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Announcements

▶ HW2 posted online. Due Wed, Feb 12.

▶ Midterm next Wednesday in MCCULL 115 See practice test online.
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Recap

Last Time...

▶ Bayesian Inference

▶ Conjugate Priors

▶ Laplace Approximation

▶ Monte Carlo

▶ Start on MCMC
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Outline

Today...

▶ Markov Chains

▶ Metropolis Hastings Algorithm

▶ Gradient-based Proposals (MALA and HMC)

▶ Gibbs Sampling

▶ Augmentation Schemes (with Demo)
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Approximating Posterior Expectations
Generally, we can’t analytically compute posterior expectations. In these cases, we need to resort to
approximations. For example, we could use quadrature methods like Simpson’s rule or the trapezoid
rule to numerically approximate the integral over Θ.

Roughly,

Ep(θ |x)[f (θ)]≈
M
∑

m=1

p(θm | x) f (θm)∆m

where θm ⊂ Θ is a grid of points and ∆m is a volume around that point.

This works for low-dimensional problems (say, up to 5 dimensions), but the number of points (M)
needed to get a good estimate grows exponentially with the parameter dimension.
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Monte Carlo Approximations
Idea: approximate the expectation via sampling,

Ep(θ |x)[f (θ)]≈
1
M

M
∑

m=1

f (θm) where θm ∼ p(θ | x).

Let f̂ = 1
M

∑M
m=1 f (θm) denote the Monte Carlo estimate. It is a random variable, since it’s a function of

random samples θm. As such, we can reason about its mean and variance.
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Unbiasedness
Clearly,

E[̂f ] =
1
M

M
∑

m=1

Ep(θ |x)[f (θ)] = Ep(θ |x)[f (θ)].

Thus, f̂ is an unbiased estimate of the desired expectation.
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Monte Carlo Variance
What about its variance?

Var[̂f ] = Var

�

1
M

M
∑

m=1

f (θm)

�

=
1
M2

�

M
∑

m=1

Var[f (θ)] + 2
∑

1≤m<m′≤M
Cov[f (θm), f (θm′)]

�
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Comparison to Numerical Quadrature
▶ If the samples are not only identically distributed but also uncorrelated, then Var[̂f ] = 1

MVar[f (θ)].

▶ In this case, the root mean squared error (RMSE) of the estimate is
q

Var[̂f ] = O(M−
1
2 ).

▶ Compare this to Simpson’s rule, which for smooth 1D problems has an error rate of O(M−4).
That’s roughly 8 times better than Monte Carlo!

▶ However, for multidimensional problems, Simpson’s rule is O(M−
4
D ), whereas the error rate of

Monte Carlo does not depend on the dimensionality!
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The Catch
So far so good: we’ll just draw a lot of samples to drive down our Monte Carlo error. Here’s the catch!
How do you draw samples from the posterior p(θ | x)? We’re interested in Monte Carlo for cases where
the posterior does not admit a simple closed form! In general, sampling the posterior is as hard as
computing the marginal likelihood.
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Markov Chains
A Markov chain is a joint distribution of a sequence of variables, π(θ1,θ2, . . . ,θM). (To avoid confusion
with the model p, we denote the densities associated with the Markov chain by π.) The Markov chain
factorizes so that each variable is drawn conditional on the previous variable,

π(θ1,θ2, . . . ,θM) = π1(θ1)
M
∏

m=2

π(θm | θm−1).

This is called the Markov property.

▶ The distribution π1(θ1) is called the initial distribution.

▶ The distribution π(θm | θm−1) is called the transition distribution. If the transition distribution is
the same for each m, the Markov chain is homogeneous.
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Stationary distributions
Let πm(θm) denote the marginal distribution of sample θm. It can be obtained recursively as,

πm(θm) =

∫

πm−1(θm−1)π(θm | θm−1)dθm−1.

We are interested in the asymptotic behavior of the marginal distributions as m→∞.

