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Recap

Last time...

▶ Definition and Examples of Exponential Family Distributions

▶ The Log Normalizer

▶ Maximum Likelihood Estimation

▶ Mean Parameterization

▶ KL Divergence and Deviance Residuals
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Outline

Today...

▶ Generalized Linear Models (GLMs)

▶ Canonical form

▶ Demo: Poisson GLM

▶ Non-canonical forms

▶ Model checking and comparison
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Generalized Linear Models
Logistic regression was a special case of a more general class of models called generalized linear
models (GLMs).

In a GLM, the conditional distribution p(Y | X = x) is modeled as an exponential family distribution
whose mean parameter is a function of X .

For example, if Y ∈ N, we could model it with a Poisson GLM; if Y ∈ {1, . . . ,K}, we could model it as a
categorical GLM.

Many of the nice properties of logistic regression carry over!
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Model
To construct a generalized linear model with exponential family observations, we set

E[yi | xi] = f (β⊤xi).

From above, this implies,

∇A(ηi) = f (β⊤xi)

⇒ ηi = [∇A]−1
�

f (β⊤xi)
�

,

when ∇A(·) is invertible. (In this case, the exponential family is said to be minimal).

The canonical mean function is f (·) =∇A(·) so that ηi = β⊤xi .

The (canonical) link function is the inverse of the (canonical) mean function.
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Logistic regression revisited
Consider the Bernoulli distribution once more. The gradient of the log normalizer is,

∇A(η) =∇ log(1+ eη) =
eη

1+ eη

This is the logistic function!

Thus, logistic regression is a Bernoulli GLM with the canonical mean function.
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Example: Poisson GLM
Recall that the Poisson distribution can be written in exponential family form as,

Po(y;λ) =
1
y!
λye−λ =

1
y!

exp {y logλ−λ}= h(y) exp
�

〈t(y),η〉 − A(η)
	

where

▶ h(y) = 1/y!

▶ t(y) = y

▶ η= logλ

▶ A(η) = eη

The canonical mean function is f (x⊤β) =∇A(x⊤β) = ex
⊤β .

The canonical mean function is the exponential.
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Log likelihood: Canonical case
Canonical mean functions lead to nice math. Consider the log joint probability,

L (β) =
n
∑

i=1

〈t(yi),ηi〉 − A(ηi) + c

=
n
∑

i=1

〈t(yi),β⊤xi〉 − A(β⊤xi) + c,

where we have assumed a canonical mean function so ηi = β
⊤xi .
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Gradient of the log likelihood: Canonical case
The gradient is,

∇L (β) =
n
∑

i=1

〈t(yi),xi〉 − 〈∇A(β⊤xi), xi〉

=
n
∑

i=1

〈t(yi)−E[t(Y);ηi], xi〉

where ηi = x⊤i β for a GLM with canonical link.

In many cases, t(yi) = yi ∈ R so

∇L (β) =
n
∑

i=1

(yi − ŷi)xi.
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Hessian of the log likelihood: Canonical case
When t(yi) = yi , the Hessian is

∇2βL (β) = −
n
∑

i=1

∇2A(β⊤xi)xix⊤i

= −
n
∑

i=1

Var[Y ;ηi]xix
⊤
i
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Newton updates
Now recall the undamped Newton’s method updates, written here in terms of the change in
weights,

∆β = −[∇2L (β)]−1∇L (β)

=

�

n
∑

i=1

Var[t(Y);ηi]xix
⊤
i

�−1 � n
∑

i=1

(yi − ŷi)xi

�

Letting wi = Var[t(Y);ηi],

∆β =

�

n
∑

i=1

wi xix
⊤
i

�−1 � n
∑

i=1

(yi − ŷi)xi

�

= (X⊤WX)−1[X⊤Wẑ]

where W = diag([w1, . . . ,wi]) and ẑ =W−1(y − ŷ).
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Iteratively reweighted least squares
This is iteratively reweighted least squares (IRLS) with weights wi and working responses

ẑi =
yi − ŷi
wi

,

both of which are functions of the current weights β .

As in logistic regression, the working responses can be seen as linear approximations to the observed
responses mapped back through the link function.
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Demo: Neural Spike Train Analysis

Go to Colab notebook
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Non-canonical case
When we choose an arbitrary mean function, the expressions are a bit more complex. Let’s focus on
the case where t(yi) = yi for scalar yi , but allow for arbitrary mean function f .

L (β) =
n
∑

i=1

〈yi,ηi〉 − A(ηi) + c,

but now ηi = [∇A]−1f (β⊤xi).

