- **Deep State Space Models** Stats 305B **Jimmy Smith**
 - 03/04/2024

Linderman Lab

Agenda

- Introduction, motivation, prior approaches
- Linear state space models (SSMs) overview
- S4, convolutions, parameterization
- S5, diagonalization, parallel scans
- S6/Mamba, data-dependent dynamics
- Conclusion

Agenda

- Introduction, motivation, prior approaches
- Linear state space models (SSMs) overview
- S4, convolutions, parameterization
- S5, diagonalization, parallel scans
- S6/Mamba, data-dependent dynamics
- Conclusion

Motivation: Efficiently modeling long sequences

Applications: text, audio, forecasting, neuroscience, images, videos

RNN

RNN (Unfolded)

RNN

	Recurrent Neural Networks (RNNs)	
Parallelizable training	Χ	Inheren

RNN (Unfolded)

ntly sequential forward and backward pass (discussed in RNN lecture)

Image Source: https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

 \rightarrow

RNN

	Recurrent Neural Networks (RNNs)	
Parallelizable training	X	Inheren
Fast autoregressive generation	\checkmark	Consta

RNN (Unfolded)

ntly sequential forward and backward pass (discussed in RNN lecture)

ant time and space required to perform single step of generation

->

RNN

	Recurrent Neural Networks (RNNs)	
Parallelizable training	X	Inheren
Fast autoregressive generation	\checkmark	Consta
Avoid vanishing gradients	X	Difficult

RNN (Unfolded)

ntly sequential forward and backward pass (discussed in RNN lecture)

ant time and space required to perform single step of generation

t to train to retain information from the past due to this (discussed in RNN lecture)

Scaled Dot-Product Attention

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/

Training

Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Training

	Attention	
Parallelizable training	\checkmark	Matrix
Fast autoregressive generation	X	Again (grow

ix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Training

	Attention	
Parallelizable training	\checkmark	Matrix
Fast autoregressive generation	X	Again (grow

ix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Training

	Attention	
Parallelizable training	\checkmark	Matrix
Fast autoregressive generation	X	Again (grow

Autoregressive Generation

ix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Training

	Attention	
Parallelizable training	\checkmark	Matrix
Fast autoregressive generation	X	Again (grow

ix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Training

	Attention	
Parallelizable training	\checkmark	Matr
Fast autoregressive generation	X	Agai (grov
Avoid vanishing gradients	\checkmark	O(1) I

rix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

in quadratic complexity, have to compare to all past keys and values each step wing "state" size, aka KV cache)

maximum path length between tokens

Long Convolutions

	Attention	
Parallelizable training	\checkmark	FFTs,
Fast autoregressive generation	Χ	Quadr
Avoid vanishing gradients	\checkmark	No red

subquadratic complexity

ratic complexity, but can distill into SSM post training (Laughing Hyena, Massaroli 2023)

currence to have to compute gradients through.

Prior approaches to model long sequences

	Recurrent Neural Networks (RNNs)	Convolutions	Attention
Parallelizable training	X	\checkmark	✓ (Quadratic complexity)
Fast autoregressive generation	\checkmark	X	X
Avoid vanishing gradients	X		\checkmark

Hidden Laye

Hidden Laye

Hidden Laye

Attention Approximations

Linearized Attention

- 1. Outer product over key, value head dims
- 2. Sum over sequence length
- 3. Dot product over query, key-value head dims

3. 2. 1.
$$\boldsymbol{y}_{i} = \frac{\phi(\boldsymbol{q}_{i})^{\top} (\sum_{j=1}^{i} (\phi(\boldsymbol{k}_{j}) \boldsymbol{v}_{j}^{\top})}{\phi(\boldsymbol{q}_{i})^{\top} \sum_{n=1}^{i} \phi(\boldsymbol{k}_{n})}$$

e.g. Linear Transformers (Katharopoulos 2020), Based (Arora 2024)

Image Source: https://hazyresearch.stanford.edu/blog/2023-12-11-zoology2-based, Child 2019: https://arxiv.org/abs/1904.10509v1

Attention Approximations

Linearized Attention

- 1. Outer product over key, value head dims
- 2. Sum over sequence length
- 3. Dot product over query, key-value head dims

$$\boldsymbol{y}_{i} = \frac{\phi(\boldsymbol{q}_{i})^{\top} (\sum_{j=1}^{i} (\phi(\boldsymbol{k}_{j})\boldsymbol{v}_{j}^{\top}))}{\phi(\boldsymbol{q}_{i})^{\top} \sum_{n=1}^{i} \phi(\boldsymbol{k}_{n})}$$

e.g. Linear Transformers (Katharopoulos 2020), Based (Arora 2024)

Sparse Attention

(a) Transformer

(b) Sparse Transformer (strided)

e.g. Sparse Transformers (Child 2019), Big Bird (Zaheer 2020)

Long range benchmarks

Long Range Arena

Model	LISTOPS	Text	Retrieval	IMAGE	Pathfinder	Ратн-Х	Avg
Random	10.00	50.00	50.00	10.00	50.00	50.00	36.67
Transformer	36.37	64.27	57.46	42.44	71.40	X	53.66
Local Attention	15.82	52.98	53.39	41.46	66.63	X	46.71
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	X	51.03
Longformer	35.63	62.85	56.89	42.22	69.71	X	52.88
Linformer	35.70	53.94	52.27	38.56	76.34	X	51.14
Reformer	37.27	56.10	53.40	38.07	68.50	X	50.56
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	X	51.23
Synthesizer	36.99	61.68	54.67	41.61	69.45	X	52.40
BigBird	36.05	64.02	59.29	40.83	74.87	X	54.17
Linear Trans.	16.13	65.90	53.09	42.34	75.30	X	50.46
Performer	18.01	$\overline{65.40}$	53.82	42.77	77.05	X	51.18
FNet	35.33	65.11	59.61	38.67	77.80	×	54.42
Nyströmformer	37.15	65.52	79.56	41.58	70.94	×	57.46
Luna-256	37.25	64.57	79.29	47.38	77.72	X	59.37

Path-X example:

Tay et al. Long Range Arena: A Benchmark for Efficient Transformers. 2020. Linsley et al. Learning long-range spatial dependencies with horizontal gated recurrent units. 2018.

Deep SSMs

	Recurrent Neural Networks (RNNs)	Convolutions	Attention
Parallelizable training	X		✓ (Quadratic complexity)
Fast autoregressive generation		X	X
Avoid vanishing gradients	X		

 \bigcirc

Ņ

Č

 \bigcirc

Ó

Ó

Hidden Layer

Deep SSMs

	Recurrent Neural Networks (RNNs)	Convolutions	Attention	Deep SSMs e.g. S4 (Gu et al. ICLR
Parallelizable training	X	\checkmark	√ (Quadratic complexity)	✓ (Subquadratic completion)
Fast autoregressive generation	\checkmark	X	X	
Avoid vanishing gradients	X			\checkmark

 \bigcirc

 \bigcirc

Ó Ó

Ó

Ó

S4 captures long-range dependencies

Long Range Arena

Model	LISTOPS	Text	Retrieval	IMAGE	Pathfinder	Path-X	Avg
Random	10.00	50.00	50.00	10.00	50.00	50.00	36.67
Transformer	36.37	64.27	57.46	42.44	71.40	X	53.66
Local Attention	15.82	52.98	53.39	41.46	66.63	X	46.71
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	×	51.03
Longformer	35.63	62.85	56.89	42.22	69.71	×	52.88
Linformer	35.70	53.94	52.27	38.56	76.34	×	51.14
Reformer	37.27	56.10	53.40	38.07	68.50	×	50.56
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	×	51.23
Synthesizer	36.99	61.68	54.67	41.61	69.45	×	52.40
BigBird	36.05	64.02	59.29	40.83	74.87	×	54.17
Linear Trans.	16.13	65.90	53.09	42.34	75.30	×	50.46
Performer	18.01	65.40	53.82	42.77	77.05	×	51.18
FNet	35.33	65.11	59.61	38.67	77.80	X	54.42
Nyströmformer	37.15	65.52	79.56	41.58	70.94	X	57.46
Luna-256	37.25	64.57	79.29	47.38	77.72	×	59.37
$\mathbf{S4}$ (original)	58.35	76.02	87.09	87.26	86.05	88.10	80.48
$\mathbf{S4}$ (updated)	59.60	86.82	90.90	88.65	94.20	96.35	86.09

