Deep State Space Models
Stats 305B
Jimmy Smith

03/04/2024

[LLinderman
[.ab

% Stanford

University

Agenda

e Introduction, motivation, prior approaches

* Linear state space models (SSMs) overview
 S4, convolutions, parameterization

e S5, diagonalization, parallel scans

« S6/Mamba, data-dependent dynamics
 Conclusion

Agenda

* Introduction, motivation, prior approaches
* Linear state space models (SSMs) overview
 S4, convolutions, parameterization

e S5, diagonalization, parallel scans

« S6/Mamba, data-dependent dynamics
 Conclusion

Motivation: Efficiently modeling long sequences

Applications: text, audio, forecasting, neuroscience, images, videos

Target Target
onset Go cue acquisition

C -

C .

O

L .

O

N~

m .

—

100 ms

Recurrent Neural Networks

@ r— (Criawon) (Crraon))

RNN RNN
(Unfolded)

Recurrent Neural Networks

(=) =

RNN RNN
(Unfolded)

Recurrent Neural Networks (RNNs)

Parallelizable training X Inherently sequential forward and backward pass (discussed in RNN lecture)

Recurrent Neural Networks

(Hidden) (Hidden] [Hidden] [Hidden)

RNN RNN
(Unfolded)

Recurrent Neural Networks (RNNs)

Parallelizable training X Inherently sequential forward and backward pass (discussed in RNN lecture)

Fast autoregressive generation ‘/ Constant time and space required to perform single step of generation

Recurrent Neural Networks

(Hidden) (Hidden] [Hidden] (Hidden)

RNN RNN
(Unfolded)

Recurrent Neural Networks (RNNs)

Parallelizable training X Inherently sequential forward and backward pass (discussed in RNN lecture)
Fast autoregressive generation ‘/ Constant time and space required to perform single step of generation

Avoid vanishing gradients X Difficult to train to retain information from the past due to this (discussed in RNN lecture)

Attention

Scaled Dot-Product Attention Multi-Head Attention

Image Source: Vaswani 2017 https://arxiv.org/abs/1706.03762

Attention

Input Thinking

Embedding X1

Queries

Keys

Values

Machines

X2

X

WK
X

wVv
X

L X L matrix

Q KT

softmax

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/

Attention

Training

Q KT

softmax

Parallelizable training

Attention

4

Matrix multiplications, modern hardware (GPUs/TPUSs) is highly optimized for this (though quadratic complexity)

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attenti
Training
Q KT
Vv
X
softmax
V dk
Attention
Parallelizable training ‘/ Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)
_ _ Again quadratic complexity, have to compare to all past keys and values each step
Fast autoregressive generation X (growing “state” size, aka KV cache)

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Training Autoregressive Generation

Q (T

softmax @(voIkv[kv; [qz]*

Attention
Parallelizable training ‘/ Matrix multiplications, modern hardware (GPUs/TPUSs) is highly optimized for this (though quadratic complexity)
_ _ Again quadratic complexity, have to compare to all past keys and values each step
Fast autoregressive generation X (growing “state” size, aka KV cache)

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Training Autoregressive Generation

Q KT

X | .
>0 f t max [{kvoIkvlkvz {qz} [- | [kvoIkVIkvz kv, 14, %_)
Attention
Parallelizable training ‘/ Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)
_ _ Again quadratic complexity, have to compare to all past keys and values each step
Fast autoregressive generation X (growing “state” size, aka KV cache)

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Training Autoregressive Generation
Q KT
Vv
X
softmax
V dk
Attention
Parallelizable training ‘/ Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)
_ _ Again quadratic complexity, have to compare to all past keys and values each step
Fast autoregressive generation X (growing “state” size, aka KV cache)

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Training Autoregressive Generation
Q KT
Vv
X
softmax
V dk
Attention
Parallelizable training ‘/ Matrix multiplications, modern hardware (GPUs/TPUSs) is highly optimized for this (though quadratic complexity)
_ _ Again quadratic complexity, have to compare to all past keys and values each step
Fast autoregressive generation X (growing “state” size, aka KV cache)
Avoid vanishing gradients ‘/ O(1) maximum path length between tokens

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Long Convolutions

Hyena Filters h"

Hyena Recurrence
: (Window)
) i > N 5 — Y ﬁml‘ﬂ‘%ﬁ
- Y .
R I P S
q = = 2
(PositionalEncoding)
FFEN(t) Window Window o FFN(t)
{Imnxhﬂmtl*Hh,[Illlz"f;imlﬂhlﬂzl IIT”IL” IH I{HmmIIIHIIIIIIIII::::::;; lI Il?[IIIILII.IIIIn.ruz,._._,_.-_. ereeretrtesses
Sequence Length Sequence Length Sequence Length
Attention

Parallelizable training

Fast autoregressive generation

Avoid vanishing gradients

4
X

FFTs, subquadratic complexity

Quadratic complexity, but can distill into SSM post training (Laughing Hyena, Massaroli 2023)

No recurrence to have to compute gradients through.

