
Lecture 1: Course Introduction,
Basics of Probability and Statistics,

& A Little Bit about Contingency Tables
STATS305B: Applied Statistics II

Scott Linderman

January 6, 2025

1 / 37



Introductions

▶ Instructor: Scott Linderman (Asst. Prof., Statistics and Wu Tsai Neuro. Inst.)

▶ TA: Amber Hu (PhD student, Statistics)

▶ TA: Michael Salerno (PhD student, Statistics)
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What is this course about?

Probabilistic modeling and inference with discrete data.

To what end? We want to:

▶ Predict: given features, estimate labels or outputs

▶ Simulate: given partial observations, generate the rest

▶ Summarize: given high dimensional data, find low-dimensional factors of variation

▶ Decide: given past actions/outcomes, which choice is best?

▶ Understand: what generative mechanisms gave rise to this data?
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Box’s Loop

?.
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Course Outline

▶ Weeks 1-3: Classics: Exponential family distributions and GLMs

▶ Weeks 4-5: Bayesian Inference algorithms: MCMC and variational inference

▶ Weeks 6-7: Latent variable models: mixture models, HMMs, etc.

▶ Weeks 8-9: Deep generative models: VAEs, Transformers, Deep SSMs, Denoising diffusion models

▶ Week 10: Bonus: Point processes, survival analysis, etc.
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Learning Objectives

▶ Understand the mathematical underpinnings of classical and modern models for discrete data.

▶ Develop expertise in an array of algorithms for parameter estimation and inference in these
models.

▶ Be able to code these models and algorithms from scratch in Python.
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Assignments

▶ Weeks 1-3: Classics: Exponential family distributions and GLMs
Predict outcomes of college football games with a Bradley-Terry model.

▶ Weeks 4-5: Bayesian Inference algorithms: MCMC and variational inference
Election forecasting with a Bayesian GLM.

▶ Weeks 6-7: Latent variable models: mixture models, HMMs, etc.
Changepoint detection in time series data.

▶ Weeks 8-9: Deep generative models: VAEs, Transformers, Deep SSMs, Denoising diffusion models
Build a small LLM.

▶ Week 10: Bonus: Point processes, survival analysis, etc.
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Logistics

Please see the course website for the syllabus, schedule, lecture notes, grading policy, etc.

https://slinderman.github.io/stats305b/

We will use Ed for communications, questions, etc., and Gradescope for assignments.
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Interactive Example: College Football Playoffs
Let’s start with a hands-on example. The College Football Playoffs are underway, and the Super Bowl
is coming up in a few weeks! If you go to a watch party, you might like to play the following game with
your friends.

Before the football game starts, create a 10x10 board with the rows and columns numbered 0 through
9. Each cell represents a possible final score of the home and away team, mod 10. You and your
friends select cells in round robin order until all 100 cells are taken. Whoever has the cell with the
final score (mod 10) wins!

First, let’s review some basics about football...
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Step 1: Collect Data
Let’s play together, using the upcoming Cotton Bowl between Ohio State and Texas as our example.
Fill out this poll to enter your guess.

https://tinyurl.com/stats305lec01

10 / 37

https://tinyurl.com/stats305lec01


Outline

▶ Basic Probability Distributions

▶ Maximum Likelihood Estimation

▶ Contingency Tables and Independence
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Bernoulli Distribution
Toss a (biased) coin where the probability of heads is p ∈ [0,1]. Let X = 1 denote the event that a coin
flip comes up heads and X = 0 it comes up tails. The random variable X follows a Bernoulli
distribution,

X ∼ Bern(p)

We denote its probability mass function (pmf) by,

Bern(x;p) =

¨

p if x = 1

1− p if x = 0

or more succinctly

Bern(x;p) = px(1− p)1−x.

The Bernoulli distribution’s mean is E[X] = p and its variance is Var[X] = p(1− p).
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Binomial Distribution
Now toss the same biased coin n times independently and let

Xi
iid∼ Bern(p) for i = 1, . . . ,n

denote the outcomes of each trial.