Path-X example:

S4 captures long-range dependencies

Long Range Arena

Model	LISTOPS	Text	Retrieval	IMAGE	Pathfinder	Ратн-Х	Avg
Random	10.00	50.00	50.00	10.00	50.00	50.00	36.67
Transformer	36.37	64.27	57.46	42.44	71.40	X	53.66
Local Attention	15.82	52.98	53.39	41.46	66.63	X	46.71
Sparse Trans.	17.07	63.58	59.59	44.24	71.71	X	51.03
Longformer	35.63	62.85	56.89	42.22	69.71	X	52.88
Linformer	35.70	53.94	52.27	38.56	76.34	X	51.14
Reformer	37.27	56.10	53.40	38.07	68.50	X	50.56
Sinkhorn Trans.	33.67	61.20	53.83	41.23	67.45	X	51.23
Synthesizer	36.99	61.68	54.67	41.61	69.45	X	52.40
BigBird	36.05	64.02	59.29	40.83	74.87	X	54.17
Linear Trans.	16.13	65.90	53.09	42.34	75.30	X	50.46
Performer	18.01	65.40	53.82	42.77	77.05	X	51.18
FNet	35.33	65.11	59.61	38.67	77.80	X	54.42
Nyströmformer	37.15	65.52	79.56	41.58	70.94	X	57.46
Luna-256	37.25	64.57	79.29	47.38	77.72	X	59.37
S4 (original)	58.35	76.02	87.09	87.26	86.05	88.10	80.48
S4 (updated)	59.60	86.82	90.90	88.65	94.20	96.35	86.09

Path-X example:

Agenda

- Introduction, motivation, prior approaches
- Linear state space models (SSMs) overview
- S4, convolutions, parameterization
- S5, diagonalization, parallel scans
- S6/Mamba, data-dependent dynamics
- Conclusion

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Continuous

Continuous

- Input Signal:
- Hidden State:
- **Output Signal:**

$$\mathbf{u}(t) \in \mathbb{R}^{U} \text{ put, } \mathbf{u}_{1:L}$$

$$\mathbf{x}(t) \in \mathbb{R}^{N}$$

$$\mathbf{y}(t) = \mathbb{R}^{N}$$

$$\mathbf{u}_{k} = \mathbb{R}^{H}$$

$$\mathbf{x}_{k} = \overline{A}$$

eter	
ble	

earity

-

Continuous

- Hidden State: $\mathbf{x}(t) \in \mathbb{R}^N$

_

Continuous

- Hidden State: $\mathbf{x}(t) \in \mathbb{R}^N$
- **Output Signal:** $\mathbf{y}(\imath)$

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

Continuous

- Hidden State: $\mathbf{x}(t) \in \mathbb{R}^N$
- **Output Signal:** y(i)

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

Discretized $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$

- Continuous
- Hidden State: $\mathbf{x}(t) \in \mathbb{R}^N$
- **Output Signal:** y(i)

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

Discretized

E.g. using Zero-order hold (ZOH):

Continuous

- Hidden State: $\mathbf{x}(t) \in \mathbb{R}^N$
- **Output Signal:** y(i)

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

Discretized

E.g. using Zero-order hold (ZOH):

Treat Λ as learnable parameter.

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Nonlinear activation:

E.g: gelu, GLU, layer norm, dropout, etc.

Linear in time: Efficient parallelization across the sequence

Linear in time: Efficient parallelization across the sequence

Nonlinear in depth: Stack of state space layers can represent nonlinear systems

Nonlinear in depth: Stack of state space layers can represent nonlinear systems

Expressivity Results: • Orvieto et al. 2023: <u>https://arxiv.org/abs/2307.11888</u> • Wang et al. 2023: <u>https://arxiv.org/abs/2309.13414</u>

Linear in time: Efficient parallelization across the sequence

- Fast parallel processing
- Fast stateful autoregressive generation
- Can precisely initialize to handle long-range dependencies (e.g. HiPPO framework, Gu et al. 2020)

Note, prior attempts at linear RNNs: • QRNNs (Bradbury 2017) • SRUs (Lei 2017) • Linear surrogate RNNs (Martin 2018)

- Improved parameterizations

Likely reasons why more recent round of linear SSMs/RNNs have gained popularity:

• Ideas from Transformers, e.g. backbones, layer normalizations, etc.

• Improved parallel algorithm implementations

Agenda

- Introduction, motivation, prior approaches
- Linear state space models (SSMs) overview
- S4, convolutions, parameterization
- S5, diagonalization, parallel scans
- S6/Mamba, data-dependent dynamics
- Conclusion

S4: Structural State Space Sequence Models

Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 can be an RNN

S4 can be run as either an RNN for fast autoregressive generation

Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 can be an RNN or a CNN

$$y_k = \overline{CA}^k \overline{B}u_0 + \overline{CA}^{k-1} \overline{B}u_1 + \dots + \overline{CAB}u_{k-1} + \overline{CAB}u_{k$$

Convolution $\overline{\boldsymbol{K}} \in \mathbb{R}^{L} := (\overline{\boldsymbol{C}}\overline{\boldsymbol{B}}, \overline{\boldsymbol{C}}\overline{\boldsymbol{A}}\overline{\boldsymbol{B}}, \dots, \overline{\boldsymbol{C}}\overline{\boldsymbol{A}}^{L-1}\overline{\boldsymbol{B}})$ Kernel:

S4 can be run as either an RNN or a CNN for fast parallel processing

Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

$$u_1^2$$
 u_2^2 u_3^2 u_4^2 $\bullet \bullet \bullet$ u_L^2

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

 u_1^2 u_2^2 u_3^2 u_4^2 $\bullet \bullet \bullet$ u_L^2

$$\mathbf{x}_k = \overline{A}$$

- State Matrix: $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Input Matrix: $\mathbf{B} \in \mathbb{R}^{N \times 1}$
 - $\overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

 u_1^2 u_2^2 u_3^2 u_4^2 $\bullet \bullet \bullet$ u_L^2

$$\mathbf{x}_k = \overline{A}$$

- State Matrix: $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Input Matrix: $\mathbf{B} \in \mathbb{R}^{N \times 1}$
 - $\overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

 u_1^2 u_2^2 u_3^2 u_4^2 $\bullet \bullet \bullet$ u_L^2

$$\mathbf{x}_k = \overline{A}$$

- State Matrix: $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Input Matrix: $\mathbf{B} \in \mathbb{R}^{N \times 1}$
 - $\overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$

Output Matrix: $\mathbf{C} \in \mathbb{R}^{1 \times N}$

 $\mathbf{y}_k = \overline{\mathbf{C}} \mathbf{x}_k$

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

 u_1^2 u_2^2 u_3^2 u_4^2 $\bullet \bullet \bullet$ u_L^2

$$\mathbf{x}_k = \overline{A}$$

- State Matrix: $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Input Matrix: $\mathbf{B} \in \mathbb{R}^{N \times 1}$
 - $\overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$

Output Matrix: $\mathbf{C} \in \mathbb{R}^{1 \times N}$

 $\mathbf{y}_k = \overline{\mathbf{C}} \mathbf{x}_k$

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

$$\mathbf{x}_k = \overline{A}$$

- State Matrix: $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Input Matrix: $\mathbf{B} \in \mathbb{R}^{N \times 1}$
 - $\overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$

Output Matrix: $\mathbf{C} \in \mathbb{R}^{1 \times N}$

 $\mathbf{y}_k = \overline{\mathbf{C}} \mathbf{x}_k$

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

$$\mathbf{x}_k = \overline{A}$$

- State Matrix: $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Input Matrix: $\mathbf{B} \in \mathbb{R}^{N \times 1}$

