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Recap

We have a lot of tools in our toolkit now! We learned about exponential family distributions, which
form the building blocks of more complex models.

We also learned about Bayesian inference algorithms, like MCMC and VI, to infer posterior distributions
of more complex models

Today we’ll start learning about latent variable models for complex datasets. We’ll start with the
simplest latent variable model — mixture models.
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Outline

▶ Specifying a mixture model

▶ K-Means and MAP estimation

▶ Expectation Maximization (EM) and MLE

▶ Connecting EM and VI
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Motivation

Figure: Single Cell RNA Sequencing. From {cite:t}Kiselev2019-bt.
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Motivation

Figure: Foreground/background segmentation. From https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html
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https://ai.stanford.edu/~syyeung/cvweb/tutorials.html


Motivation

Figure: Kernel density estimate. From Scikit-learn KDE Demo.
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https://scikit-learn.org/stable/auto_examples/neighbors/plot_species_kde.html


Mixture Models
Let,

▶ N denote the number of data points

▶ K denote the number of mixture components (i.e., clusters)

▶ xn ∈ RD denote the n-th data point

▶ zn ∈ {1, . . . ,K} be a latent variable denoting the cluster assignment of the n-th data point

The model is parameterized by,

▶ θ k , the natural parameters of cluster k.

▶ π ∈∆K−1, the cluster proportions (probabilities).
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Mixture Models
The generative model is as follows:

1. Sample the assignment of each data point:

zn
iid∼ Cat(π) for n= 1, . . . ,N

2. Sample data points given their assignments:

xn ∼ p(x | θ zn) for n= 1, . . . ,N
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Joint distribution
The joint distribution of the data and latent variables is,

p({(zn,xn)}Nn=1) =
N
∏

n=1

Cat(zn | π)p(xn | zn)

=
N
∏

n=1

K
∏

k=1

[πk p(xn | θ k)]
I[zn=k]
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Exponential family mixture models
Assume an exponential family likelihood of the form,

p(x | ηk) = h(xn) exp
�

〈t(xn),ηk〉 − A(ηk)
	

Example: Gaussian Mixture Model (GMM)

Assume the conditional distribution of xn is a Gaussian with mean θ k ∈ RD and identity
covariance:

p(xn | θ k) = N(xn | θ k, I)

Since we are assuming identity covariance, the sufficient statistics of the Gaussian are t(x) = x and
the natural parameters are simply ηk = θ k .
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Two Inference Algorithms
Let’s stick with the Gaussian mixture model for now. Suppose we observe data points {xn}Nn=1 and
want to infer the assignments {zn}Nn=1 and estimate the means {θ k}

K
k=1. Here are two intuitive

algorithms.

11 / 32



K-Means
Suppose we knew the cluster assignments, zn. Then it would be straightforward to estimate the cluster
means: we could simply use the maximum likelihood estimate, θ̂MLE =

1
Nk

∑

n:zn=k
xn, where

Nk =
∑

n I[zn = k] is the number of data poitns in cluster k.

Likewise, if we knew the cluster means, it would be straightforward to compute the maximum a
posteriori (MAP) estimate of zn: we would assign each data point to the nearest cluster. If we alternate
these two steps, we obtain the K-Means algorithm:
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K-Means
Repeat until convergence:

1. For each n= 1, . . . ,N, fix the means θ and set,

zn = ẑn,MAP
= arg max

k∈{1,...,K}
N(xn | θ k, I)

= arg min
k∈{1,...,K}

∥xn − θ k∥2

2. For each k = 1, . . . ,K, fix all assignments z and set,

θ k = θ̂MLE

=
1
Nk

K
∑

n=1

I[zn = k]xn
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Comments on K-Means
▶ Question: What does this algorithm implicitly assume about the cluster probabilities π? How
would you modify this algorithm to incorporate and estimate π?

▶ Connection between K-Means and MAP estimation Note that if we put an improper uniform prior
on θ k , we could think of this entire algorithm as MAP estimation of θ and z via coordinate ascent!

▶ K-Means made hard assignments of data points to clusters in each iteration. That sounds a little
extreme — do you really want to attribute a datapoint to a single class when it is right in the
middle of two clusters? What could we do instead?

