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Last Time...

▶ Mixture Models & the EM Algorithm

▶ HMMs & the Forward-Backward Algorithm
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Today...

Outline:

▶ Principal Components Analysis (PCA)

▶ PCA as a linear Gaussian latent variable model

▶ Factor analysis

▶ Linear Dynamical Systems & the Kalman Filter/Smoother
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Motivating Example
Take HW3 as an example: you have temperature measurements at 9504 locations across the globe.
Are the measurements really 9504 dimensional?

We might have a few objectives in mind:

▶ Dimensionality reduction: are there a few dimensions along which the temperatures primarily
vary? Maybe northern and southern hemisphere, or land and sea?

▶ Visualization: Sometimes, we want to embed high-dimensional points in 2 or 3 dimensions for
visualization.

▶ Compression: How can I best summarize the data if I am willing to sacrifice some reconstruction
accuracy?
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Principal Components of Global Temperature

Figure: First PC of global temperature data.
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Principal Components of Global Temperature

Figure: Second PC of global temperature data.
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Principal Components of Global Temperature

Figure: Second PC of global temperature data.
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Principal Components Analysis (PCA)
Two classical definitions:

1. An orthogonal projection of the data onto a lower dimensional linear space, known as the
principal subspace, such that the variance of the projected data is maximized (Hotelling, 1933).

2. The linear projection that minimizes the average projection cost, defined as the mean squared
distance between the data points and their projections (Pearson, 1901).

(Quoted from Bishop, Ch 12)
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PCA: Maximum Variance Formulation
Goal: Project data {xn}Nn=1 onto a lower dimensional space of dimension M < D while maximizing the
variance of the projected data.

Illustration:
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PCA: Maximum Variance Formulation II
To start, assume M = 1. The principal subspace is defined by a unit vector u1 ∈ RD. This is called the
first principal component.

Projecting a data point xn onto this subspace amounts to taking an inner product, u
⊤
1 xn. These is

variously called the scores, embeddings, or signals.
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PCA: Maximum Variance Formulation III
The mean of the projected data is,

1
N

N
∑

n=1

u⊤1 xn = u⊤1

�

1
N

N
∑

n=1

xn

�

= u⊤1 x̄, (1)

where x̄ is the sample mean.

The variance is

1
N

N
∑

n=1

�

u⊤1 xn − u
⊤
1 x̄
�2

=
1
N

N
∑

n=1

�

u⊤1 (xn − x̄)
�2

(2)

=
1
N

N
∑

n=1

u⊤1 (xn − x̄)(xn − x̄)
⊤u1 (3)

= u⊤1 Su1 (4)

where S = 1
N

∑N
n=1(xn − x̄)(xn − x̄)

⊤ ∈ RD×D is the sample covariance matrix.
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PCA: Maximum Variance Formulation IV
Now maximize the projected variance wrt u1,

u1 = argmax
u∈SD

u⊤Su. (5)

This is the variational definition of the eigenvector with maximal eigenvalue!

I.e., u1 is the eigenvector of S with the largest eigenvalue, λ1.

More generally, to find an M dimensional principal subspace, take the M eigenvectors u1, . . . ,uM with
the largest eigenvalues λ1, . . . ,λM .

Since S is real and symmetric positive definite, the eigenvectors are orthogonal.
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PCA and the Singular Value Decomposition
The first M principal components are the leading M eigenvectors of the covariance matrix. Equivalently,
they are the first M right singular vectors of the data matrix.

Let

Y =
1
p
N
X =

1
p
N





− (x1 − x̄)⊤ −
...

− (x⊤N − x̄)
⊤ −



 (6)

be the centered and scaled data matrix. Then Y⊤Y = 1
NX
⊤X = S is the covariance matrix.

The singular value decomposition (SVD) of Y is,

Y = VΛ
1
2U⊤⇒ Y⊤Y =

1
N
UΛ

1
2V⊤VΛ

1
2U⊤ =

1
N
UΛU⊤ (7)

I.e. the right singular vectors of Y are the same (up to sign flips) as the eigenvectors of S, and singular
values of Y are the square root of the eigenvalues of S.
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PCA Explained Variance
How well do the M principal components explain the data?