 $\overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$

 y_k^3 =

 C_3

Output Matrix: $\mathbf{C} \in \mathbb{R}^{1 \times N}$ $\mathbf{y}_k = \overline{\mathbf{C}} \mathbf{x}_k$

 $u_{1:L} \in \mathbb{R}^{L \times 3}$

$$\mathbf{x}_k = \overline{A}$$

Motivation for this structure:

- Computation (1D convolutions)
- Parameterization and Initialization (HiPPO, designed for SISO SSMs)
- Parameter efficient way to expand the state size

- State Matrix: $\mathbf{A} \in \mathbb{R}^{N \times N}$
- Input Matrix: $\mathbf{B} \in \mathbb{R}^{N \times 1}$

 $\overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$

S4 Computation: RNN Mode

- +

 $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$ $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$

Consider a single S4 SSM:

 $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$ $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$

Unroll the recurrence:

$$egin{aligned} x_0 &= \overline{oldsymbol{B}} u_0 \ y_0 &= \overline{oldsymbol{C}oldsymbol{B}} u_0 \end{aligned}$$

Convolution equivalence holds for any linear time-invariant (LTI) system

Consider a single S4 SSM:

Unroll the recurrence:

$$egin{aligned} x_0 &= \overline{oldsymbol{B}} u_0 & x_1 &= \overline{oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{B}} u_1 \ y_0 &= \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_1 &= \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{C}} oldsymbol{A} oldsymbol{B} u_0 \end{aligned}$$

 $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$

 $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$

Convolution equivalence holds for any linear time-invariant (LTI) system

 $\overline{{}^{m{B}}}u_1$

Consider a single S4 SSM:

Unroll the recurrence:

$$egin{aligned} &x_0 = \overline{oldsymbol{B}} u_0 & x_1 = \overline{oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{B}} u_1 & x_2 = \overline{oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{A} oldsymbol{B}} u_1 & x_2 = \overline{oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{A} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_1 = \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{B}} u_1 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_1 = \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{B}} u_1 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_1 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_1 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_1 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_0 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_0 & y$$

 $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$ $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$ Convolution equivalence holds for any linear time-invariant (LTI) system

Consider a single S4 SSM:

Unroll the recurrence:

$$egin{aligned} &x_0 = \overline{oldsymbol{B}} u_0 & x_1 = \overline{oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{B}} u_1 & x_2 = \overline{oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{A} oldsymbol{B}} u_1 & x_2 = \overline{oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{A} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_1 = \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{B}} u_1 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_1 = \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{B}} u_1 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_1 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_2 = \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_2 & y_$$

 $y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \dots + \overline{C}\overline{A}\overline{B}u_{k-1} + \overline{C}\overline{B}u_k$

 $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$ $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$ Convolution equivalence holds for any linear time-invariant (LTI) system

Consider a single S4 SSM:

Unroll the recurrence:

$$egin{aligned} x_0 &= \overline{m{B}} u_0 & x_1 &= \overline{m{A} m{B}} u_0 + \overline{m{B}} u_1 & x_2 &= \overline{m{A}}^2 \overline{m{B}} u_0 + \overline{m{A} m{B}} u_1 + \overline{m{B}} u_2 \ y_0 &= \overline{m{C} m{B}} u_0 & y_1 &= \overline{m{C} m{A} m{B}} u_0 + \overline{m{C} m{B}} u_1 & y_2 &= \overline{m{C} m{A}}^2 \overline{m{B}} u_0 + \overline{m{C} m{A} m{B}} u_1 + \overline{m{C} m{B}} u_2 \end{aligned}$$

$$y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \cdots$$
$$y = \overline{K} * u.$$

 $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$ $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$ Convolution equivalence holds for any linear time-invariant (LTI) system

 $\cdot + \overline{CAB}u_{k-1} + \overline{CB}u_k$

Consider a single S4 SSM:

Unroll the recurrence:

$$egin{aligned} &x_0 = \overline{oldsymbol{B}} u_0 & x_1 = \overline{oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{B}} u_1 & x_2 = \overline{oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{A} oldsymbol{B}} u_1 & x_2 = \overline{oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{A} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_1 = \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{B}} u_1 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_1 = \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{B}} u_1 & y_2 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_1 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_1 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{A}}^2 \overline{oldsymbol{B}} u_0 + \overline{oldsymbol{C} oldsymbol{A} oldsymbol{B}} u_1 + \overline{oldsymbol{C} oldsymbol{B}} u_2 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_0 & y_0 = \overline{oldsymbol{C} oldsymbol{B}} u_0 & y_0 & y_$$

$$y_{k} = \overline{CA}^{k} \overline{B} u_{0} + \overline{CA}^{k-1} \overline{B} u_{1} + \dots + \overline{CAB} u_{k-1} + \overline{CB} u_{k}$$
$$y = \overline{K} * u.$$

Convolution kernel: $\overline{K} \in \mathbb{R}^L := (\overline{CB}, \overline{CAB}, \dots, \overline{CA}^{L-1}\overline{B})$

 $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$ **Convolution equivalence holds for** any linear time-invariant (LTI) system $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$

Consider a single S4 SSM:

$$y_{k} = \overline{C}\overline{A}^{k}\overline{B}u_{0} + \overline{C}\overline{A}^{k-1}\overline{B}u_{1} + \cdots + y_{k} = \overline{K} * u.$$

Convolution kernel: $\overline{m{K}} \in \mathbb{R}^L := (\overline{m{CB}}, \overline{m{CA}})$

Stack of SISO SSMs gives a range of 1D convolution kernels that that can capture different timescales:

- $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$
- $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$
 - $+\overline{CAB}u_{k-1}+\overline{CB}u_k$

$$\overline{\boldsymbol{B}},\ldots,\overline{\boldsymbol{C}}\overline{\boldsymbol{A}}^{L-1}\overline{\boldsymbol{B}})$$

Consider a single S4 SSM:

 y_k

$$y_k = \overline{CA}^k \overline{B}u_0 + \overline{CA}^{k-1} \overline{B}u_1 + \cdots + y = \overline{K} * u.$$

Convolution kernel: $\overline{m{K}} \in \mathbb{R}^L := (\overline{m{CB}}, \overline{m{CA}})$

Stack of SISO SSMs gives a range of 1D convolution kernels that that can capture different timescales:

- $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$
- $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$
 - $+\overline{CAB}u_{k-1}+\overline{CB}u_k$

$$\overline{\boldsymbol{B}},\ldots,\overline{\boldsymbol{C}}\overline{\boldsymbol{A}}^{L-1}\overline{\boldsymbol{B}})$$

Consider a single S4 SSM:

$$y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel: $\overline{K} \in \mathbb{R}^L := (\overline{CB}, \overline{CAB}, \dots, \overline{CA}^{L-1}\overline{B})$

Convolution Theorem:

 $\mathcal{F}[f \ast g] = \mathcal{F}[f]\mathcal{F}[g].$

- $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$
- $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$
 - $+\overline{CAB}u_{k-1}+\overline{CB}u_k$

Consider a single S4 SSM:

$$y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel: $\overline{m{K}} \in \mathbb{R}^L := (\overline{m{CB}}, \overline{m{CAB}}, \dots, \overline{m{CA}}^{L-1}\overline{m{B}})$

Convolution Theorem:

 $\mathcal{F}\left[f\ast g\right]=\mathcal{F}\left[f\right]\mathcal{F}\left[g\right].$

$$\overline{K} \in \mathbb{R}^L$$
 + FFT+

- $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$
- $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$
 - $+\overline{CAB}u_{k-1}+\overline{CB}u_k$

Consider a single S4 SSM:

$$y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel: $\overline{m{K}} \in \mathbb{R}^L := (\overline{m{CB}}, \overline{m{CAB}}, \dots, \overline{m{CA}}^{L-1}\overline{m{B}})$

Convolution Theorem:

 $\mathcal{F}\left[f\ast g\right]=\mathcal{F}\left[f\right]\mathcal{F}\left[g\right].$