A distribution π⋆(θ) is a stationary distribution if,

π⋆(θ) =

∫

π⋆(θ ′)π(θ | θ ′)dθ ′.

That is, suppose the marginal of sample θ ′ is π⋆(θ). Then the marginal of the next time point is also
π⋆(θ).
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Detailed balance
How can we relate transition distributions and stationary distributions? A sufficient (but not necessary)
condition for π⋆(θ) to be a stationary distribution is that it satisfies detailed balance,

π⋆(θ ′)π(θ | θ ′) = π⋆(θ)π(θ ′ | θ).

In words, the probability of starting at θ ′ and moving to θ is the same as that of starting at θ and
moving to θ ′, if you draw the starting point from the stationary distribution.

To see that detailed balance is sufficient, integrate both sides to get,
∫

π⋆(θ ′)π(θ | θ ′)dθ ′ =

∫

π⋆(θ)π(θ ′ | θ)dθ ′ = π⋆(θ).

Thus, π⋆(θ) is a stationary distribution of the Markov chain with transitions π(θ | θ ′).
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Ergodicity
Detailed balance can be used to show that π⋆(θ) is a stationary distribution, but not that it is the
unique one. This is where ergodicity comes in. A Markov chain is ergodic if πm(θm)→ π⋆(θ)
regardless of π1(θ1). An ergodic chain has only one stationary distribution, π

⋆(θ).

The easiest way to prove ergodicity is to show that it is possible to reach any θ ′ from any other θ . E.g.
this is trivially so if π(θ ′ | θ)> 0.

Note: A more technical definition is that all pairs of sets communicate, in which case the chain is
irreducible, and that each state is aperiodic. The definitions can be a bit overwhelming.
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Markov Chain Monte Carlo (MCMC)
Finally, we come to our main objective: designing a Markov chain for which the posterior is the unique
stationary distribution. That is, we want π⋆(θ) = p(θ | x).

Recall our constraint: we can only compute the joint probability (the numerator in Bayes’ rule), not the
marginal likelihood (the denominator). Fortunately, that still allows us to compute ratios of posterior
densities! We have,

p(θ | x)
p(θ ′ | x)

=
p(θ , x)

p(x)

p(x)

p(θ ′, x)
=
p(θ , x)

p(θ ′, x)
.

Now rearrange the detailed balance condition to relate ratios of transition probabilities to ratios of
joint probabilities,

π(θ | θ ′)
π(θ ′ | θ)

=
π⋆(θ)

π⋆(θ ′)
=
p(θ | x)
p(θ ′ | x)

=
p(θ , x)

p(θ ′, x)
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The Metropolis-Hastings algorithm
To construct such a transition distribution π(θ | θ ′), break it down into two steps.

1. Sample a proposal θ from a proposal distribution q(θ | θ ′),

2. Accept the proposal with acceptance probability a(θ ′→ θ). (Otherwise, set θ = θ ′.)

Thus,

π(θ | θ ′) =

¨

q(θ | θ ′)a(θ ′→ θ) if θ ′ ̸= θ
∫

q(θ ′′ | θ ′) (1− a(θ ′→ θ ′′))dθ ′′ if θ ′ = θ

Detailed balance is trivially satisfied when θ = θ ′. When θ ̸= θ ′, we need

π(θ | θ ′)
π(θ ′ | θ)

=
q(θ | θ ′)a(θ ′→ θ)
q(θ ′ | θ)a(θ → θ ′)

=
p(θ , x)

p(θ ′, x)
⇒
a(θ ′→ θ)
a(θ → θ ′)

=
p(θ , x)q(θ ′ | θ)
p(θ ′, x)q(θ | θ ′)
︸ ︷︷ ︸

≜A(θ ′→θ)
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The Metropolis-Hastings algorithm
WLOG, assume A(θ ′→ θ)≤ 1. (If it’s not, its inverse A(θ → θ ′) must be.) A simple way to ensure
detailed balance is to set a(θ ′→ θ) = A(θ ′→ θ) and a(θ → θ ′) = 1.

