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Recap

Last time...

▶ Logistic Regression

▶ Maximum Likelihood Estimation via Gradient Descent, Newton’s Method, and IRLS

▶ Regularization and Converge Rates
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Outline

Today...

▶ Definition and Examples

▶ The Log Normalizer

▶ Maximum Likelihood Estimation

▶ Mean Parameterization

▶ KL Divergence and Deviance Residuals
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Exponential Families

From Efron (2022).
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Definition
Exponential family distributions have densities of the form,

p(y;η) = h(y) exp
�

〈t(y),η〉 − A(η)
	

,

where

▶ h(y) : Y → R+ is the base measure,

▶ t(y) ∈ RT are the sufficient statistics,

▶ η ∈ RT are the natural parameters, and

▶ A(η) : RT → R is the log normalizing function (aka the partition function).
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Definition
The log normalizer ensures that the density is properly normalized,

A(η) = log

∫

h(y) exp
�

〈t(y),η〉
	

dy

The domain of the exponential family is the set of valid natural parameters, Ω= {η : A(η)<∞}. An
exponential family is a family of distributions defined by base measure h and sufficient statistics t, and
it is indexed by natural paremeters η ∈ Ω.
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Example: Poisson distribution
Take the Poisson pmf,

Po(y;λ) =
1
y!
λye−λ

=
1
y!

exp {y logλ−λ}

= h(y) exp
�

yη− A(η)
	

where

▶ the base measure is h(y) = 1
y!

▶ the sufficient statistics are t(y) = y

▶ the natural parameter is η= logλ

▶ the log normalizer is A(η) = λ= eη
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Bernoulli distribution
Exercise: Write the Bernoulli distribution in exponential family form. Recall that its pmf is

Bern(y;p) = py (1− p)1−y

What are the base measure, the sufficient statistics, the natural parameter, the log normalizer, and the
domain?

Submit your answers here,

https://tinyurl.com/stats305blec03

8 / 37

https://tinyurl.com/stats305blec03


Categorical distribution
Finally, take the categorical pmf for Y ∈ {1, . . . ,K},

Cat(y;π) =
K
∏

k=1

π
I[y=k]
k

= exp

¨

K
∑

k=1

I[y = k], logπk

«

= exp
�

〈ey, logπ〉
	

= h(y) exp
�

〈t(y),η〉 − A(η)
	

where

▶ the base measure is h(y) = I[y ∈ {1, . . . ,K}]

▶ the sufficient statistics are t(y) = ey , the one-hot vector representation of y
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Categorical distribution
▶ the natural parameter is η= logπ= (logπ1, . . . , logπK)

⊤ ∈ RK

▶ the log normalizer A(η) = 0

▶ the domain is Ω= RK
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The Log Normalizer
The cumulant generating function — i.e., the log of the moment generative function — is a difference
of log normalizers,

logEη[e〈t(Y),θ 〉] = log

∫

h(y) exp
�

〈t(y),η+ θ 〉 − A(η)
	

dy

= log eA(η+θ)−A(η)

= A(η+ θ)− A(η)
≜ Kη(θ)

Its derivatives (with respect to θ and evaluated at zero) yield the cumulants. In particular,

▶ ∇θKη(0) =∇A(η) yields the first cumulant of t(Y), its mean

▶ ∇2
θ
Kη(0) =∇2A(η) yields the second cumulant, its covariance

Higher order cumulants can be used to compute skewness, kurtosis, etc.
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Gradient of the log normalizer
We can also obtain this result more directly.

∇A(η) =∇ log

∫

h(y) exp
�

〈t(y),η〉
	

dy

=

∫

h(y) exp
�

〈t(y),η〉
	

t(y)dy
∫

h(y) exp
�

〈t(y),η〉
	

dy

=

∫

p(y | η) t(y)dy

= Eη[t(Y)]

Again, the gradient of the log normalizer yields the expected sufficient statistics,
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Hessian of the log normalizer
The Hessian of the log normalizer yields the covariance of the sufficient statistics,