Poli et al. Hyena Hierarchy: Towards Larger Convolutional Language Models. 2023.
Massaroli et al. Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions. 2023.

Prior approaches to model long sequences

MatMul

SoftMax
‘ Mask (opt.)
:, (Hidden J)
- Scale
(Input) 1 a u1
Q K V
Recurrent Neural . .
Networks (RNNs) Convolutions Attention
Parallelizable v
. X v . |
training (Quadratic complexity)
Fast autoreg_resswe v X X
generation
Avoid vanishin
9 X v v

gradients

Attention Approximations

Linearized Attention

Attention Linear Attention
i
y; = Z exp(q; k;/Vd)v; Z ¢ q:)' ¢(k;)v,
L)
71=1 Zn lexp(qz k"/f) n 1 () ¢()
3. 2. 1.
1. Outer product over key, value head dims ¢(q_)T(Zz (¢(k -)'v-T))
2. Sum over sequence length Y, = —— = it
3. Dot product over query, key-value head dims o(q;) ' > ey O(kn)

e.g. Linear Transformers (Katharopoulos 2020),
Based (Arora 2024)

Attention Approximations

Linearized Attention Sparse Attention
Attention Linear Attention m— 0O
|] | N
y; = Z eXP(Qz ky/\/—)vj ’ Z ¢(Qz T(b i);
j=1 Z:zzl exp(q; kn/Vd) (qi) " ¢(kn)
3. 2. 1. N
1. Outer product over key, value head dims AT J Nay T
2. Sum over sequence length y; = () (ZF; (¢(k;)v;))
3. Dot product over query, key-value head dims ¢(qz)—r anl ¢(kn) (a) Transformer (b) Sparse Transformer (strided)
e.g. Linear Transformers (Katharopoulos 2020), e.g. Sparse Transformers (Child 2019),
Based (Arora 2024) Big Bird (Zaheer 2020)

Image Source: https://hazyresearch.stanford.edu/blog/2023-12-11-zoology2-based,
Child 2019: https://arxiv.org/abs/1904.10509v1

Long range benchmarks

Long Range Arena

Model ListOrs TEXT RETRIEVAL IMAGE PATHFINDER PATH-X AvG
Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67
Path-X example:

Transtformer 36.37 64.27 H7.46 42.44 71.40 X H3.66
Local Attention 15.82 52.98 53.39 41.46 66.63 X 46.71
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 X 51.03
Longformer 35.63 62.85 56.89 42.22 69.71 X 52.88
Linformer 35.70 53.94 52.27 38.56 76.34 X 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 X 50.56
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 X 51.23
Synthesizer 36.99 61.68 54.67 41.61 69.45 X 52.40
BigBird 36.05 64.02 59.29 40.83 74.87 X 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 X 50.46
Performer 18.01 65.40 H3.82 42.77 77.05 X H1.18
FNet 35.33 65.11 59.61 38.67 77.80 X 54.42
Nystromformer 37.15 65.52 79.56 41.58 70.94 X 57.46
Luna-256 37.25 64.57 79.29 47.38 T77.72 X 59.37

Parallelizable
training

Fast autoregressive
generation

Avoid vanishing
gradients

Deep SSMs

|
MatMul
Q Q Output f 4
| SoftMax
O Q Hidden Layer 4
‘ § Mask (opt.)
| idden ‘ Hidden Layer t
L e] 0 9 Scale
O O Hidden Layer 1
.m 3 MatMul
®© o input K
Q K V
Recurrent Neural
Convolutions Attention
Networks (RNNSs)
X v AN
(Quadratic complexity)
v X X
X v v

Parallelizable
training

Fast autoregressive
generation

Avoid vanishing
gradients

Deep SSMs

o O Output
O Q Hidden Layer
(Hidden] O O Hidden Layer
4 O Q Hidden Layer
.m O O Input
Recurrent Neural Convolutions
Networks (RNNSs)
X v
v X
X v

|

MatMul

$

SoftMax

4

Mask (opt.)

