through
coordinates it generally will be.

Question: If Gibbs sampling always accepts, is it strictly better than other Metropolis-Hastings
algorithms?
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Conclusion
There’s plenty more to be said about Bayesian statistics — choosing a prior, subjective vs objective vs
empirical Bayesian approaches, the role of the marginal likelihood in Bayesian model comparison,
varieties of MCMC, and other approaches to approximate Bayesian inference.

We’ll dig into some of these topics as the course goes on, but for now, we have some valuable tools for
developing Bayesian modeling and inference with discrete data!
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