∇2A(η) =∇
∫

p(y | η) t(y)dy

=

∫

p(y | η) t(y) (t(y)−∇A(η))⊤ dy

= E[t(Y)t(Y)⊤]−E[t(Y)]E[t(Y)]⊤

= Cov[t(Y)]
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Maximum Likelihood Estimation
Suppose we have yi

iid∼ p(y;η) for a minimal exponential family distribution with natural parameter η.
The log likelihood is,

L (η) =
n
∑

i=1

log p(yi;η)

=

®

n
∑

i=1

t(yi),η

¸

− nA(η) + c

The gradient is

∇L (η) =
n
∑

i=1

t(yi)− n∇A(η),

and the Hessian is ∇2L (η) = −n∇2A(η).
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Maximum Likelihood Estimation
Since the log normalizer is convex, all local optima are global. If the log normalizer is strictly convex,
the MLE will be unique.

Setting the gradient to zero and solving yields the stationary conditions for the MLE,

∇A[η̂MLE] = E[t(Y); η̂MLE] =
1
n

n
∑

i=1

t(yi).

When ∇A is invertible, the MLE is unique,

η̂MLE = [∇A]−1
�

1
n

n
∑

i=1

t(yi)

�

.

Even if ∇A is not invertible, maximum likelihood estimation amounts to matching empirical means of
the sufficient statistics to corresponding natural parameters.
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Asymptotic normality
Recall that the MLE is asymptotically normal with variance given by the inverse Fisher
information.

For an exponential family distribution, the Fisher information is,

I (η) = −E[∇2 log p(yi;η)] =∇2A(η) = Covη[t(Y)].

Thus,

p
n(η̂MLE −η)→ N(0,I (η)−1) = N(0, Covη[t(Y)]

−1)
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Example: MLE for the Poisson distribution
Suppose Yi

iid∼ Po(λ) for i = 1, . . . ,n. The natural parameter of the Poisson distribution is η= logλ,
and the maximum likelihood estimate is η̂MLE = log

� 1
n

∑n
i=1 yi
�

. The Fisher information matrix is the
variance, I (η) = Varη[Y] = eη.
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Minimal Exponential Families
The Hessian of the log normalizer gives the covariance of the sufficient statistic. Since covariance
matrices are positive semi-definite, the log normalizer is a convex function on Ω.

If the covariance is strictly positidive definite — i.e., if the minimum eigenvalue of ∇2A(η) is strictly
greater than zero for all η ∈ Ω — then the log normalizer is strictly convex. In that case, we say that
the exponential family is minimal

Question: Is the exponential family representation of the categorical distribution above a minimal
representation? If not, how could you encode it in minimal form?
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Mean Parameterization
When constructing models with exponential family distributions, like the generalized linear models
below, it is often more convenient to work with the mean parameters instead. for a d-dimensional
sufficient statistic, let,

M ≜
�

µ ∈ Rd : ∃p s.t. Ep[t(Y)] = µ
	

denote the set of mean parameters realizable by any distribution p.

Two facts:

1. The gradient mapping ∇A : Ω 7→M is injective (one-to-one) if and only if the exponential family
is minimal.

2. The gradient is a surjective mapping from mean parameters to the interior ofM . All mean
parameters in the interior ofM (excluding the boundary) can be realized by an exponential
family distribution. (Mean parameters on the boundary ofM can be realized by a limiting
sequence of exponential family distributions.)
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Mean Parameterization
Together, these facts imply that the gradient of the log normalizer defines a bijective map from Ω to
the interior ofM for minimal exponential families.

For minimal families, we can work with the mean parameterization instead,

p(y;µ) = h(y) exp
�

〈t(y), [∇A]−1(µ)〉 − A([∇A]−1(µ))
	

.

for mean parameters µ in the interior ofM .
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MLE for the Mean Parameters
Alternatively, consider the maximum likelihood estimate of the mean parameter µ ∈M . Before doing
any math, we might expect the MLE to be the empirical mean. Indeed, that is the case. To simplify
notation, let η(µ) = [∇A]−1(µ). The log likelihood,

L (µ) =

®

n
∑

i=1

t(yi),η(µ)

¸

− nA(η(µ)) + c

has gradient,

∇L (µ) =

�

∂ η

∂ µ
(µ)

�

�

n
∑

i=1

t(yi)− n∇A(η(µ))

�

=

�

∂ η

∂ µ
(µ)

�

�

n
∑

i=1

t(yi)− nµ

�

,
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MLE for the Mean Parameters
where ∂ η∂ µ(µ) is the Jacobian of inverse gradient mapping at µ. Assuming the Jacobian is positive
definite, we immediately see that,

µ̂MLE =
1
n

n
∑

i=1

t(yi).