4

Scale

§

MatMul

t 1
Q K

v

X

A

V

Attention

(Quadratic complexity)

X = Ax + Bu
y =Cx+ Du

Continuous
State Space

Deep SSMs
e.g. S4 (Gu et al. ICLR 2022)

4

(Subguadratic complexity)

4

S4 captures long-range dependencies

Long Range Arena

Model ListTOrPs TEXT RETRIEVAL IMAGE PATHFINDER PATH-X AvaG
Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67
Path-X example:

Transformer 36.37 64.27 57.46 42.44 71.40 X 53.66
Local Attention 15.82 52.98 53.39 41.46 66.63 X 46.71
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 X 51.03
Longformer 35.63 62.85 56.89 42.22 69.71 X H2.88
Linformer 35.70 53.94 H2.27 38.56 76.34 X H51.14
Reformer 37.27 56.10 53.40 38.07 68.50 X 50.56
Sinkhorn Trans. 33.67 61.20 H3.83 41.23 67.45 X 51.23
Synthesizer 36.99 61.68 54.67 41.61 69.45 X 52.40
BigBird 36.05 64.02 59.29 40.83 74.87 X 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 X 50.46
Performer 18.01 65.40 H3.82 42.77 77.05 X 51.18
FNet 35.33 65.11 59.61 38.67 77.80 X 54.42
Nystromformer 37.15 65.52 79.56 41.58 70.94 X 57.46
Luna-256 37.25 64.57 79.29 47.38 77.72 X 59.37
S4 (original 58.35 76.02 87.09 87.26 86.05 88.10 80.48

S4 captures long-range dependencies

Long Range Arena

Model ListTOprs TEXT RETRIEVAL IMAGE PATHFINDER AVG
Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67
Path-X example:

Transformer 36.37 64.27 H7.46 42.44 71.40 X H3.66
Local Attention 15.82 H2.98 53.39 41.46 66.63 X 46.71
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 X 51.03
Longformer 35.63 62.85 56.89 42.22 69.71 X H2.88
Linformer 35.70 53.94 H2.27 38.56 76.34 X 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 X 50.56
Sinkhorn Trans. 33.67 61.20 H3.83 41.23 67.45 X 51.23
Synthesizer 36.99 61.68 54.67 41.61 69.45 X 52.40
BigBird 36.05 64.02 59.29 40.83 74.87 X 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 X 50.46
Performer 18.01 65.40 H3.82 42.77 77.05 X 51.18
FNet 35.33 65.11 59.61 38.67 77.80 X H4.42
Nystromformer 37.15 65.52 79.56 41.58 70.94 X 57.46
Luna-256 37.25 64.57 79.29 47.38 77.72 X 59.37
S4 (original) 58.35 76.02 87.09 87.26 86.05 80.48
S4 (updated) 59.60 86.82 90.90 88.65 94.20 86.09

Agenda

e Introduction, motivation, prior approaches
 Linear state space models (SSMs) overview
 S4, convolutions, parameterization

e S5, diagonalization, parallel scans

« S6/Mamba, data-dependent dynamics
 Conclusion

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Input sequence j

@tate Space Layep
[Linear SSM |
U _J

é)
Nonlinearity
2 ; 7

Output sequence J

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Continuous-time, linear state space model (SSM):

Input sequence]

State Space Laver

()
Linear SSM
_ J

Nonlinearity
= ; >,

Output sequence J

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Continuous-time, linear state space model (SSM):

. _ -
Input sequence] Input Signal: u(t) € R

7 Hidden State: x(¢) ¢ RV

State Space Laver Output Signal: y(t) c RM

()
Linear SSM
_ J

Nonlinearity
= ; >,

Output sequence J

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Continuous-time, linear state space model (SSM):

Input Signal: u(¢) ¢ RV State Matrix: A c RVXHN
Input sequence] | R N
V Hidden State: x(¢) ¢ RY nput Matrix: c R
e M xN
State Space Laver Output Signal: y(t) € RM Output Matrix: C ¢ RM*

Linear SSM Feedthrough Matrix: D < RM*VU
- J

Nonlinearity
o ; >

Output sequence J

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Continuous-time, linear state space model (SSM):

ix: N x N
| Input Signal: ll(t) c RU State Matrix: A c RYVX
i ' Input Matrixx: B ¢ RV*U

v Hidden State: x(t) ¢ RV : ‘
M O ix: MxN
State Space Laver Output Signal: Y(t) € R utput Matrix: C ¢ RV X
C Linear SSM j Feedthrough Matrix: D ¢ RMxU
ineari dx (1)
Nonl t
| Nonlinearity \x(t) + Bu(t)