We can succinctly capture both cases with,

a(θ ′→ θ) = min
�

1, A(θ ′→ θ)
	

=min

�

1,
p(θ , x)q(θ ′ | θ)
p(θ ′, x)q(θ | θ ′)

�

.
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The Metropolis algorithm
Now consider the special case in which the proposal distribution is symmetric;
i.e. q(θ | θ ′) = q(θ ′ | θ). Then the proposal densities cancel in the acceptance probability and,

a(θ ′→ θ) = min

�

1,
p(θ , x)

p(θ ′, x)

�

.

In other words, you accept any proposal that moves “uphill,” and only accept “downhill” moves with
some probability.

This is called the Metropolis algorithm and it has close connections to simulated annealing.
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Smarter Proposals with Gradients
▶ Metropolis-Hastings with a symmetric Gaussian proposal behaves (kind of) like a random walk.

▶ Neal (2012) argues that in D dimensions, random walk MH needs O(D2) iterations to get an
independent sample.

▶ Can we develop more efficient transition distributions? Yes! If we have more information about
the log probability.

▶ For example, suppose that the log probability log p(θ) is differentiable. We can use the gradient
to make proposals that move farther and are more likely to be accepted.
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Metropolis-Adjusted Langevin Algorithm (MALA)
The Metropolis-Adjusted Langevin Algorithm uses the gradient of the log probability to make
asymmetric proposals,

q(θ ′ | θ ) =N (θ +τ∇θ log p(θ ,X), 2τ2I)

Note: q(θ ′ | θ ) ̸= q(θ | θ ′)! To calculate the acceptance probability, you need the gradient at both
points.

MALA can be motivated as a discrete-time approximation to the Langevin diffusion, a continuous-time
stochastic differential equation for modeling molecular dynamics.

In high dimensions, the extra information provided by the gradient can lead to much more efficient
chains. Neal argues that MALA needs O(D4/3) computation to produce an independent sample.

But why stop at one gradient step?
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Hamiltonian Monte Carlo (HMC)
Idea: Think of negative log probability as an energy landscape. Now imagine a puck sliding around on
this bumpy surface. Give it random kicks; it will tend to slide downhill toward points of low potential
energy (high probability). Each kick can displace the puck by a large amount. Done properly, the puck
will visit points with probability proportional to the posterior probability.
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Notation
Following Neal (2012), let

▶ q ∈ RD denote the position; i.e. the current parameters (previously θ )

▶ p ∈ RD denote the momentum; auxiliary variables that we don’t care about, but which are
necessary for HMC.

▶ z = [q,p]⊤ ∈ R2D denote the combined state of the system.

▶ M denote the mass matrix, another artificial construct. Typically, this will be mI

▶ U(q) denote the potential energy

▶ K(p) = 1
2p
⊤M−1p denote the kinetic energy

22 / 31



Hamiltonian Dynamics
The Hamiltonian is the sum of the potential H(q,p) = U(q) + K(p) = U(q) + 1

2p
⊤M−1p.

The partial derivatives determine how the state evolves over time,

dqd
dt

=
∂ H
∂ pd

= [M−1p]d

dpd
dt

= −
∂ H
∂ qd

= −
∂ U
∂ qd

for d = 1, . . . ,D.

Compactly,

dz
dt

= J∇H(z) where J =

�

0, I
−I,0

�
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Using Hamiltonian Dynamics for Posterior Inference
Define a joint distribution on positions and momenta as,

p(q,p)∝ exp
�

−H(q,p)
	

∝ exp
�

−U(q)− K(p)
	

.

Now let U(q) = − log p(θ = q,X) be the negative log joint probability. Then,

p(q,p) = p(θ = q | X)× p(p)

Samples of q will be marginally distributed according to the posterior p(θ = q | X).

Samples of p will be marginally distributed p(p) = exp{−K(p)}
∫

RD exp{−K(p)}dp
. These are auxiliary variables that

we don’t really care about—they’re just there to help us construct MH proposals.