Let zn = U⊤M(xn − x̄) ∈ R
M . Its covariance is,

Cov[z] = Cov[U⊤M(x − x̄)] = U⊤MCov[x]UM = diag([λ1, . . . ,λM]). (8)

Of course, if we let M = D, then we have Cov(z) = diag([λ1, . . . ,λD]).

One way of assessing how well M components fits the data is via the fraction of variance
explained,

variance explained=
Tr(Cov[z;M components])

Tr(Cov[z;D components])
=

∑M
m=1λm
∑D
m=1λm

∈ [0,1]. (9)
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Scree Plots

Figure: “Scree” plot showing percent variance explained per component and cumulatively.
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Outline

▶ Principal Components Analysis (PCA)

▶ PCA as a linear Gaussian latent variable model

▶ Factor analysis

▶ Linear Dynamical Systems & the Kalman Filter/Smoother
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Probabilistic PCA: A Continuous Latent Variable Model
We cast the principal components as the solutions to an optimization problem: maximize the projected
variance.

A more modern view of PCA is as the maximum likelihood estimate of a latent variable model.

Probabilistic PCA (PPCA) has many advantages:

▶ It’s a multivariate normal model with low-rank plus diagonal covariance, which takes only O(MD)
parameters.

▶ We can fit the model using a host of inference algorithms, including EM.

▶ It can handle missing data.

▶ We can obtain posterior distributions of the principal components and scores.

▶ It can be embedded in larger probabilistic models.
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Probabilistic PCA: A Continuous Latent Variable Model
The PPCA model is quite simple,

zn
iid∼N (0, I) (10)

xn | zn ∼N (Wz+µ,σ2I), (11)

where zn ∈ RM is a latent variable, W ∈ RD×M are the weights, µ ∈ RD is the bias parameter, and
σ2 ∈ R+ is a variance.

Equivalently, we can think of xn as a linear function of zn with additive noise,

xn =Wzn+µ+ εn, (12)

where εn ∼N (0,σ2I) ∈ RD.
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Maximum likelihood estimation of the parameters
Suppose we only need a point estimate of the parameters W , µ, and σ2.

A natural approach is the maximum likelihood estimate (MLE),

WML,µML,σ
2
ML = argmaxL (W ,µ,σ2), (13)

whereL is the marginal likelihood,

L (W ,µ,σ2) = log p(X | W ,µ,σ2) (14)

= log

∫ N
∏

n=1

p(xn | zn,W ,µ,σ2)p(zn)dzn (15)

= log

∫ N
∏

n=1

N (xn | Wzn+µ,σ2I)N (zn | 0, I)dzn (16)

Exercise: Simplify this expression.
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Maximum likelihood estimation of the parameters II
The log likelihood simplifies to,

L (W ,µ,σ2)−
ND
2

log2π−
N
2
log |C| −

1
2

N
∑

n=1

(xn −µ)⊤C−1(x −µ) (17)

where C =WW⊤+σ2I.

Setting the derivative wrt µ to zero and solving yields µML = x̄, the sample mean.

Maximizing wrt W and σ2 is more complex but still has a closed form solution,

WML = UM(ΛM −σ2I)
1
2R, (18)

where UM ∈ RD×M has columns given by the leading eigenvectors of the sample covariance matrix S,
where ΛM = diag([λ1, . . . ,λM]), and where R ∈ RM×M is an arbitrary orthogonal matrix.

Put differently, the MLE weights are only identifiable up to orthogonal transformation. Or, only the
subspace spanned by UM is identifiable.
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Maximum likelihood estimation of the parameters III
Finally, the MLE of the variance is,

σ2ML =
1

D−M

D
∑

m=M+1

λm, (19)

the average variance in the remaining dimensions.

Question: What is the marginal covariance C using the MLE WML and σ
2
ML?