J
| dt

Output sequence J Y(t) — CX(t) + Du(t)

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Input sequence

State Space Laver

()
Linear SSM
_ J

Nonlinearity
2 ; 7

Output sequence

Continuous-time, linear state space model (SSM):

Input Signal: u(¢) € RV
Hidden State: x(¢) ¢ RY
Output Signal: y(t) € RY

dx(t)

= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

State Matrix:

Input Matrix:
Output Matrix:
Feedthrough Matrix:

A € RVXN
B e RVXU
CERMXN
D ¢ RMxU

Discretized linear SSM:

X = K'Xk_l -+ Euk

yr = Cxi + Duy

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Continuous-time, linear state space model (SSM):

e N XN
PuT seqrence - Input Matrix: B e RV*U
; Hidden State: x(¢) ¢ RY - -
- M x N
Feedthrough Matrix: D ¢ RM*VU
oo dx(t)
Nonl t _
L onlinearity J, P — AX(t) + Bu(t)
v
Output sequence J Y(t) — CX(t) + Du(t)

Discretized linear SSM:

- Discrete Signal Continuous Signal
X = AXr_1 + Bug rimeh oy
Hor:gliver;e Clﬁe step size (A)
T~ —— ® ¢ ® another ‘— o——
—_— : . @) ; g [—
v, = Cxi. + Duyg A —
0 1 2 3 4 0 1

E.g. using Zero-order hold (ZOH):

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Continuous-time, linear state space model (SSM):

e N XN
npuf sequence - Input Matrix: B e RV*U
; Hidden State: x(¢) ¢ RY - -
o M X N
[Linear SSM j Feedthrough Matrix: D ¢ RM*VU
oo dx(t)
Nonl t _
[Nonlinearity | T Ax(t) + Bu(t)
* C D
Output sequence J Y(t) o X(t) + u(t)

Discretized linear SSM:

X k — A.X kE—1 _|_ Bll k Dis{(:lae;jt)Signal Conti(?#;ulf)s Signal
_— N l ’ ° ont!:/Z)?hr:r cﬁe .—‘— St:‘egfm
Yi — CXk + Du L B o
i | Tirilet : ‘ i 1 Tinz1et) ‘
E.g. using Zero-order hold (ZOH): _ _ _ _ _
g g (A.:@AA,]_D)Z_A__l(_A_—I):B7 (j:(j7 D:

Treat A as learnable parameter.

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Input sequence]

i Nonlinear activation:

@tate Space Layep
i Linear SSM : u;{ — f(Yk:)

é]])
Nonlinearity
_ J

Output sequence J E.g: gelu, GLU, layer norm, dropout, etc.

Key idea of Deep SSMs: Linear in time, nonlinear in depth

v

@tate Space Layep
[Linear SSM |
U _J

C Nonlinearity j
\ * _J
@tate Space Layep
" Linear SSM
U _J

é)
Nonlinearity
2 ; 7

Key idea of Deep SSMs: Linear in time, nonlinear in depth

[Input sequence J

[Encoder J
s

tate Space Layer

C Linear SSM

é)
. Nonlinearity)
- _/

@tate Space Layep
[Linear SSM |
U _J

é)
. Nonlinearity)
- _/

v

[Decoder]

v

[Output sequence J

Key idea of Deep SSMs: Linear in time, nonlinear in depth

[Input sequence j

v

Encoder
=T

State Space Laver

Linear In time: Efficient parallelization across the sequence

Nonlinearity
= ; >,

}

" Linear SSM |
_ Y,

Nonlinearity
_ J

= * J
Decoder
o

[Output sequence]

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Input sequence j

[Encoder j
6 P

tate Space Laye

Lmear SSM

)
Nonlinearity
_ J

@tate Space Layep
" Linear SSM

Nonlinear in depth: Stack of state space layers
- . can represent nonlinear systems
[Decoder]

v

Output sequence]

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Input sequence j

[Encoder j
6 P

tate Space Laye

Lmear SSM

)
Nonlinearity
_ W,

oo

@tate Space Layep

()
Linear SSM

Nonlinear in depth: Stack of state space layers
- . can represent nonlinear systems

[Decoder] Expressivity Results:
* * Orvieto et al. 2023: https://arxiv.org/abs/2307.11888