The number of heads, X =
∑n
i=1 Xi , is a random variable taking values X ∈ {0, . . . ,n}. It follows a

binomial distribution,

X ∼ Bin(n,p)

with pmf

Bin(x;n,p) =
�

n
x

�

px(1− p)n−x.

Its mean and variance are E[X] = np and Var[X] = np(1− p), respectively.
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Poisson Distribution
Now let n→∞ and p→ 0 while the product np= λ stays constant. In that limit, the binomial
distribution converges to the Poisson distribution over non-negative integers X ∈ N,

X ∼ Po(λ).

Its pmf is,

Po(x;λ) =
1
x!
e−λλx.

The mean and variance are both λ. The fact that the mean equals the variance is a defining property
of the Poisson distribution, but it’s not always an appropriate modeling assumption.
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Categorical Distribution
Instead of a biased coin, consider a biased die with K faces and corresponding probabilites
π= (π1, . . . ,πK) ∈∆K−1, where ∆K−1 denotes the (K − 1)-dimensional simplex,

∆K−1 =

¨

π ∈ RK+ :
∑

k

πk = 1

«

The outcome X ∈ {1, . . . ,K} follows a categorical distribution, X ∼ Cat(π), with pmf

Cat(x;π) =
K
∏

k=1

π
I[x=k]
k

where I[y] is an indicator function that returns 1 if y is true and 0 otherwise.

The categorical distribution is a natural generalization of the Bernoulli distribution to random
variables that can fall into more than two categories.
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Categorical Distribution
Alternatively, we can represent X as a one-hot vector, in which case X ∈ {e1, . . . , eK} where
ek = (0, . . . ,1, . . . ,0)⊤ is a one-hot vector with a 1 in the k-th position. Then, the pmf is,

Cat(x;π) =
K
∏

k=1

π
xk
k
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Multinomial Distribution
From this representation, it is straightforward to generalize to n independent rolls of the die, just like

in the binomial distribution. Let Zi
iid∼ Cat(π) for i = 1, . . . ,n denote the outcomes of each roll, and let

X =
∑n
i=1 Zi denote the total number of times the die came up on each of the K faces. Note that

X ∈ NK is a vector-valued random variable. Then, X follows a multinomial distribution,

X ∼Mult(n,π),

with pmf,

Mult(x;n,π) = I[x ∈ Xn] ·
�

n
x1, . . . , xK

� K
∏

k=1

π
xk
k

whereXn =
¦

x ∈ NK :
∑K
k=1 xk = n
©

and ( n
x1,...,xK

) = n!
x1!···xK!

denotes the multinomial function.
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Multinomial Distribution
The expected value of a multinomial random variable is E[X] = nπ and the K × K covariance matrix
is,

Cov(X) = n









π1(1−π1) −π1π2 . . . −π1πK
−π2π1 π2(1−π2) . . . −π2πK
...

...
...

...
−πKπ1 −πKπ2 . . . πK(1−πK)









with entries

[Cov[X]]ij =

¨

nπi(1−πi) if i = j

−nπiπj if i ̸= j
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Poisson / Multinomial Connection
Suppose we have a collection of independent (but not identically distributed) Poisson random
variables,

Xi ∼ Po(λi) for i = 1, . . . ,K.

Due to their independence, the sum X• =
∑K
i=1 Xi is Poisson distributed as well,

X• ∼ Po

�

K
∑

i=1

λk

�

(We’ll use this X• notation more when we talk about contingency tables.)

Conditioning on the sum renders the counts dependent. (They have to sum to a fixed value, so they
can’t be independent!) Specifically, given the sum, the counts follow a multinomial distribution,

(X1, . . . ,XK) | X• = n∼Mult(n,π)
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Poisson / Multinomial Connection
where

π=

�

λ1
λ•

, . . . ,
λK
λ•

�

with λ• =
∑K
i=1λi . In words, given the sum, the vector of counts is multinomially distributed with

probabilities given by the normalized rates.
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Outline

▶ Basic Probability Distributions

▶ Maximum Likelihood Estimation

▶ Contingency Tables and Independence
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Maximum Likelihood Estimation
The distributions above are simple probability models with one or two parameters. How can we
estimate those parameters from data? We’ll focus on maximum likelihood estimation.