Given kernel, the convolution can be computed with O(L logL) cost and O(L) space

Importantly, can be parallelized across the sequence

 $\overline{oldsymbol{K}}\in\mathbb{R}^{L}$ → FFT →

- $\mathbf{x}_k = \overline{\mathbf{A}}\mathbf{x}_{k-1} + \overline{\mathbf{B}}\mathbf{u}_k$
- $\mathbf{y}_k = \overline{\mathbf{C}}\mathbf{x}_k + \overline{\mathbf{D}}\mathbf{u}_k$
 - $+\overline{CAB}u_{k-1}+\overline{CB}u_k$

Consider a single S4 SSM:

$$y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel: $\overline{\pmb{K}} \in \mathbb{R}^L := (\overline{\pmb{CB}}, \overline{\pmb{CAB}}, \dots, \overline{\pmb{CA}}^{L-1}\overline{\pmb{B}})$

Total cost of S4 layer: $\mathcal{O}(H^2L + HL \log L)$

 $\cdot + \overline{CAB}u_{k-1} + \overline{CB}u_k$

Consider a single S4 SSM:

$$y_{k} = \overline{C}\overline{A}^{k}\overline{B}u_{0} + \overline{C}\overline{A}^{k-1}\overline{B}u_{1} + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel:

$$\overline{oldsymbol{K}} \in \mathbb{R}^L := (\overline{oldsymbol{CB}}, \overline{oldsymbol{CA}})$$

Total cost of S4 layer: $\mathcal{O}(H^2L + HL \log L)$ **Nonlinear FFN**

 $\cdots + \overline{CAB}u_{k-1} + \overline{CB}u_k$

 $\overline{AB}, \ldots, \overline{CA}^{L-1}\overline{B})$

Consider a single S4 SSM:

$$y_{k} = \overline{C}\overline{A}^{k}\overline{B}u_{0} + \overline{C}\overline{A}^{k-1}\overline{B}u_{1} + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel:

$$\overline{\pmb{K}} \in \mathbb{R}^L := (\overline{\pmb{CB}}, \overline{\pmb{CA}})$$

Total cost of S4 layer:

$$\mathcal{O}(H^2L + HL\log L)$$

Nonlinear FFN Convolutions (H channels)

$\cdots + \overline{CAB}u_{k-1} + \overline{CB}u_k$

$\overline{AB}, \ldots, \overline{CA}^{L-1}\overline{B})$

Consider a single S4 SSM:

$$y_{k} = \overline{C}\overline{A}^{k}\overline{B}u_{0} + \overline{C}\overline{A}^{k-1}\overline{B}u_{1} + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel:

$$\overline{oldsymbol{K}} \in \mathbb{R}^L := (\overline{oldsymbol{CB}}, \overline{oldsymbol{CAB}}, \dots, \overline{oldsymbol{CA}}^{L-1}\overline{oldsymbol{B}})$$

Total cost of S4 layer:

$$\mathcal{O}(H^2L + HL\log L)$$
 by

(If we can compute kernel efficiently.... ut this requires successive powers of A...) **Nonlinear FFN Convolutions (H channels)**

$\cdots + \overline{CAB}u_{k-1} + \overline{CB}u_k$
S4 Computation: Convolution Mode

Consider a single S4 SSM:

$$y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel:

$$\overline{oldsymbol{K}} \in \mathbb{R}^L := (\overline{oldsymbol{CB}}, \overline{oldsymbol{CAB}}, \dots, \overline{oldsymbol{CA}}^{L-1}\overline{oldsymbol{B}})$$

Total cost of S4 layer:

$$\mathcal{O}(H^2L + HL\log L)$$
 bu

(If we can compute kernel efficiently.... It this requires successive powers of A...) **Nonlinear FFN Convolutions (H channels)**

Naively, computing the kernel requires O(N²L) operations

$\cdots + \overline{CAB}u_{k-1} + \overline{C}Bu_k$

S4 Computation: Convolution Mode

Consider a single S4 SSM:

$$y_{k} = \overline{CA}^{k} \overline{B} u_{0} + \overline{CA}^{k-1} \overline{B} u_{1} + \dots + \overline{CAB} u_{k-1} + \overline{CB} u_{k}$$
$$y = \overline{K} * u.$$

Convolution kernel: $\overline{m{K}} \in \mathbb{R}^L := (\overline{m{CB}}, \overline{m{CA}})$

Total cost of S4 layer:

$$\mathcal{O}(H^2L + HL\log L)$$
 but

Nonlinear FFN Convolutions (H channels)

- Naively, computing the kernel requires O(N^2L) operations \bullet
- If dynamics matrix is diagonal, Vandermonde matrices can be used, O(NL) time and space naively, but can in theory be cheaper

$$\overline{oldsymbol{B}},\ldots,\overline{oldsymbol{C}oldsymbol{A}}^{L-1}\overline{oldsymbol{B}})$$

(If we can compute kernel efficiently.... ut this requires successive powers of A...)

$$\overline{\boldsymbol{K}} = \begin{bmatrix} \overline{\boldsymbol{B}}_0 \boldsymbol{C}_0 & \dots & \overline{\boldsymbol{B}}_{N-1} \boldsymbol{C}_{N-1} \end{bmatrix} \begin{bmatrix} 1 & \overline{\boldsymbol{A}}_0 & \overline{\boldsymbol{A}}_0^2 & \dots & \overline{\boldsymbol{A}}_0^{L-1} \\ 1 & \overline{\boldsymbol{A}}_1 & \overline{\boldsymbol{A}}_1^2 & \dots & \overline{\boldsymbol{A}}_1^{L-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \overline{\boldsymbol{A}}_{N-1} & \overline{\boldsymbol{A}}_{N-1}^2 & \dots & \overline{\boldsymbol{A}}_{N-1}^{L-1} \end{bmatrix}$$

S4 Computation: Convolution Mode

Consider a single S4 SSM:

$$y_k = \overline{C}\overline{A}^k \overline{B}u_0 + \overline{C}\overline{A}^{k-1} \overline{B}u_1 + \cdots$$
$$y = \overline{K} * u.$$

Convolution kernel: $\ \overline{oldsymbol{K}} \in \mathbb{R}^L := \ (\overline{oldsymbol{CB}}, \overline{oldsymbol{CA}})$

Total cost of S4 layer: (

$$\mathcal{O}(H^2L + HL\log L)$$
 but

Nonlinear FFN Convolutions (H channels)

- Naively, computing the kernel requires O(N^2L) operations
- If dynamics matrix is diagonal, Vandermonde matrices can be used, O(NL) time and space naively, but can in theory be cheaper
- S4 used a diagonal plus low rank (DPLR) dynamics matrix, so required a sophisticated algorithm which resulted in the use of Cauchy kernels

$\cdots + \overline{CAB}u_{k-1} + \overline{CB}u_k$

$$\overline{\mathbf{AB}},\ldots,\overline{\mathbf{CA}}^{L-1}\overline{\mathbf{B}})$$

(If we can compute kernel efficiently.... ut this requires successive powers of A...) nnels)

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

Intuitively, we can think of the memory representation $c(t) \in \mathbb{R}^N$ as being the *coefficient vector* of the optimal polynomial approximation to the history of f(t).

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

Intuitively, we can think of the memory representation $c(t) \in \mathbb{R}^N$ as being the *coefficient vector* of the optimal polynomial approximation to the history of f(t).