Now back to the Jacobian. . . applying the inverse function theorem, shows that it equals the inverse
covariance matrix,

∂ η

∂ µ
(µ) =

∂ [∇A]−1

∂ µ
(µ) = [∇2A([∇A]−1(µ))]−1 = Covη(µ)[t(Y)]

−1,

which is indeed positive definite for minimal exponential families.
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Asymptotic normality
We obtain the Fisher information of the mean parameter µ by left and right multiplying by the
Jacobian,

I (µ) =
�

∂ η

∂ µ
(µ)

�⊤
I (η(µ))
�

∂ η

∂ µ
(µ)

�

= Covη(µ)[t(Y)]
−1Covη(µ)[t(Y)]Covη(µ)[t(Y)]

−1

= Covη(µ)[t(Y)]
−1.

Thus, the MLE of the mean parameter is asymptotically normal with covariance determined by the
inverse Fisher information, I (µ)−1 = Covη(µ)[t(Y)]. More formally,

p
n (µ̂MLE −µ⋆)→ N(0, Covη(µ)[t(Y)])

As usual, to derive confidence intervals we plug in the MLE to evaluate the asymptotic
covariance.
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Asymptotic normality
Compare this result to the asymptotic covariances we computed in Lecture 1 for the Bernoulli

distribution. Recall that for Xi
iid∼ Bern(θ), where θ ∈ [0,1] is the mean parameter, we found,
p
n(θ̂MLE − θ ⋆)→ N (0, Varθ [X]) .

Now we see that this is a general property of exponential family distributions.
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Revisiting the Poisson example
Revisiting the example above, here we have λ̂MLE =

1
n

∑

i yi and I (λ) = Varλ[Y]
−1 = 1

λ . We
expect,

p
n(λ̂MLE −λ)→ N(0,I (λ)−1) = N(0,λ).
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Conjugate duality
The log normalizer is a convex function. Its conjugate dual is,

A∗(µ) = sup
η∈Ω

�

〈µ,η〉 − A(η)
	

We recognize this as the maximum likelihood problem mapping expected sufficient statistics µ to
natural parameters η. For minimal exponential families, the supremum is uniquely obtained at
η(µ) = [∇A]−1(µ). The conjugate dual evaluates to the log likelihood obtained at η(µ).

It turns out the conjugate dual is also related to the entropy; in particular, for any µ in the interior of
M ,

A∗(µ) = −H[pη(µ)],
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Conjugate duality
where η(µ) = [∇A]−1(µ) for minimal exponential families. To see this, note that

−H[pη(µ)] = Ep(η(µ))[log p(X;η(µ))]

= Ep(η(µ))[〈t(X),η(µ)〉 − A(η(µ))]

= 〈µ,η(µ)〉 − A(η(µ))
= A∗(µ).

Moreover, for minimal exponential families, the gradient of A∗ provides the inverse map from mean
parameters to natural parameters,

∇A∗(µ) = argmax
η∈Ω

�

〈µ,η〉 − A(η)
	

= [∇A]−1(µ).
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Conjugate duality
Finally, the log normalizer has a variataional representation in terms of its conjugate dual,

A(η) = sup
µ∈M

�

〈µ,η〉 − A∗(µ)
	

.

For more on conjugate duality, see Wainwright and Jordan (2008), ch. 3.6.
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KL Divergence
The Kullback-Leibler (KL) divergence, or relative entropy, between two distributions is,

DKL (p ∥ q) = Ep

�

log
p(Y)

q(Y)

�

.

It is non-negative and equal to zero if and only if p= q. The KL divergence is not a distance because it
is not a symmetric function of p and q. (generally, DKL (p ∥ q) ̸= DKL (q ∥ p).)