The gradient is,

∇L (β) =
n
∑

i=1

(yi − ŷi)
∂ ηi
∂β

.
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Non-canonical case
Applying the inverse function theorem, as above, yields,

∂ ηi
∂β

= Var[Y]−1xi = xi/wi,

and

∇L (β) =
n
∑

i=1

�

yi − ŷi
wi

�

f ′(β⊤xi)xi.

With automatic differentiation, it’s not a big deal to fit GLMs with non-canonical mean functions using
gradient descent or Newton’s method. The math just isn’t as clean.
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Deviance and Goodness of Fit
We can perform maximum likelihood estimation via Newton’s method, but do the resulting parameters
β̂MLE provide a good fit to the data?

One way to answer this question is by comparing the fitted model to two reference points: a saturated
model and a baseline model.

For binomial GLMs (including logistic regression) and Poisson GLMs, the saturated model conditions
on the mean equaling the observed response.

For example, in a Poisson GLM the saturated model’s log probability is,

log psat(y) =
n
∑

i=1

logPo(yi; yi)

=
n
∑

i=1

− log yi! + yi log yi − yi.
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Deviance and Goodness of Fit
The likelihood ratio statistic in this case is

−2 log
p(y | X; β̂)
psat(y)

= 2
n
∑

i=1

logPo(yi; yi)− logPo(yi; µ̂i)

= 2
n
∑

i=1

yi log
yi
µ̂i

+ µ̂i − yi

=
n
∑

i=1

rD(yi, µ̂i)
2

where µ̂i = f (x⊤i β̂) is the predicted mean.

We recognize the likelihood ratio statistic as the sum of squared deviance residuals! (See last
lecture.)
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Deviance and Goodness of Fit
Moreover, this statistic is just the deviance (twice the KL divergence) between the two models,

2DKL

�

psat(Y) ∥ p(Y | X = x; β̂)
�

= 2Epsat

�

log
psat(y)

p(y | X; β̂)

�

= 2
n
∑

i=1

DKL (Po(yi) ∥ Po(µ̂i))

≜ D(y, µ̂).

The same idea holds for GLMs with other exponential family distributions.

Larger deviance implies a poorer fit.
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Deviance and Goodness of Fit: Baseline Model
Larger deviance relative to what?

The baseline model is typically a GLM with only an intercept term, in which case the MLE is
µi ≡

1
n

∑n
i=1 yi = ȳ.

For that baseline model, the deviance is,

D(y, ȳ1) = 2
n
∑

i=1

yi log
yi
ȳ
+ ȳ − yi

= 2
n
∑

i=1

yi log
yi
ȳ

=
n
∑

i=1

rD(yi, ȳ)
2.
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Fraction of Deviance Explained
As with linear models where we use the fraction of variance explaiend (R2), in GLMs we can consider
the fraction of deviance explained.

Note that the deviance is positive for any model that is not saturated.

The fraction of deviance explained is

1−
D(y; µ̂)
D(y; ȳ1)

Unless your model is worse than guessing the mean, the fraction of deviance explained is between 0
and 1.
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Model Comparison
The difference in deviance between two models with predicted means µ̂0 and µ̂1, the difference in
deviance,

D(y; µ̂0)− D(y; µ̂1)

has an approximately chi-squared null distribution. We can use this fact to sequentially add or subtract
features from a model depending on whether the change in deviance is significant or not.

21 / 24



Model Checking
Just like in standard linear models, we should inspect the residuals in generalized linear models for
evidence of model misspecification. For example, we can plot the residuals as a function of µ̂i and
they should be approximately normal at all levels of µ̂i .
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Cross-Validation
Finally, another common approach to model selection and comparison is to use cross-validation. The
idea is to approximate out-of-sample predictive accuracy by randomly splitting the training
data.

Leave-one-out cross validation (LOOCV) withholds one datapoint out at a time, estimates parameters
using the other n− 1, and then evaluates predictive likelihood on the held out datapoint.

This approximates,

Ep⋆(x,y)[log p(y | x, {xi, yi}ni=1)]≈
1
n

n
∑

i=1

log p(yi | xi, {xj, yj}j ̸=i). (1)

where p⋆(x, y) is the true data generating distribution

For small n (or when using a small number of folds), a bias-correction can be used.
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Conclusion
Generalized linear models allow us to build flexible regression models that respect the domain of the
response variable.

Logistic regression is a special case of a Bernoulli GLM with the canonical link function.

For categorical data, we could use a categorical distribution with the softmax link function, and for
count data, we could use a Poisson GLM with exponential, softplus, or other link functions.

Leveraging the deviance and deviance residuals for exponential family distribiutions, we can derive
analogs of familiar terms from linear modeling, like the fraction of variance explained and the residual
analysis.
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