 Wang et al. 2023: https://arxiv.org/abs/2309.13414
Output sequence]

https://arxiv.org/abs/2307.11888
https://arxiv.org/abs/2309.13414

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Inputsequence J

[Encoder J
st P

tate Space Laye
Linear SSM |

e Fast parallel processing

Nonlinearity
Y
{ e Can precisely initialize to handle long-range

r dependencies (e.g. HiIPPO framework, Gu et al. 2020)

@tate Space Layer
Linear SSM

o Fast stateful autoregressive generation

AN
_

(f N)

Nonlinearity

v

[Decoder]

v

AN
_

(f N)

Output sequence J

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Input sequence j

[Encoder]
s r

tate Space Laye Note, prior attempts at linear RNNs:

" Linear SSM e QRNNSs (Bradbury 2017)

> < e SRUs (Lei 2017)

U Nonlinearity J e Linear surrogate RNNs (Martin 2018)
* Likely reasons why more recent round of linear SSMs/RNNs have gained popularity:
. * |mproved parameterizations
v * Ideas from Transformers, e.g. backbones, layer normalizations, etc.
) * Improved parallel algorithm implementations

@tate Space Layer
Linear SSM

N)

2
Nonlinearity
= 7

v

[Decoder]

v

Output sequence]

Agenda

e Introduction, motivation, prior approaches

e Linear state space models (SSMs) overview
 S4, convolutions, parameterization

e S5, diagonalization, parallel scans

« S6/Mamba, data-dependent dynamics

* Conclusion

S4: Structural State Space Sequence Models

S4 can be an RNN

{(HHHH®P

x = Ax + Bu
RNN
Fast Discrete Representations

S4 can be run as either an RNN for fast autoregressive generation

Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 can be an RNN or a CNN

HHHH " k .
_ LN | g = CA Bug+ CA" 'Buy + - + CABuy_, + CBu,
L e ° y:f*u.
y =Cx+Du Kernel: K cRL:— (CB,CAB,....CA 'B)
RNN CNN

Fast Discrete Representations

S4 can be run as either an RNN or a CNN for fast parallel processing

Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4: Stack of single-input, single-output (SISO) SSMs

uj uz | uj uj
u% uz oee ulz‘
1B

S4: Stack of single-input, single-output (SISO) SSMs

Ujy.r = RLXS

[[uf] ug] oo [ud]

S4: Stack of single-input, single-output (SISO) SSMs

Uj.g, = RLXS
State Matrix: A ¢ RV*HN

Input Matrix: B € RV

X = KXk_l -+ Euk

[[uf] ug] oo [ud]

S4: Stack of single-input, single-output (SISO) SSMs

Uj.g, = RLX .
State Matrix: A ¢ RV*HN

Input Matrix: B € RV

X = KXk_l -+ Euk

[t [i] ui] oee [ud]

I
|
+
o
N
*

S4: Stack of single-input, single-output (SISO) SSMs

Uj.g, = RLX .
State Matrix: A ¢ RV*HN

Input Matrix: B € RV

X = KXk_l -+ Euk

i || udug] ooe [

I
e
X
+
o
N

*

Output Matrixx: C c R 1xN

Yk :éxk

S4: Stack of single-input, single-output (SISO) SSMs

uy., € RV
State Matrix: A € RV*V

Input Matrix: B € RV

X = KXk_l -+ Euk

| ug| | d| oo [

I
e
X
+
o
N

*

Output Matrixx: C c R 1xN

Yk :éxk

Il
5

S4: Stack of single-input, single-output (SISO) SSMs
uy., € RL*3

ub | ud |l | ud
|| ud|uf| oo
uf | u | ui| ug

State Matrix: A € RVXV
Input Matrix: B € RV

X = KXk_l -+ Euk

BAaE

I
oS
X
+
o
N

*

Output Matrixx: C c R 1xN

Yk :éxk

S4: Stack of single-input, single-output (SISO) SSMs

uy., € RM
State Matrix: A € RV*HN

mmmﬂ m Input Matrix: B <€ RN 1 xi A, iof 4 [Ba|* [l
e < _ _

uf | uf|uf| i o < — Ax, 1 4 Bu,

uf |3 ud| g

I
oS
o
+
o
N
*

Il
b

Output Matrix: C c R 1*x¥ vk

Yk :éxk

S4: Stack of single-input, single-output (SISO) SSMs

State Matrix: A ¢ RV*HN

Input Matrix: B € RV A, i 4 [Byx

X = KXk_l -+ Euk

EESE

I
oS
X
+
o
N
*
=

Il
b

Output Matrix: C c R 1*x¥ vk

yi = Cx
Motivation for this structure:)2
« Computation (1D convolutions)