We choose K(p) so p(p) is convenient; e.g. if K(p) = 1
2p
⊤M−1p then

p(p) =N (p | 0,M).
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Algorithm
Hamiltonian Monte Carlo (HMC) is Metropolis-Hastings on the joint distribution of (q,p) with
proposals based on Hamiltonian dynamics.

Starting at point (q′,p′), sample the proposal distribution:

1. Throw away p′ and sample new momenta from their marginal distribution p∼N (0,M).

2. Approximate Hamiltonian dynamics for ∆t time to get to a new point (q,p). (Use L=∆t/ε
Leapfrog integration steps each of size ε.)

3. Flip the momentum p←−p to make the proposal symmetric.
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Algorithm
Then accept the proposed point (q,p) with probability,

a((q′,p′)→ (q,p)) = min

�

1,
exp{−H(q,p)}q(q′,p′ | q,p)
exp{−H(q′,p′)}q(q,p | q′,p′)

�

=min

�

1,
exp{−H(q,p)}
exp{−H(q′,p′)}

�

.

If the Hamiltonian dynamics were simulated exactly, HMC would always accept. In practice,
differences arise from numerical integration errors.
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Gibbs Sampling
Gibbs is a special case of MH with proposals that always accept. Gibbs sampling updates one
“coordinate” of θ ∈ RD at a time by sampling from its conditional distribution. The algorithm is:

Gibbs Sampling:

Input: Initial parameters θ (0), observations x

▶ For t = 1, . . . ,T

▶ For d = 1, . . . ,D

▶ Sample θ (t)d ∼ p(θd | θ
(t)
1 , . . . ,θ (t)d− ,θ (t−1)d+1 , . . . ,θ (t−1)D , x)
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Gibbs Sampling
Return samples {θ (t)}Tt=1 “‘

You can think of Gibbs as cycling through D Metropolis-Hastings proposals, one for each coordinate
d ∈ 1, . . . ,D,

qd(θ | θ ′) = p(θd | θ ′¬d, x)δθ ′¬d(θ¬d),

where θ¬d = (θ1, . . . ,θd−1,θd+1, . . . ,θD) denotes all parameters except θd .

In other words, the proposal distribution qd samples θd from its conditional distribution and leaves all
the other parameters unchanged.
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Gibbs Sampling
What is the probability of accepting this proposal?

ad(θ
′→ θ) = min

�

1,
p(θ , x)qd(θ

′ | θ)
p(θ ′, x)qd(θ | θ ′)

�

=min

¨

1,
p(θ , x)p(θ ′d | θ¬d, x)δθ¬d(θ

′
¬d)

p(θ ′, x)p(θd | θ ′¬d, x)δθ ′¬d(θ¬d)

«

=min

¨

1,
p(θ¬d, x)p(θd | θ¬d, x)p(θ ′d | θ¬d, x)δθ¬d(θ

′
¬d)

p(θ ′¬d, x)p(θ
′
d | θ

′
¬d, x)p(θd | θ

′
¬d, x)δθ ′¬d(θ¬d)

«

=min {1,1}= 1

for all θ ,θ ′ that differ only in their d-th coordinate.

The Gibbs proposal is an offer you cannot refuse.
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Gibbs Sampling
Of course, if we only update one coordinate, the chain can’t be ergodic. However, if we cycle through
coordinates it generally will be.

Question: If Gibbs sampling always accepts, is it strictly better than other Metropolis-Hastings
algorithms? :::
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Conclusion
This was obviously a whirlwind of an introduction to Bayesian inference! There’s plenty more to be
said about Bayesian statistics — choosing a prior, subjective vs objective vs empirical Bayesian
approaches, the role of the marginal likelihood in Bayesian model comparison, varieties of MCMC, and
other approaches to approximate Bayesian inference. We’ll dig into some of these topics as the course
goes on, but for now, we have some valuable tools for developing Bayesian modeling and inference
with discrete data!
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