14 / 32



Expectation Maximization (EM) for a GMM
Repeat until convergence:

1. For each data point n and component k, compute the responsibility:

ωnk =
πkN(xn | θ k, I)
∑K
j=1πjN(xn | θ j, I)

2. For each component k, update the mean:

θ ⋆k =
1
Nk

K
∑

n=1

ωnkxn

This is the Expectation-Maximization (EM) algorithm. As we will show, EM yields an estimate that
maximizes the marginal likelihood of the data.
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Theoretical Motivation for EM
Rather than maximizing the joint probability, EM is maximizing the marginal probability,

log p({xn}Nn=1;θ ) = log
K
∑

z1=1

· · ·
K
∑

zN=1

p({xn, zn}Nn=1;θ )

= log
N
∏

n=1

K
∑

zn=1

p(xn, zn;θ )

=
N
∑

n=1

log
K
∑

zn=1

p(xn, zn;θ )

For discrete mixtures (with small enough K) we can evaluate the log marginal probability. We can
usually evaluate its gradient too, so we could just do gradient ascent to find θ ∗. However, EM typically
obtains faster convergence rates.
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The ELBO from another angle
The key idea is to obtain a lower bound on the marginal probability,

log p({xn}Nn=1;θ ) =
N
∑

n=1

log
∑

zn

p(xn, zn;θ )

=
N
∑

n=1

log
∑

zn

q(zn)
p(xn, zn;θ )
q(zn)

=
N
∑

n=1

logEq(zn)

�

p(xn, zn;θ )
q(zn)

�

where q(zn) is any distribution on zn ∈ {1, . . . ,K} such that q(zn) is absolutely continuous w.r.t.
p(xn, zn;θ ).
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The ELBO from another angle
Jensen’s Inequality: states that,

f (E[Y])≥ E [f (Y)]

if f is a concave function, with equality iff f is linear.

Applied to the log marginal probability, Jensen’s inequality yields,

log p({xn}Nn=1;θ ) =
N
∑

n=1

logEqn

�

p(xn, zn;θ )
qn(zn)

�

≥
N
∑

n=1

Eqn [log p(xn, zn;θ )− log qn(zn)]

≜L [θ ,q]

where q= (q1, . . . ,qN) is a tuple of distributions, one for each latent variable zn.
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The ELBO from another angle
This is called the evidence lower bound, or ELBO for short. It is a function of θ and a functional of q,
since each qn is a probability density function. We can think of EM as coordinate ascent on the ELBO,
alternating between updating the parameters θ and the posteriors $q.
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M-step: Gaussian case
Suppose we fix q. Since each zn is a discrete latent variable, qn must be a probability mass function.
Let it be denoted by,

qn = [ωn1, . . . ,ωnK]
⊤.

(These will be the responsibilities from before.)

Note that qn(k) = Pr(zn = k) = E[I[zn = k]] =ωnk is the probability that the n-th data point belongs
to cluster k.
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M-step: Gaussian case
Now, recall our basic model, xn ∼ N(θ zn , I),

L [θ ,q] =
N
∑

n=1

Eqn [log p(xn, zn;θ )] + c

=
N
∑

n=1

Eqn [I[zn = k] log p(xn,θ k)] + c

=
N
∑

n=1

K
∑

k=1

ωnk log p(xn,θ k) + c

=
N
∑

n=1

K
∑

k=1

ωnk
�

x⊤n θ k −
1
2θ
⊤
k θ k
�

+ c
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M-step: Gaussian case
Zooming in on just θ k ,

L [θ ,q] = h⊤k θ k −
1
2θ
⊤
k Jkθ k

where

hk =
N
∑

n=1

ωnkxn Jk =
N
∑

n=1

ωnkI

Taking derivatives and setting to zero yields,

θ ⋆k = J−1k hk =

∑N
n=1ωnkxn
∑N
n=1ωnk

.

These are the same as the EM updates shown above!
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E-step: Gaussian case
As a function of qn, for discrete Gaussian mixtures with identity covariance,

L [θ ,q] = Eqn [log p(xn, zn;θ )− log qn(zn)] + c

=
K
∑

k=1

ωnk [logN(xn | θ k, I) + logπk − logωnk] + c

where π= [π1, . . . ,πK]
⊤ is the vector of prior cluster probabilities.

We also have two constraints: ωnk ≥ 0 and
∑

kωnk = 1. Let’s ignore the non-negative constraint for
now (it will automatically be satisfied anyway) and write the Lagrangian with the simplex
constraint,

J (ωn,λ) =
K
∑

k=1

ωnk [logN(xn | θk, I) + logπk − logωnk]−λ

�

1−
K
∑

k=1

ωnk

�

23 / 32



E-step: Gaussian case
Taking the partial derivative wrt ωnk and setting to zero yields,

∂

∂ωnk
J (ωn,λ) = logN(xn | θ k, I) + logπk − logωnk − 1+λ= 0

⇒ logω⋆nk = logN(xn | θ k, I) + logπk +λ− 1
⇒ω⋆nk∝ πkN(xn | θ k, I)

Enforcing the simplex constraint yields,

ω⋆nk =
πkN(xn | θ k, I)
∑K
j=1πjN(xn | θ j, I)

,

just like above.

