Common Distributions

The notation $z \sim P(\theta)$ means that the random variable z is sampled from (or distributed according to) the distribution P, which is parameterized by θ . When we write $P(z; \theta)$ we refer to the density (assuming it exists) of P evaluated at z. Here, we provide a summary of common distributions and their parametric densities or mass functions.

Bernoulli For a binary random variable $x \in \{0, 1\}$ with $\rho \in [0, 1]$,

Bern(*x*;
$$\rho$$
) = $\rho^{x}(1-\rho)^{1-x}$

Sometimes we parameterize the Bernoulli distribution in terms of its *logit*, $\sigma^{-1}(\rho) = \log \frac{\rho}{1-\rho}$, where $\sigma(u) = (1 + e^{-u})^{-1}$ is the *logistic/sigmoid* function.

Beta For a continuous random variable $\rho \in [0, 1]$ with a > 0 and b > 0,

Beta(
$$\rho; a, b$$
) = $\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\rho^{a-1}(1-\rho)^{b-1}$.

Note that for $\alpha < 1$ and/or $\beta < 1$, the beta density diverges and is **unbounded**.

Binomial For an integer-valued random variable $x \in \{1, ..., N\}$ with $N \in \mathbb{N}$ and $\rho \in [0, 1]$,

$$\operatorname{Bin}(x;N,\rho) = \binom{N}{x} \rho^{x} (1-\rho)^{N-x}.$$

Categorical For an integer-valued random variable $x \in \{1, ..., K\}$ with $K \in \mathbb{N}$ and $\pi \in \Delta_K$,

$$\operatorname{Cat}(x; \pi) = \pi_x,$$

where π_x denotes the *x*-the coordinate of the vector π .

Note: sometimes the categorical distribution is used as a distribution on one-hot vectors $\mathbf{x} \in \{0,1\}^K$; $\sum_{k=1}^K x_k = 1$, in which case the pmf is $\operatorname{Cat}(\mathbf{x}; \pi) = \prod_{k=1}^K \pi_k^{x_k}$. It will be clear from context if \mathbf{x} is an integer or a one-hot vector.

Dirichlet For a probability vector $\boldsymbol{\pi} \in [0, 1]^K$ such that $\pi_k \ge 0$ and $\sum_k \pi_k = 1$, and parameter $\boldsymbol{a} \in \mathbb{R}_+^K$,

$$\operatorname{Dir}(\boldsymbol{\pi};\boldsymbol{\alpha}) = \frac{\Gamma(\sum_{k=1}^{K} \alpha_k)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \pi_k^{\alpha_k - 1}.$$

Exponential For a random variable $x \in \mathbb{R}_+$ with rate $\lambda \in \mathbb{R}_+$,

$$\operatorname{Exp}(x;\lambda) = \lambda e^{-\lambda x} \mathbb{I}[x \ge 0]$$

The cumulative distribution function for the exponential is $Pr(x < a; \lambda) = 1 - e^{-\lambda a}$. You can sample an exponential distribution by first sampling $u \sim \text{Unif}([0, 1])$, then setting $x = -\frac{\log u}{\lambda}$.

Gamma For a nonnegative random variable $\lambda \in \mathbb{R}_+$ with shape parameter a > 0 and rate parameter b > 0,

$$\operatorname{Ga}(\lambda; a, b) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} e^{-b\lambda}.$$

The gamma distribution may also be parameterized in terms of a scale parameter, $\theta = b^{-1}$, but we do not use that parameterization in this exam.

Multinomial For a vector of discrete counts $\mathbf{x} \in \mathbb{N}^{K}$ with $\sum_{k} x_{k} = N$ and a probability vector $\pi \in [0, 1]^{K}$,

$$\operatorname{Mult}(\boldsymbol{x}; N, \boldsymbol{\pi}) = \binom{N}{x_1, x_2, \dots, x_K} \prod_{k=1}^K \pi_k^{x_k},$$

where

$$\binom{N}{x_1, x_2, \dots x_K} = \frac{N!}{x_1! \dots x_K!}$$

Multivariate Normal For a random variable $x \in \mathbb{R}^D$ with mean $\mu \in \mathbb{R}^D$ and positive semidefinite covariance matrix $\Sigma \in \mathbb{R}^{D \times D}$,

$$\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-D/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}$$

Negative Binomial For an integer-valued random variable $x \in \mathbb{N}$ with shape parameters $v \in \mathbb{R}_+$ and probability $\rho \in [0, 1]$,

$$\operatorname{NB}(x; \nu, \rho) = \binom{x + \nu - 1}{x} \rho^{x} (1 - \rho)^{\nu}.$$

Poisson For an integer random variable $x \in \mathbb{N}$ and a nonnegative rate parameters $\lambda \in \mathbb{R}_+$,

$$\operatorname{Po}(x;\lambda) = \frac{1}{x!}\lambda^{x}e^{-\lambda}.$$

The mean and variance of the Poisson distribution are both equal to λ .

Truncated Normal For a random variable $x \in [a, b)$ and parameters $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}_+$,

TruncNorm
$$(x; \mu, \sigma^2, [a, b)) = \frac{\mathcal{N}(x; \mu, \sigma^2)}{\int_a^b \mathcal{N}(y; \mu, \sigma^2) dy} \mathbb{I}[a \le x < b].$$

Uniform For a continuous random variable $x \in [a, b)$,

$$\operatorname{Unif}(x;[a,b)) = \frac{1}{b-a} \mathbb{I}[a \le x < b].$$