When p and q belong to the same exponential family with natural parameters ηp and ηq, respectively,
the KL simplifies to,

DKL (p ∥ q) = Ep
�

〈t(Y),ηp〉 − A(ηp)− 〈t(Y),ηq〉+ A(ηq)
�

= 〈Ep[t(Y)],ηp −ηq〉 − A(ηp) + A(ηq)
= 〈∇A(ηp),ηp −ηq〉 − A(ηp) + A(ηq).

This form highlights that the KL divergence between exponential family distributions is a special case
of a Bregman divergence based on the convex function A.

29 / 37

https://en.wikipedia.org/wiki/Bregman_divergence


Example: Poisson Distribution
Consider the Poisson distribution with known mean λ. In the example above, we cast it as an
exponential family distribution with - sufficient statistics t(y) = y - natural parameter η= logλ - log
normalizer A(η) = eη

The KL divergence is,

DKL (p ∥ q) = 〈eηp ,ηp −ηq〉 − eηp + eηq

= λp log
λp

λq
−λp+λq
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Deviance
Rearranging terms, we can view the KL divergence as a remainder in a Taylor approximation of the log
normalizer,

A(ηq) = A(ηp) + (ηq −ηp)⊤∇A(ηp) + DKL (p ∥ q) .

From this perspective, we see that the KL divergence is related to the Fisher information,

DKL (p ∥ q)≈
1
2
(ηq −ηp)⊤∇2A(ηp)(ηq −ηp)

=
1
2
(ηq −ηp)⊤I (ηp)(ηq −ηp),

up to terms of order O (∥ηp −ηq∥3).
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Deviance
Thus, while the KL divergence is not a distance metric due to its asymmetry, it is approximately a
squared distance under the Fisher information metric,

2DKL (p ∥ q)≈ ∥ηq −ηp∥2I (ηp).

We call this quantity the deviance. It is simply twice the KL divergence.
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Deviance Residuals
In a normal model, the standarized residual is µ̂−µσ . We can view this as a function of the deviance
between two normals,

µ̂−µ
σ

= sign(µ̂−µ)
Æ

2DKL (µ̂ ∥ µ)

where we have used the shorthand notation

DKL (µ ∥ µ̂)≜ DKL

�

N(µ,σ2) ∥ N(µ̂,σ2)
�

.

The same form generalizes to other exponential families as well, with the deviance residual between
the true and estimated mean parameters defined as,

rD(µ̂,µ) = sign(µ̂−µ)
Æ

2DKL (µ̂ ∥ µ).
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Deviance Residuals
One can show that deviance residuals tend to be closer to normal than the more obvious Pearson
residuals,

rP(µ̂,µ) =
µ̂−µ
p

Var[t(Y); µ̂]
.

For more on deviance residuals, see Efron (2022), ch. 1.
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Revisiting the Poisson example
Finally, let’s revisit the Poisson example one again. We already computed the KL divergence between
two Poisson distributions above,

DKL

�

Po(λ̂) ∥ Po(λ)
�

= λ̂ log
λ̂

λ
− λ̂+λ,

so the deviance residual is,

rD(λ̂,λ) = sign(λ̂−λ)

√

√

√

2

�

λ̂ log
λ̂

λ
− λ̂+λ
�

.

Compare this to the Pearon residual,

rP(λ̂,λ) =
λ̂−λ
p

λ̂

Let’s compare these residuals in simulation.
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Revisiting the Poisson example
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Conclusion
Exponential family distributions have many beautiful properties, and we’ve only scratched the
surface.

▶ We’ll see other nice properties when we talk about building probabilistic models for joint
distributions of random variables using exponential family distributions, and conjugate
relationships between exponential families will simplify many aspects of Bayesian inference.

▶ We’ll also see that inference in exponential families is closely connected to convex optimization —
we saw that today for the MLE! — but for more complex models, the optimization problems can
still be computationally intractable, even though its convex. That will motivate our discussion of
variational inference later in the course.

Armed with exponential family distributions, we can start to build more expressive models for
categorical data. First up, generalized linear models!
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