Question: Intuitively, why is the marginal covariance invariant to rotations of the weights?
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The Posterior Distribution on the Latent Variables
Now fix W , µ, and σ2 (e.g. to their maximum likelihood values). What is the posterior of zn?

p(zn | xn,W ,µ,σ2)∝N (zn | 0, I)N (xn | Wzn+µ,σ2I) (20)

∝ exp

§

−
1
2
z⊤n zn −

1
2
(xn −Wzn −µ)⊤(σ2I)−1(xn −Wzn −µ)

ª

(21)

∝ exp

§

−
1
2
z⊤n Jnzn+ h

⊤
n zn

ª

(22)

(23)

where Jn = I+ 1
σ2
W⊤W and hn =

1
σ2
W⊤(xn −µ)

Completing the square,

p(zn | xn,W ,µ,σ2) =N (zn | J−1n hn, J
−1
n ). (24)
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The Posterior Distribution in the Zero Noise Limit
In the limit where σ2→ 0, the posterior mean of zn is,

lim
σ2→0
E[zn | xn,W ,µ,σ2] = lim

σ2→0
(I+

1
σ2
W⊤W)−1[

1
σ2
W⊤(xn −µ)] (25)

= lim
σ2→0

(σ2I+W⊤W)−1W⊤(xn −µ) (26)

= (W⊤W)−1W⊤(xn −µ) (27)

Now suppose W =WML = UM(ΛM −σ2I)
1
2R and set R= I. This goes to W = UMΛ

1
2
M . Then,

lim
σ2→0
E[zn | xn,W ,µ,σ2] = (W⊤W)−1W⊤(xn −µ) (28)

= Λ
− 12
M U⊤M(xn −µ) (29)
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EM for Probabilistic PCA
The E-step is to compute the posterior q(zn) = p(zn | xn;θ ), where θ = (W ,µ,σ2) are the current
parameters. For simplicity, assume the data is centered so that µ⋆ = 0.

The M-step is to maximize the expected complete data log likelihood,

L (θ ) =
N
∑

n=1

Eq(zn) [log p(xn | zn;θ )]

=
N
∑

n=1

Eq(zn)
�

logN (xn | Wzn,σ2I)
�

=
N
∑

n=1

Eq(zn)
�

−
D
2
logσ2 −

1
2σ2

(xn −Wzn)⊤(xn −Wzn)
�

.
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EM for Probabilistic PCA
As a function of W ,

L (W) =
N
∑

n=1

Eq(zn)
�

−
1
2σ2



W⊤W , znz
⊤
n

�

+
1
σ2




W ,xnz
⊤
n

�

�

= −
1
2σ2

®

W⊤W ,
N
∑

n=1

Eq(zn)
�

znz
⊤
n

�

¸

+
1
σ2

®

W ,
N
∑

n=1

Eq(zn)
�

xnz
⊤
n

�

¸

.

where 〈A,B〉= Tr(A⊤B) is the Frobenius inner product for matrices A and B.

Taking derivatives wrt W and setting to zero yields,

W⋆ =

�

N
∑

n=1

Eq(zn)
�

xnz
⊤
n

�

��

N
∑

n=1

Eq(zn)
�

znz
⊤
n

�

�−1

.

It depends on sums of expected sufficient statistics!

Exercise: Derive the expected sufficient statistics and the M-step update for σ2.
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Factor Analysis
Factor analysis is another continuous latent variable model. In fact, it’s almost the same as
probabilistic PCA!

The difference is that FA allows σ2 to vary across output dimensions. The generative model is,

zn
iid∼N (0, I) (30)

xn ∼N (Wzn+µ, diag(σ2)) (31)

where σ2 = [σ21, . . . ,σ2D]
⊤.

Exercise: without doing any math, derive EM for this factor analysis model.
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Outline

▶ Principal Components Analysis (PCA)

▶ PCA as a linear Gaussian latent variable model

▶ Factor analysis

▶ Linear Dynamical Systems & the Kalman Filter/Smoother
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Recap: Hidden Markov Models (HMMs)
We generalized from mixture models to HMMs by assuming that the latent states were
dependent.

HMMs assume a particular factorization of the joint distribution on latent states (zt) and observations
(xt). The graphical model looks like this:

This graphical model says that the joint distribution factors as,

p(z1:T ,x1:T) = p(z1)
T
∏

t=2

p(zt | zt−1)
T
∏

t=1

p(xt | zt). (32)

We call this an HMM because p(z1)
∏T

t=2 p(zt | zt−1) is a Markov chain.
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State space models (SSMs)

Note that nothing above assumes that zt is a discrete random variable!