The log likelihood is the probability of the data viewed as a function of the model parameters θ . Given
i.i.d. observations {xi}ni=1, the log likelihood reduces to a sum,

L (θ ) =
n
∑

i=1

log p(xi;θ).

The maximum likelihood estimate (MLE) is a maximum of the log likelihood,

θ̂MLE = arg maxL (θ )

(Assume for now that there is a single global maximum.)
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Example: MLE for the Bernoulli distribution
Consider a Bernoulli distribution unknown parameter θ ∈ [0,1] for the probability of heads. Suppose
we observe n independent coin flips

Xi
iid∼ Bern(θ) for i = 1, . . . ,n.

Observing Xi = xi for all i, the log likelihood is,

L (θ) =
n
∑

i=1

xi logθ + (1− xi) log(1− θ)

= x logθ + (n− x) log(1− θ)

where x =
∑n
i=1 xi is the number of flips that came up heads.
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Example: MLE for the Bernoulli distribution
Taking the derivative with respect to p,

d
dθ
L (θ) =

x
θ
−
n− x
1− θ

=
x− nθ
θ(1− θ)

.

Setting this to zero and solving for θ yields the MLE,

θ̂MLE =
x
n

.

Intuitively, the maximum likelihood estimate is the fraction of coin flips that came up heads. Note that
we could have equivalently expressed this model as a single observation of X ∼ Bin(n,θ) and
obtained the same result.
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Asymptotic Normality of the MLE
If the data were truly generated by i.i.d. draws from a model with parameter θ ⋆, then under certain
conditions the MLE is asymptotically normal and achieves the Cramer-Rao lower bound,

p
n(θ̂MLE − θ ⋆)→N (0,I (θ ⋆)−1)

in distribution, where I (θ ) is the Fisher information matrix. We obtain standard error estimates by
taking the square root of the diagonal elements of the inverse Fisher information matrix and dividing
by
p
n.
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Fisher Information Matrix
The Fisher information matrix is the covariance of the score function, the partial derivative of the log
likelihood with respect to the parameters. It’s easy to confuse yourself with poor notation, so let’s try
to derive it precisely.

The log probability is a function that maps two arguments (a data point and a parameter vector) to a
scalar, log p :X ×Θ 7→ R. The score function is the partial derivative with respect to the parameter
vector, which is itself a function, ∇θ log p :X ×Θ 7→ Θ.
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Fisher Information Matrix
Now consider θ fixed and treat X ∼ p(·;θ ) as a random variable. The expected value of the score is
zero,

E[∇θ log p(X;θ )] =
∫

X
p(x;θ )∇θ log p(x;θ )dx

=

∫

X
p(x;θ )

∇θp(x;θ )
p(x;θ )

dx

=∇θ

∫

X
p(x;θ )dx

=∇θ1
= 0.
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Fisher Information Matrix
The Fisher information matrix is the covariance of the score function, again treating θ as fixed,

I (θ ) = Cov[∇θ log p(X;θ )]

= E[∇θ log p(X;θ )∇θ log p(X;θ )⊤]−E[∇θ log p(X;θ )]
︸ ︷︷ ︸

0

E[∇θ log p(X;θ )]⊤
︸ ︷︷ ︸

0⊤

= E[∇θ log p(X;θ )∇θ log p(X;θ )⊤].

If log p is twice differentiable (in θ ) the under certain regularity conditions, the Fisher information
matrix is equivalent to the expected value of the negative Hessian of the log probability,

I (θ ) = −E
�

∇2θ log p(X;θ )
�
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Example: Fisher Information for the Bernoulli Distribution
For a Bernoulli distribution, the log probability and its score were evaluated above,

log p(x;θ) = x logθ + (1− x) log(1− θ)

∇θ log p(x;θ) =
x− θ
θ(1− θ)

The negative Hessian with respect to θ is,

−∇2θ log p(x;θ) =
x
θ 2

+
1− x

(1− θ)2
.
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Example: Fisher Information for the Bernoulli Distribution
Taking the expectation w.r.t. X ∼ p(·;θ) yields,

I (θ) = −E
�

∇2θ log p(x;θ)
�

=
θ

θ 2
+

1− θ
(1− θ)2

=
1

θ(1− θ)
.