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

Intuitively, we can think of the memory representation $c(t) \in \mathbb{R}^N$ as being the *coefficient vector* of the optimal polynomial approximation to the history of f(t).

$$A_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

S4 work found using these matrices were really important for LRA

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

$$A_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

$$\mathbf{A}_{\mathrm{LegS}} = \mathbf{A}_{\mathrm{LegS}}^{\mathrm{Normal}} - \mathbf{P}_{\mathrm{Legs}} \mathbf{P}_{\mathrm{Legs}}^{\top}$$

S4 work found using these matrices were really important for LRA

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

$$A_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

$$\mathbf{A}_{\mathrm{LegS}} = \mathbf{A}_{\mathrm{LegS}}^{\mathrm{Normal}} - \mathbf{P}_{\mathrm{Legs}} \mathbf{P}_{\mathrm{Legs}}^{\top}$$

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

S4 work found using these matrices were really important for LRA

> Gu et al. HiPPO: Recurrent memory with optimal polynomial projections. (2020) Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

$$A_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

$$\mathbf{A}_{\mathrm{LegS}} = \mathbf{A}_{\mathrm{LegS}}^{\mathrm{Normal}} - \mathbf{P}_{\mathrm{Legs}} \mathbf{P}_{\mathrm{Legs}}^{\top}$$

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

From S4 paper:

Theorem 1. All HiPPO matrices from [16] have a NPLR representation

 $A = V\Lambda V^* - PQ^{ op} = V(\Lambda - (V^*P)(V^*Q)^*)V^*$ (6)

for unitary $\mathbf{V} \in \mathbb{C}^{N \times N}$, diagonal $\mathbf{\Lambda}$, and low-rank factorization $\mathbf{P}, \mathbf{Q} \in \mathbb{R}^{N \times r}$. These matrices HiPPO- LegS, LegT, LagT all satisfy r = 1 or r = 2. In particular, equation (2) is NPLR with r = 1.

S4 work found using these matrices were really important for LRA

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal using a SISO linear SSM with special state matrix, HiPPO matrices.

$$A_{nk} = \begin{cases} (2n+1)^{1/2} (2k+1)^{1/2} & \text{if } n > k \\ n+1 & \text{if } n = k \\ 0 & \text{if } n < k \end{cases}$$

$$\mathbf{A}_{\mathrm{LegS}} = \mathbf{A}_{\mathrm{LegS}}^{\mathrm{Normal}} - \mathbf{P}_{\mathrm{Legs}} \mathbf{P}_{\mathrm{Legs}}^{\top}$$

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

From S4 paper:

Theorem 1. All HiPPO matrices from [16] have a NPLR representation

 $A = V\Lambda V^* - PQ^{\top} = V (\Lambda - (V^*P) (V^*Q)^*) V^*$ (6)

for unitary $\mathbf{V} \in \mathbb{C}^{N \times N}$, diagonal $\mathbf{\Lambda}$, and low-rank factorization $\mathbf{P}, \mathbf{Q} \in \mathbb{R}^{N \times r}$. These matrices HiPPO- LegS, LegT, LagT all satisfy r = 1 or r = 2. In particular, equation (2) is NPLR with r = 1.

S4 work found using these matrices were really important for LRA

We will discuss what these matrices are doing more later.

Gu et al. HiPPO: Recurrent memory with optimal polynomial projections. (2020) Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

Background: S4 needs to be an RNN and CNN

This is elegant! But there are limitations: CNN mode requires time-invariant system CNN mode cannot easily access states Complicated implementation

Agenda

- Introduction, motivation, prior approaches
- Linear state space models (SSMs) overview
- S4, convolutions, parameterization
- S5, diagonalization, parallel scans
- S6/Mamba, data-dependent dynamics
- Conclusion

Can we get the same parallelizability, efficiency and performance, as S4 while addressing these limitations?

Smith, Warrington, Linderman. Simplified State Space Layers for Sequence Modeling. 2022.

From S4 to S5: Fully Recurrent Convolution

Convolution limitations:

- Requires time-invariant system
- Cannot easily access states

From S4 to S5: Fully Recurrent Convolution Parallel scan (prefix-sum)

From S4 to S5:

Independent single-input, single-output (SISO) sequence maps

Independent single-input, single-output (SISO) sequence maps

Large effective state size prevents the use of (basic) parallel scans.

From S4 to S5: SISO to

Independent single-input, single-output (SISO) sequence maps

Large effective state size prevents the use of (basic) parallel scans.

One multi-input, multi-output (MIMO) sequence map

From S4 to S5: SISO to

S4 system.

Proof. See Appendix D.2.

u_1^1	u_2^1	u_3^1	u_4^1
u_1^2	u_{2}^{2}	u_{3}^{2}	u_4^2
u_{1}^{3}	u_{2}^{3}	u_{3}^{3}	u_4^3

u_1^1	u_2^1	u_3^1	u_4^1	
u_1^2	u_{2}^{2}	u_{3}^{2}	u_4^2	
u_{1}^{3}	u_{2}^{3}	u_{3}^{3}	u_4^3	

S4

Assume tied state matrices

S4

Assume tied state matrices

S4

S4

S4

S5

Different output projection of the same underlying dynamics. So, S4 parameterization and initialization ideas work in S5 also.

From S4 to S5: Diagonalized dynamics

Diagonal plus low-rank state matrix

From S4 to S5: Diagonalized dynamics

Diagonal plus low-rank state matrix

Diagonal state matrix

Similar findings to DSS (Gupta et al. 2022) and S4D (Gu et al. 2022)

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

 $\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

 $\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.

But almost all square matrices are diagonalizable over the complex plane: Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.

But almost all square matrices are diagonalizable over the complex plane:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Many of the recent deep SSM papers have shown empirical ablations suggesting the importance of complex parameterizations for performance for many data modalities (caveat: probably not so important for language).

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

diagonal, complex

$$\mathbf{x}_k = \mathbf{\overline{A}}\mathbf{x}_{k-1} + \mathbf{\overline{B}}\mathbf{u}_k$$

Stability criteria:

• To avoid exploding, discrete eigenvalues should be within the complex unit circle

Figure 3 | Eigenvalues of a diagonal matrix A with entries sampled using Lemma 3.2. For $r_{\min} = 0$, $r_{\text{max}} = 1$, the distribution coincides with Glorot init. in the limit.

Image source: Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

diagonal, complex

 $\mathbf{x}_k = \mathbf{\overline{A}}\mathbf{x}_{k-1} + \mathbf{\overline{B}}\mathbf{u}_k$

Stability criteria:

- To avoid exploding, discrete eigenvalues should be within the complex unit circle
- To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same for vanishing gradients, see RNN lecture BPTT section).

Figure 3 | Eigenvalues of a diagonal matrix A with entries sampled using Lemma 3.2. For $r_{\min} = 0$, $r_{\text{max}} = 1$, the distribution coincides with Glorot init. in the limit.

Image source: Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

Stability criteria:

- To avoid exploding, discrete eigenvalues should be within the complex unit circle
- To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same for vanishing gradients, see RNN lecture BPTT section).

HiPPO initialization gives these nice properties with stable, slowly decaying eigenvalues

Figure 3 | Eigenvalues of a diagonal matrix A with entries sampled using Lemma 3.2. For $r_{\min} = 0$, $r_{\rm max} = 1$, the distribution coincides with Glorot init. in the limit.

Stability criteria:

- To avoid exploding, discrete eigenvalues should be within the complex unit circle
- To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same for vanishing gradients, see RNN lecture BPTT section).

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized without explicit discretization or HiPPO, but still achieve similar performance on benchmarks

Figure 3 | Eigenvalues of a diagonal matrix A with entries sampled using Lemma 3.2. For $r_{\min} = 0$, $r_{\text{max}} = 1$, the distribution coincides with Glorot init. in the limit.

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

S4/5 leve -A- sCIFAR ListOps - PathX

Stability criteria:

- To avoid exploding, discrete eigenvalues should be within the complex unit circle
- To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same for vanishing gradients, see RNN lecture BPTT section).

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized without explicit discretization or HiPPO, but still achieve similar performance on benchmarks

Takeaways:

 Complex parameterization important for some problems

Figure 3 | Eigenvalues of a diagonal matrix A with entries sampled using Lemma 3.2. For $r_{\min} = 0$, $r_{\text{max}} = 1$, the distribution coincides with Glorot init. in the limit.

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

-A- sCIFAR ListOps - PathX

Stability criteria:

- To avoid exploding, discrete eigenvalues should be within the complex unit circle
- To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same for vanishing gradients, see RNN lecture BPTT section).