HMM’s are a special case of more general state space models with discrete states.

State space models assume the same graphical model but allow for arbitrary types of latent
states.

For example, suppose that zt ∈ RD are continuous valued latent states and that,

p(z1:T) = p(z1)
T
∏

t=2

p(zt | zt−1) (33)

=N (z1 | b1,Q1)
T
∏

t=2

N (zt | Azt−1+ b,Q) (34)

This is called a Gaussian linear dynamical system (LDS).
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Stability of Gaussian linear dynamical systems
Question: What is the asymptotic mean of a Gaussian LDS, limt→∞E[zt]?

Question: When is a Gaussian LDS stable? I.e. when is the asymptotic mean finite?
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Message passing in HMMs

In the HMM with discrete states, we showed how to compute posterior marginal distributions using
message passing,

p(zt | x1:T)∝
∑

z1

· · ·
∑

zt−1

∑

zt+1

· · ·
∑

zT

p(z1:T ,x1:T) (35)

= αt(zt)p(xt | zt)βt(zt) (36)

where the forward and backward messages are defined recursively

αt(zt) =
∑

zt−1

p(zt | zt−1)p(xt−1 | zt−1)αt−1(zt−1) (37)

βt(zt) =
∑

zt+1

p(zt+1 | zt)p(xt+1 | zt+1)βt+1(zt+1) (38)

The initial conditions are α1(z1) = p(z1) and βT(zT) = 1.
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What do the forward messages tell us?

The forward messages are equivalent to,

αt(zt) =
∑

z1

· · ·
∑

zt−1

p(z1:t,x1:t−1) (39)

p(zt,x1:t−1). (40)

The normalized message is the predictive distribution,

αt(zt)
∑

z′t
αt(z
′
t)

=
p(zt,x1:t−1)
∑

z′t
p(z′t,x1:t−1)

=
p(zt,x1:t−1)
p(x1:t−1)

= p(zt | x1:t−1), (41)

The final normalizing constant yields the marginal likelihood,
∑

zT
αT(zT) = p(x1:T).
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Message passing in state space models

The same recursive algorithm applies (in theory) to any state space model with the same factorization,
but the sums are replaced with integrals,

p(zt | x1:T)∝
∫

dz1 · · ·
∫

dzt−1

∫

dzt+1 · · ·
∫

dzT p(z1:T ,x1:T) (42)

= αt(zt)p(xt | zt)βt(zt) (43)

where the forward and backward messages are defined recursively

αt(zt) =

∫

p(zt | zt−1)p(xt−1 | zt−1)αt−1(zt−1)dzt−1 (44)

βt(zt) =

∫

p(zt+1 | zt)p(xt+1 | zt+1)βt+1(zt+1)dzt+1 (45)

The initial conditions are α1(z1) = p(z1) and βT(zT)∝ 1.

33 / 45



Forward pass in a linear dynamical system
Consider an linear dynamical system (LDS) with Gaussian emissions,

p(x1:T , z1:T) = p(z1)
T
∏

t=2

p(zt | zt−1) (46)

=N (z1 | b1,Q1)
T
∏

t=2

N (zt | Azt−1+ b,Q)
N
∏

t=1

(xt | Czt + d,R) (47)

Let’s derive the forward message αt+1(zt+1). Assume αt(zt)∝N (zt | µt|t−1,Σt|t−1).

αt+1(zt+1) =

∫

p(zt+1 | zt)p(xt | zt)αt(zt)dzt (48)

=

∫

N (zt+1 | Azt + b,Q)N (xt | Czt + d,R)N (zt | µt|t−1,Σt|t−1)dzt (49)
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The update step
The first step is the update step, where we condition on the emission xt ,

Exercise: Expand the densities, collect terms, and complete the square to compute the mean µt|t and
covariance Σt|t after the update step,

N (xt | Czt + d,R)N (zt | µt|t−1,Σt|t−1)∝N (zt | µt|t,Σt|t). (50)
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The update step II
Write the joint distribution,

p(zt,xt | x1:t−1) =N (xt | Czt + d,R)N (zt | µt|t−1,Σt|t−1) (51)