Interestingly, the inverse Fisher information is the Var[X;θ ]. We’ll see that this is a general property of
exponential family distributions.
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Outline

▶ Basic Probability Distributions

▶ Maximum Likelihood Estimation

▶ Contingency Tables and Independence
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Contingency Tables
Our table of guesses is an example of a contingency table. It represents a sample from a joint
distribution of two random variables, X,Y ∈ {0,1, . . . ,10} indicating the two scores, mod 10.

More generally, let X ∈ {1, . . . , I} and Y ∈ {1, . . . , J} be categorical random variables. We represent the
joint distribution as an I× J table,

Π=





π11 . . . π1J
...

...
πI1 . . . πIJ





where

πij = Pr(X = i,Y = j).
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Contingency Tables
The probabilities must be normalized,

1=
I
∑

i=1

J
∑

j=1

πij ≜ π••

The marginal probabilities are given by,

Pr(X = i) =
J
∑

j=1

πij ≜ πi•,

Pr(Y = j) =
I
∑

i=1

πij ≜ π•j.

Finally, the conditional probabilities are given by Bayes’ rule,

Pr(Y = j | X = i) =
Pr(X = i,Y = j)

Pr(X = i)
=
πij

πi•
≜ πj|i
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Independence
One of the key questions in the analysis of contingency tables is whether X and Y are independent. In
particular, they are independent if the joint distribution factors into a product of marginals,

X ⊥ Y ⇐⇒ πij = πi•π•j ∀i, j.

Equivalently, the variables are independent if the conditionals are homogeneous,

X ⊥ Y ⇐⇒ πj|i =
πij

πi•
=
πi•π•j

πi•
= π•j ∀i, j.
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Independence Testing in Multi-Way Tables
Here, we will derive a likelihood ratio test to test for independence in a contingency table. Let

H0 : πij = πi•π•j ∀i, j

be our null hypothesis of independence. The null hypothesis imposes a constraint on the set of
probabilities Π. Rather than taking on any value Π ∈∆IJ−1, they are constrained to the ∆I−1 ×∆J−1
subset of probabilities that factor into an outer product of marginal probabilities.

The likelihood ratio test compares the maximum likelihood under the constrained set to the maximum
likelihood under the larger space of all probabilities,

λ= −2 log
supπi•,π•j∈∆I−1×∆J−1 p(x;πi•π

⊤
•j)

supΠ∈∆IJ−1 p(x;Π)
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Independence Testing in Multi-Way Tables
The maximum likelihoods estimates of the constrained model are π̂i• = xi•/x•• and π̂•j = x•j/x••;
under the unconstrained model they are π̂ij = xij/x••. Plugging these estimates in yields,

λ= −2 log

∏

ij

� xi•x•j
x2••

�xij

∏

ij

� xij
x••

�xij

= −2
∑

ij

xij log
µ̂ij

xij

where µ̂ij = x••π̂i•π̂•j = xi•x•j/x•• is the expected value of Xij under the null hypothesis of
independence.

Under the null hypothesis, λ is asymptotically distributed as chi-squared with
(IJ− 1)− (I− 1)− (J− 1) = (I− 1)(J− 1) degrees of freedom,

λ∼ χ2
(I−1)(J−1).
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Summary
There is a lot more to say about contingency tables that we did not have time to cover.

▶ Depending on the setting, we can consider various sampling models for the contingency table,
like Poisson, multinomial, or hypergeometric sampling.

▶ For two-way tables, there are other statistics for measuring association, like the relative risk.

▶ Likewise, in two-way tables, there are several ways to test for independence, including Fisher’s
exact test, which is based on a hypergeometric sampling model.

Next, we’ll consider models for capturing relationships between a binary response and several
covariates using logistic regression.
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