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized without explicit discretization or HiPPO, but still achieve similar performance on benchmarks

Takeaways:

- Complex parameterization important for some problems
- HiPPO+discretization gives an intelligent eigenvalue distribution near the complex unit circle

Figure 3 | Eigenvalues of a diagonal matrix A with entries sampled using Lemma 3.2. For $r_{\min} = 0$, $r_{\text{max}} = 1$, the distribution coincides with Glorot init. in the limit.

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

-A- sCIFAR ListOps - PathX

Stability criteria:

- To avoid exploding, discrete eigenvalues should be within the complex unit circle
- To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same for vanishing gradients, see RNN lecture BPTT section).

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized without explicit discretization or HiPPO, but still achieve similar performance on benchmarks

Takeaways:

- Complex parameterization important for some problems
- HiPPO+discretization gives an intelligent eigenvalue distribution near the complex unit circle
- Discretization also provides normalizing effect on effective inputs

Figure 3 | Eigenvalues of a diagonal matrix A with entries sampled using Lemma 3.2. For $r_{\min} = 0$, $r_{\text{max}} = 1$, the distribution coincides with Glorot init. in the limit.

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

S4/5 leve -A- sCIFAR ListOps - PathX

From S4 to S5: Diagonalized dynamics

Diagonal plus low-rank state matrix

Diagonal state matrix

Similar findings to DSS (Gupta et al. 2022) and S4D (Gu et al. 2022)

From S4 to S5: Fully Recurrent Convolution

- Requires time-invariant system
- Cannot access states

Parallel scan

 Access to states (parallel or autoregressive)

From S4 to S5: Fully Recurrent

as an S4 layer.

Proof. See Appendix C.1.

onvolution limitations: Requires time-invariant system Cannot access states

Scan allows:

- Time-varying systems
- Access to states
- (parallel or autoregressive)

Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan (3 sequential steps required)

а

Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan (3 sequential steps required)

a a+b

Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan (3 sequential steps required)

a a+b a+b+c

Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan (3 sequential steps required)

a a+b a+b+c a+b+c+d

Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

Sequential Scan (3 sequential steps required)

а a+b a+b+c a+b+c+d

```
[a, a+b, a+b+c, a+b+c+d]
```


Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan (3 sequential steps required)

a a+b a+b+c a+b+c+d

Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan (3 sequential steps required)

a a+b a+b+c a+b+c+d

Consider the scalar sequence: [a,b,c,d] and the addition operator +. Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan (3 sequential steps required)

a a+b a+b+c a+b+c+d

Given sufficient processors, number of sequential steps scales logarithmically in sequence length

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Sequential Scan (3 sequential steps required)

 $x_1 = \overline{\mathbf{B}}u_1$

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Sequential Scan (3 sequential steps required)

$$x_1 = \overline{\mathbf{B}}u_1$$
$$x_2 = \overline{\mathbf{A}}\overline{\mathbf{B}}u_1 + \overline{\mathbf{B}}u_2$$

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Sequential Scan (3 sequential steps required)

$$x_{1} = \overline{\mathbf{B}}u_{1}$$

$$x_{2} = \overline{\mathbf{A}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{B}}u_{2}$$

$$x_{3} = \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{B}}u_{3}$$

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Sequential Scan (3 sequential steps required)

$$x_{1} = \overline{\mathbf{B}}u_{1}$$

$$x_{2} = \overline{\mathbf{A}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{B}}u_{2}$$

$$x_{3} = \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{B}}u_{3}$$

$$x_{4} = \overline{\mathbf{A}}^{3}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{3} + \overline{\mathbf{B}}u_{4}$$

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Sequential Scan (3 sequential steps required)

$$x_{1} = \overline{\mathbf{B}}u_{1}$$

$$x_{2} = \overline{\mathbf{A}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{B}}u_{2}$$

$$x_{3} = \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{B}}u_{3}$$

$$x_{4} = \overline{\mathbf{A}}^{3}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{3} + \overline{\mathbf{B}}u_{4}$$

Binary associative operator: $q_i \bullet q_j := (q_{j,a} \odot q_{i,a}, q_{j,a} \otimes q_{i,b} + q_{j,b})$

$$(A, Bu_1) (A, Bu_2) (A, Bu_3) (A, Bu_4)$$

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Sequential Scan (3 sequential steps required)

$$x_{1} = \overline{\mathbf{B}}u_{1}$$

$$x_{2} = \overline{\mathbf{A}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{B}}u_{2}$$

$$x_{3} = \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{B}}u_{3}$$

$$x_{4} = \overline{\mathbf{A}}^{3}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{3} + \overline{\mathbf{B}}u_{4}$$

Binary associative operator: $q_i \bullet q_j := (q_{j,a} \odot q_{i,a}, q_{j,a} \otimes q_{i,b} + q_{j,b})$

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Sequential Scan (3 sequential steps required)

$$x_{1} = \overline{\mathbf{B}}u_{1}$$

$$x_{2} = \overline{\mathbf{A}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{B}}u_{2}$$

$$x_{3} = \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{B}}u_{3}$$

$$x_{4} = \overline{\mathbf{A}}^{3}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{3} + \overline{\mathbf{B}}u_{4}$$

Binary associative operator: $q_i \bullet q_j := (q_{j,a} \odot q_{i,a}, q_{j,a} \otimes q_{i,b} + q_{j,b})$

Note: matrix-matrix multiplication, this is why diagonalization is important to avoid cubic cost!

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Sequential Scan (3 sequential steps required)

$$x_{1} = \overline{\mathbf{B}}u_{1}$$

$$x_{2} = \overline{\mathbf{A}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{B}}u_{2}$$

$$x_{3} = \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{B}}u_{3}$$

$$x_{4} = \overline{\mathbf{A}}^{3}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{3} + \overline{\mathbf{B}}u_{4}$$

Binary associative operator: $q_i \bullet q_j := (q_{j,a} \odot q_{i,a}, q_{j,a} \otimes q_{i,b} + q_{j,b})$

Given sufficient processors, number of sequential steps scales logarithmically in sequence length

$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$

Assume:

- L processors
- Matrix-matrix multiplication cost T_{\odot}

$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$

Assume:

- L processors
- Matrix-matrix multiplication cost T_{\odot}

Then, linear recurrence can be computed in $\mathcal{O}(T_{\odot} \log L)$ parallel time (Blelloch 1990).

$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$

Assume:

- L processors
- Matrix-matrix multiplication cost T_{\odot}

Then, linear recurrence can be computed in $\mathcal{O}(T_{\odot} \log L)$ parallel time (Blelloch 1990).

So, with diagonal state matrix, this becomes $\mathcal{O}(P \log L)$ parallel time.

$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$

Assume:

- L processors
- Matrix-matrix multiplication cost T_{\odot}

Then, linear recurrence can be computed in $\mathcal{O}(T_{\odot} \log L)$ parallel time (Blelloch 1990).

So, with diagonal state matrix, this becomes $\mathcal{O}(P \log L)$ parallel time.

Work/space complexity: $\mathcal{O}(PL)$

$$x_k = \overline{\mathbf{A}} x_{k-1} + \overline{\mathbf{B}} u_k$$

Assume:

- L processors
- Matrix-matrix multiplication cost T_{\odot}

Then, linear recurrence can be computed in $\mathcal{O}(T_{\odot} \log L)$ parallel time (Blelloch 1990).

So, with diagonal state matrix, this becomes $\mathcal{O}(P \log L)$ parallel time.

Work/space complexity: $\mathcal{O}(PL)$

Note: in the time domain, S4 has an effective state dimension of HN >> P used by S5. This prevents the practical use of (basic) parallel scans for S4.