Note that

ω⋆nk∝ p(zn = k)p(xn | zn = k,θ ) = p(zn = k | xn,θ ).

That is, the responsibilities equal the posterior probabilities!
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The ELBO is tight after the E-step
Equivalently, qn equals the posterior, p(zn | xn,θ ). At that point, the ELBO simplifies to,

L [θ ,q] =
N
∑

n=1

Eqn [log p(xn, zn;θ )− log qn(zn)]

=
N
∑

n=1

Ep(zn | xn,θ ) [log p(xn, zn;θ )− log p(zn | xn;θ )]

=
N
∑

n=1

Ep(zn | xn;θ ) [log p(xn;θ )]

=
N
∑

n=1

log p(xn;θ )

= log p({xn}Nn=1,θ )

25 / 32



The ELBO is tight after the E-step
We can view the EM algorihtm as a minorize-maximize (MM) algorithm where we iteratively lower
bound the ELBO and and then maximize the lower bound.
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M-step: General Case
Now let’s consider the general Bayesian mixture with exponential family likelihoods.

While we’re at it, let’s also add conjugate priors p(θ ) with pseudo-counts ν and pseudo-observations
χ . As a function of θ ,

L [θ ,q] = log p(θ ) +
N
∑

n=1

Eqn [log p(xn, zn | θ )] + c

= log p(θ ) +
N
∑

n=1

K
∑

k=1

ωnk log p(xn | θ k) + c

=
K
∑

k=1

�

χ⊤θ k − νA(θ k)
�

+
N
∑

n=1

K
∑

k=1

ωnk
�

t(xn)
⊤θ k − A(θ k)
�

+ c
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M-step: General Case
Zooming in on just θ k ,

L [θ ,q] = χ ′⊤k θ k − ν
′
kA(θ k)

where

χ ′k = χ +
N
∑

n=1

ωnkt(xn) ν′k = ν+
N
∑

n=1

ωnk

Taking derivatives and setting to zero yields,

θ ∗k = [∇A]−1
�

χ ′k
ν′k

�

Recall that ∇A−1 :M 7→ Ω is a mapping from mean parameters to natural parameters (and the
inverse exists for minimal exponential families). Thus, the generic M-step above amounts to finding
the natural parameters θ ∗k that yield the expected sufficient statistics χ

′
k/ν
′
k by inverting the gradient

mapping.
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E-step: General Case
In our first pass, we assumed qn was a finite pmf. More generally, qn will be a probability density
function, and optimizing over functions usually requires the calculus of variations. (Ugh!)

However, note that we can write the ELBO in a slightly different form,

L [θ ,q] = log p(θ ) +
N
∑

n=1

Eqn [log p(xn, zn | θ )− log qn(zn)]

= log p(θ ) +
N
∑

n=1

Eqn [log p(zn | xn,θ ) + log p(xn | θ )− log qn(zn)]

= log p(θ ) +
N
∑

n=1

[log p(xn | θ )− DKL (qn(zn) ∥ p(zn | xn,θ ))]

= log p({xn}Nn=1,θ )−
N
∑

n=1

DKL (qn(zn) ∥ p(zn | xn,θ ))
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E-step: General Case
where DKL (· ∥ ·) denote the Kullback-Leibler divergence. (Note that we included the prior on θ since
we are treating it as a random variable with a prior in this general case.)

Recall, the KL divergence is defined as,

DKL (q(z) ∥ p(z)) =
∫

q(z) log
q(z)

p(z)
dz.

It gives a notion of how similar two distributions are, but it is not a metric! (It is not symmetric.) Still, it
has some intuitive properties: 1. It is non-negative, DKL (q(z) ∥ p(z))≥ 0. 2. It equals zero iff the
distributions are the same, DKL (q(z) ∥ p(z)) = 0 ⇐⇒ q(z) = p(z) almost everywhere.
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E-step: General Case
Maximizing the ELBO wrt qn amounts to minimizing the KL divergence to the posterior
p(zn | xn,θ ),

L [θ ,q] = log p(θ ) +
N
∑

n=1

[log p(xn | θ )− DKL (qn(zn) ∥ p(zn | xn,θ ))]

= −DKL (qn(zn) ∥ p(zn | xn,θ )) + c

As we said, the KL is minimized when qn(zn) = p(zn | xn,θ ), so the optimal update is,

q⋆n(zn) = p(zn | xn,θ ),

just like we found above.
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Conclusion
Mixture models are basic building blocks of statistics, and our first encounter with discrete latent
variable models (LVMs). (Where have we seen continuous LVMs so far?) Mixture models have
widespread uses in both density estimation (e.g., kernel density estimators) and data science (e.g.,
clustering). Next, we’ll talk about how to extend mixture models to cases where the cluster
assignments are correlated in time.
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