=N
��

zt
xt

� �

�

�

�

�

µt|t−1
Cµt|t−1+ d

�

,

�

Σt|t−1 Σt|t−1C
⊤

CΣt|t−1 CΣt|t−1C
⊤+ R

��

(52)

Since (zt,xt) are jointly Gaussian, zt must be conditionally Gaussian as well,

p(zt | x1:t) =N (µt|t,Σt|t). (53)

Exercise: Now use the Schur complement from Week 1 to solve for µt|t and Σt|t

36 / 45



The update step III
Exercise: Write µt|t and Σt|t in terms of the Kalman gain,

Kt = Σt|t−1C
⊤(CΣt|t−1C

⊤+ R)−1 (54)

What is the Kalman gain doing?
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The predict step
The predict step yields p(zt | x1:t) =N (zt | µt|t,Σt|t). To complete the forward pass, we need the
predict step,

αt+1(zt+1) =

∫

p(zt+1 | zt)p(xt | zt)αt(zt)dzt (55)

=

∫

N (zt+1 | Azt + b,Q)N (zt | µt|t,Σt|t)dzt (56)

=N (zt+1 | µt+1|t,Σt+1|t) (57)

Exercise: Solve for the mean µt+1|t and covariance Σt+1|t after the predict step.
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Completing the recursions
That wraps up the recursions! All that’s left is the base case, which comes from the initial state
distribution,

µ1|0 = b1 and Σ1|0 = Q1. (58)
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Computing the marginal likelihood
Like in the discrete HMM, we can compute the marginal likelihood along the forward pass.

p(x1:T) =
T
∏

t=1

p(xt | x1:t−1) (59)

=
T
∏

t=1

∫

p(xt | zt)p(zt | x1:t−1)dzt (60)

=
T
∏

t=1

∫

N (xt | Czt + d,R)N (zt | µt|t−1,Σt|t−1)dzt (61)

Exercise: Obtain a closed form expression for the integrals.
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Computing the smoothing distributions

▶ The forward pass gives us the filtering distributions p(zt | x1:t). How can we compute the
smoothing distributions, p(zt | x1:T)?

▶ In the discrete HMM we essentially ran the same algorithm in reverse to get the backward
messages, starting from βT(zT)∝ 1.

▶ We can do the same sort of thing here, but it’s a bit funky because we need to start with an
improper Gaussian distribution βT(zT)∝N (0,∞I).

▶ Instead, we’ll derive an alternative way of computing the smoothing distributions.
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Bayesian Smoothing

Note: zt is conditionally independent of xt+1:T given zt+1, so

p(zt | zt+1,x1:T) = p(zt | zt+1,x1:t) (62)

=
p(zt, zt+1 | x1:t)
p(zt+1 | x1:t)

(63)

=
p(zt | x1:t)p(zt+1 | zt)

p(zt+1 | x1:t)
(64)

Question: what rules did we apply in each of these steps?
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Bayesian Smoothing II

Now we can write the joint distribution as,

p(zt, zt+1 | x1:T) = p(zt | zt+1 | x1:T)p(zt+1 | x1:T) (65)

=
p(zt | x1:t)p(zt+1 | zt)p(zt+1 | x1:T)

p(zt+1 | x1:t)
. (66)

Marginalizing over zt+1 gives us,

p(zt | x1:T) = p(zt | x1:t)
∫

p(zt+1 | zt)p(zt+1 | x1:T)
p(zt+1 | x1:t)

dzt+1 (67)

Question: Can we compute each of these terms?
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The Rauch-Tung-Striebel Smoother, aka Kalman Smoother

These recursions apply to any Markovian state space model. For the special case of a Gaussian linear
dynamical system, the smoothing distributions are again Gaussians,

p(zt | x1:T) =N (zt | µt|T ,Σt|T) (68)

where

µt|T = µt|t + Gt(µt+1|T −µt+1|t) (69)

Σt|T = Σt|t + Gt(Σt+1|T −Σt+1|t)G⊤t (70)

Gt ≜ Σt|tA⊤Σ−1t+1|t. (71)

This is called the Rauch-Tung-Striebel (RTS) smoother or the Kalman smoother.
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