Offline/parallel processing S4: $\mathcal{O}(H^2L + HL \log L)$ S5: $\mathcal{O}(PHL + PL)$

Online/Autoregressive Generation

S4: $\mathcal{O}(H^2 + HN)$

S5: $\mathcal{O}(PH+P)$

S5 retains S4's high performance

Long Range Arena

Model (Input length)	ListOps (2,048)	Text (4,096)	Retrieval (4,000)	Image (1,024)	Pathfinder (1,024)	Path-X (16,384)	A
Transformer	36.37	64.27	57.46	42.44	71.40	X	5
S4D-LegS	60.47	86.18	89.46	88.19	93.06	91.95	8
S4-LegS	59.60	86.82	90.90	88.65	94.20	96.35	8
S5	62.15	89.31	91.40	88.00	95.33	98.58	8

S5 retains S4's high performance

Speech Commands 35-way Raw Speech Classification

Model	Parameters	16kHz	8kHz
(Input length)		(16,000)	(8,000)
InceptionNet	481K	61.24	05.18
ResNet-1	216K	77.86	08.74
XResNet-50	904K	83.01	07.72
ConvNet	26.2M	95.51	07.26
S4-LegS	307K	<u>96.08</u>	<u>91.32</u>
S4D-LegS	306K	95.83	91.08
S5	280K	96.52	94.53

Neural Latents Benchmark

Target Go cue acquisition acquisition 100 ms

100 ms

Table 1: Co-smoothing (in units of bits-per-spike) metric on MC Maze and DMFC RSG benchmarks [Pei *et al.*, 2021] for S5 compared to SOTA methods. Note: we exclude ensemble methods and only consider single models.

Method	MC Maze(↑)	DMFC RSG(\uparrow)
S5 (Ours)	0.3826	0.1981
SSLFADS	0.3748	N/A
STNDT	0.3691	0.1859
iLQR-VAE	0.3559	N/A
Neural RoBERTa	0.3551	N/A
RNNf	0.3382	0.1781
AutoLFADS	0.3364	0.1829
MINT	0.3304	0.1821
NDT	0.3229	0.1720
SLDS	0.2249	0.1243

w/ Hyun Lee

S5 can use linear time-varying (LTV) state space models:

S5 can use linear time-varying (LTV) state space models:

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}$$

Context dependent dynamics

$$\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{1:k})$$

 $\mathbf{I}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$

 $\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{1:k})\mathbf{u}_k$

S5 can use linear time-varying (LTV) state space models: $\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{B}(t)\mathbf{u}(t)$

Context dependent dynamics

$$\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{1:k})$$

Irregularly sampled time-series \bullet

$$\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{\Delta}_k)$$

 $\mathbf{x}_{k-1} + \mathbf{B}(\mathbf{u}_{1:k})\mathbf{u}_k$

 $\mathbf{x}_{k-1} + \mathbf{\overline{B}}(\mathbf{\Delta}_k)\mathbf{u}_k$

LTV example: Irregularly sampled time series

Model	Relative speed \uparrow	Regression MSE (×10 ⁻³) \downarrow
mTAND	<u>12x</u>	65.64 (4.05)
RKN	1.9x	8.43 (0.61)
RKN- Δ_t	1.9x	5.09 (0.40)
GRU	3.0x	9.44 (1.00)
GRU- Δ_t	3.0x	5.44 (0.99)
Latent ODE	0.7x	15.70 (2.85)
ODE-RNN	1.0x	7.26 (0.41)
GRU-ODE-B	0.6x	9.78 (3.40)
f-CRU	1.2x	6.16 (0.88)
CRU	1.0x	4.63 (1.07)
CRU (our run)	1.0x	<u>3.94</u> (0.21)
S5	86 x	3.41 (0.27)

LTV example: Liquid S4

$$x_k = \left(\overline{\mathbf{A}} + \overline{\mathbf{B}} \ u_k\right) \ x_{k-1}$$

$$x_{0} = \overline{\mathbf{B}}u_{0}, \quad y_{0} = \overline{\mathbf{CB}}u_{0}$$

$$x_{1} = \overline{\mathbf{A}}\overline{\mathbf{B}}u_{0} + \overline{\mathbf{B}}u_{1} + \overline{\mathbf{B}}^{2}u_{0}u_{1}, \quad y_{1} = \overline{\mathbf{C}}\overline{\mathbf{A}}\overline{\mathbf{B}}u_{0} + \overline{\mathbf{C}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{C}}\overline{\mathbf{B}}^{2}u_{0}u_{1}$$

$$x_{2} = \overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{0} + \overline{\mathbf{A}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{B}}u_{2} + \overline{\mathbf{A}}\overline{\mathbf{B}}^{2}u_{0}u_{1} + \overline{\mathbf{A}}\overline{\mathbf{B}}^{2}u_{0}u_{2} + \overline{\mathbf{B}}^{2}u_{1}u_{2} + \overline{\mathbf{B}}^{3}u_{0}u_{1}u_{2}$$

$$y_{2} = \overline{\mathbf{C}}\overline{\mathbf{A}}^{2}\overline{\mathbf{B}}u_{0} + \overline{\mathbf{C}}\overline{\mathbf{A}}\overline{\mathbf{B}}u_{1} + \overline{\mathbf{C}}\overline{\mathbf{B}}u_{2} + \overline{\mathbf{C}}\overline{\mathbf{A}}\overline{\mathbf{B}}^{2}u_{0}u_{1} + \overline{\mathbf{C}}\overline{\mathbf{A}}\overline{\mathbf{B}}^{2}u_{0}u_{2} + \overline{\mathbf{C}}\overline{\mathbf{B}}^{2}u_{1}u_{2} + \overline{\mathbf{C}}\overline{\mathbf{B}}^{3}u_{0}u_{1}u_{2}, \dots$$

- Generally, LTV systems cannot be computed using convolutions.
- convolutions.
- Show strong results on benchmarks.

$_{-1} + \overline{\mathbf{B}} u_k, \quad y_k = \overline{\mathbf{C}} x_k$

• But Liquid-S4 work shows how this specific LTV form can be computed efficiently using

Agenda

- Introduction, motivation, prior approaches
- Linear state space models (SSMs) overview
- S4, convolutions, parameterization
- S5, diagonalization, parallel scans
- S6/Mamba, data-dependent dynamics
- Conclusion

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data modalities such as speech, image, video, reinforcement learning etc.

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact recall/retrieval/copying is extremely important for modeling language.

Hakuna Matata! It means no worries for the rest of your days! Hakuna Matata means, no \rightarrow worries **Key-Value Key-Value** Query AR Hit **AR Hit** Query

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact recall/retrieval/copying is extremely important for modeling language.

Hakuna Matata! It means no worries for the rest of your days! Hakuna Matata means, no \rightarrow worries **Key-Value AR Hit Key-Value** Query AR Hit Query

But exact, lossless recall is difficult for fixed state models such as SSMs/RNNs compared to Softmax Attention.

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact recall/retrieval/copying is extremely important for modeling language.

Hakuna Matata! It means no worries for the rest of your days! Hakuna Matata means, no \rightarrow worries **Key-Value AR Hit Key-Value** Query AR Hit Query

But exact, lossless recall is difficult for fixed state models such as SSMs/RNNs compared to Softmax Attention.

Can we make better use of this fixed state with linear time-varying systems (LTV)?

 $\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{1:k})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{1:k})\mathbf{u}_k$

 $\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{1:k})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{1:k})\mathbf{u}_k$

S4 + S5 + Liquid S4 = S6:

 $\mathbf{x}_{k} = \overline{\mathbf{A}}(\mathbf{u}_{1:k})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{1:k})\mathbf{u}_{k}$

S4 + S5 + Liquid S4 = S6:

• Keeps the stack of SISO SSMs as in S4

 $\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{1:k})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{1:k})\mathbf{u}_k$

S4 + S5 + Liquid S4 = S6:

- Keeps the stack of SISO SSMs as in S4
- But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.

 $\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{1:k})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{1:k})\mathbf{u}_k$

S4 + S5 + Liquid S4 = S6:

- Keeps the stack of SISO SSMs as in S4
- But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
- Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general.

 $\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{1:k})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{1:k})\mathbf{u}_k$

S4 + S5 + Liquid S4 = S6:

- Keeps the stack of SISO SSMs as in S4
- But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
- Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general. ullet

Algorithm 1 SSM (S4)	Algorithm 2 SS	
Input: x : (B, L, D)	Input: $x : (B, L,$	
Output: $y : (B, L, D)$	Output: $y : (B, I)$	
1: A : (D, N) \leftarrow Parameter	$1: \boldsymbol{A} : (\mathtt{D}, \mathtt{N}) \leftarrow \mathtt{I}$	
▷ Represents structured N × N matrix	ζ.	
2: B : (D, N) \leftarrow Parameter	2: B : (B, L, N) ↔	
3: C : (D, N) \leftarrow Parameter	3: C : (B, L, N) ↔	
4: Δ : (D) $\leftarrow \tau_{\Delta}$ (Parameter)	4: Δ : (B, L, D) \leftarrow	
5: $\overline{A}, \overline{B}$: (D, N) \leftarrow discretize(Δ, A, B)	5: $\overline{A}, \overline{B}$: (B, L, I	
6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$	6: $y \leftarrow SSM(\overline{A}, \overline{A})$	
▷ Time-invariant: recurrence or convolution	1	
7: return y	7: return y	

```
SM + Selection (S6)
D)
L, D)
Parameter
          \triangleright Represents structured N \times N matrix
\leftarrow s_B(x)
\leftarrow s_C(x)
-\tau_{\Delta}(\text{Parameter}+s_{\Delta}(x))
D, N) \leftarrow \text{discretize}(\Delta, A, B)
B,C(x)
         ▷ Time-varying: recurrence (scan) only
```


 $\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{1:k})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{1:k})\mathbf{u}_k$

S4 + S5 + Liquid S4 = S6:

- Keeps the stack of SISO SSMs as in S4
- But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
- Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general. ullet

Algorithm 1 SSM (S4)	Algorithm 2 SS	
Input: x : (B, L, D)	Input: $x : (B, L,$	
Output: $y : (B, L, D)$	Output: $y : (B, I)$	
1: A : (D, N) \leftarrow Parameter	$1: \boldsymbol{A} : (\mathtt{D}, \mathtt{N}) \leftarrow \mathtt{I}$	
▷ Represents structured N × N matrix	ζ.	
2: B : (D, N) \leftarrow Parameter	2: B : (B, L, N) ↔	
3: C : (D, N) \leftarrow Parameter	3: C : (B, L, N) ↔	
4: Δ : (D) $\leftarrow \tau_{\Delta}$ (Parameter)	4: Δ : (B, L, D) \leftarrow	
5: $\overline{A}, \overline{B}$: (D, N) \leftarrow discretize(Δ, A, B)	5: $\overline{A}, \overline{B}$: (B, L, I	
6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$	6: $y \leftarrow SSM(\overline{A}, \overline{A})$	
Time-invariant: recurrence or convolution	1	
7: return y	7: return <i>y</i>	

Time varying dynamics allows for ignoring irrelevant inputs, or forgetting information that is no longer important to remember.

$\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{\mathsf{K}})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{\mathsf{K}})\mathbf{u}_k$

Algorithm 1 SSM (S4)	Algorithm 2 SSM + Selection (
Input: x : (B, L, D)	Input: x : (B, L, D)
Output: $y : (B, L, D)$	Output: $y : (B, L, D)$
1: A : (D, N) \leftarrow Parameter	1: A : (D, N) \leftarrow Parameter
▷ Represents structured N × N matrix	⊳ Represe
2: B : (D, N) \leftarrow Parameter	2: \boldsymbol{B} : (B, L, N) $\leftarrow s_B(x)$
3: C : (D, N) \leftarrow Parameter	3: C : (B, L, N) $\leftarrow s_C(x)$
4: Δ : (D) $\leftarrow \tau_{\Delta}$ (Parameter)	4: Δ : (B, L, D) $\leftarrow \tau_{\Delta}$ (Parameter+ s_{Δ})
5: $\overline{A}, \overline{B}$: $(\mathbb{D}, \mathbb{N}) \leftarrow \text{discretize}(\Delta, A, B)$	5: $\overline{A}, \overline{B}$: (B, L, D, N) \leftarrow discretize(
6: $y \leftarrow \text{SSM}(\overline{A}, \overline{B}, C)(x)$	6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$
Time-invariant: recurrence or convolution	⊳ Time-var
7: return y	7: return y

(S6)

ents structured $N \times N$ matrix

 $\Delta(x)$ $(\Delta, \boldsymbol{A}, \boldsymbol{B})$

rying: recurrence (scan) only

$\mathbf{x}_k = \overline{\mathbf{A}}(\mathbf{u}_{\mathsf{K}})\mathbf{x}_{k-1} + \overline{\mathbf{B}}(\mathbf{u}_{\mathsf{K}})\mathbf{u}_k$

Algorithm 1 SSM (S4)	Algorithm 2 SSM + Selection (
Input: x : (B, L, D)	Input: x : (B, L, D)
Output: $y : (B, L, D)$	Output: $y : (B, L, D)$
1: A : (D, N) \leftarrow Parameter	1: A : (D, N) \leftarrow Parameter
▷ Represents structured N × N mat	trix ⊳ Represe
2: B : (D, N) \leftarrow Parameter	2: \boldsymbol{B} : (B, L, N) $\leftarrow s_B(x)$
3: C : (D, N) \leftarrow Parameter	3: C : (B, L, N) $\leftarrow s_C(x)$
4: Δ : (D) $\leftarrow \tau_{\Delta}$ (Parameter)	4: Δ : (B, L, D) $\leftarrow \tau_{\Delta}$ (Parameter+s)
5: $\overline{A}, \overline{B}$: (D, N) \leftarrow discretize(Δ, A, B)	5: $\overline{A}, \overline{B}$: (B, L, D, N) \leftarrow discretize(
6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$	6: $y \leftarrow SSM(\overline{A}, \overline{B}, C)(x)$
▷ Time-invariant: recurrence or convolution	ion ⊳ Time-var
7: return y	7: return y

(S6)

ents structured $N \times N$ matrix

 $\Delta(x)$ $(\Delta, \boldsymbol{A}, \boldsymbol{B})$

rying: recurrence (scan) only

Scans are limited by memory bandwidth

 This scan loads SSM params from slow HBM to fast SRAM, performs the discretization and recurrence in SRAM, and then writes outputs back to HBM

Mamba block design:

Mamba paper results:

- Also shows strong performance modeling DNA

• For language, showed comparable performance to Attention on perplexity and standard academic benchmarks

Mamba paper results:

- Also shows strong performance modeling DNA

Many Mamba for X papers quickly followed showing strong results in vision, diffusion etc., suggesting these LTV systems can be very strong models.

• For language, showed comparable performance to Attention on perplexity and standard academic benchmarks

Mamba paper results:

- Also shows strong performance modeling DNA

Many Mamba for X papers quickly followed showing strong results in vision, diffusion etc., suggesting these LTV systems can be very strong models.

But recall/copying problem in language seems to persist...:

- Simple linear attention models balance recall-throughput tradeoff https://arxiv.org/abs/2402.18668
- 2402.19427

• For language, showed comparable performance to Attention on perplexity and standard academic benchmarks

• Repeat after me: Transformers are better than state space models at copying <u>https://arxiv.org/abs/2402.01032</u> Can Mamba learn how to learn? A comparative study on in-context learning tasks: <u>https://arxiv.org/abs/2402.04248</u> Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models https://arxiv.org/abs/

Wrapping up

Deep SSMs show the promise of combining simple linear systems with deep learning techniques to create powerful and efficient systems for a variety of data modalities.

Useful blogs/resources:

- <u>https://srush.github.io/annotated-s4/</u>
- <u>https://srush.github.io/annotated-mamba/hard.html</u>
- <u>https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state</u>

Interesting questions/directions:

- Fixed state size vs memory capacity
- LTI vs LTV systems, or FFTs vs Scans?
- Which data modalities do these methods (or their variants) excel or struggle on?
- Hybrid (attention + SSM) methods
- Importing more ideas from control theory and dynamical systems
- Connecting with probabilistic state space models

Thank you!

Email: jsmith14@stanford.edu

Feel free to reach out if you have questions or would like to discuss anything in more detail.