 Parameterization and Initialization (HiPPO, designed for SISO SSMs)
 Parameter efficient way to expand the state size

Il
5

Il
&
x{(

Vi

Mode
: RNN
putation: R

m

S4 Co

1 HHHHDP

Euk
-+
_Xk—l

XL — A

_uk
— GX,IC + D
Y =

S4 Computation: Convolution Mode

Consider a single S4 SSM:

X = AXp—1 + Bug Convolution equivalence holds for

any linear time-invariant (LTI) system

vt = Cxj, + Duy,

Unroll the recurrence:

L) — B’u,()

yo = CBuyg

S4 Computation: Convolution Mode

Consider a single S4 SSM:

X = AXp—1 + Bug Convolution equivalence holds for

any linear time-invariant (LTI) system

yr = Cx; + Duy

Unroll the recurrence:

o = Buyg r1 = ABuy + Bu;
Yy = CBuy vy = CABuy+ CBu;

S4 Computation: Convolution Mode

Consider a single S4 SSM:

X = AXp—1 + Bug Convolution equivalence holds for

any linear time-invariant (LTI) system

yr = Cxi + Duy

Unroll the recurrence:

o = Buyg r1 = ABuy + Bu; Lo = AzBuo + ABu; + Buo
Yy =CBuy y1 =CABuy+ CBu; 1y = CAZBUO + CABu; + CBus

S4 Computation: Convolution Mode

Consider a single S4 SSM:

X = AXp—1 + Bug Convolution equivalence holds for

any linear time-invariant (LTI) system

yr = Cxy + Duy

Unroll the recurrence:

o = Buyg r1 = ABuy + Bu; Lo = AzBuo + ABu; + Buo
Yy =CBuy y1 =CABuy+ CBu; 1y = CAZBUO + CABu; + CBus

yp = CA Bug+ CA" 'Buy + -+ CABuy,_, + CBuy

S4 Computation: Convolution Mode

Consider a single S4 SSM:

X = AXp—1 + Bug Convolution equivalence holds for

any linear time-invariant (LTI) system

yr = Cxy + Duy

Unroll the recurrence:

o = Buyg r1 = ABuy + Bu; Lo = AzBuo + ABu; + Buo
Yy =CBuy y1 =CABuy+ CBu; 1y = CAZBUO + CABu; + CBus

yp = CA Bug+CA" Buy+ -+ CABuy_, + CBuy
y = K *u.

S4 Computation: Convolution Mode

Consider a single S4 SSM:

X = AXp—1 + Bug Convolution equivalence holds for

any linear time-invariant (LTI) system

yr = Cxi + Duy

Unroll the recurrence:

o = Buyg r1 = ABuy + Bu; Lo = AzBuo + ABu; + Buo
Yy =CBuy y1 =CABuy+ CBu; 1y = CAZ.B’U,O + CABu; + CBus

yp = CA Bug+CA" Buy+ -+ CABuy_, + CBuy
y = K *u.

Convolution kernel: K ¢ RY = (CB,CAB,..., CAL 1B)

S4 Computation: Convolution Mode

Consider a single S4 SSM: o .
X = AXr_1 + Bug
yi = Cxj, + Duy,
Y = CAkBuo + C’AlC 1Bu1 + .-+ CABug_1 + CBuy
y=K
Convolution kernel: K - RL — (CB, CAB, Cee s CAL 1B) -

Stack of SISO SSMs gives a range of 1D convolution kernels that
that can capture different timescales:

Consider a single S4 SSM: o .
X = AXk_1 + Bu;

yr = Cx; + Duy

yp = CA Bug+CA" Buj+---+ CABuy_, + CBuy
y = K * u.

Convolution kernel: K ¢ R" := (CB,CAB,..., CAL 1B)

Stack of SISO SSMs gives a range of 1D convolution kernels that
that can capture different timescales:

S4 Computation: Convolution Mode

S4 Computation: Convolution Mode

Consider a single S4 SSM: o .
X = AXk_l -+ Buk

yr = Cx; + Duy

yp = CA Bug+CA" Buj+---+ CABuy_, + CBuy
y = K * u.

Convolution kernel: K ¢ R" := (CB,CAB,...,CAL 1B)

Convolution Theorem:

Flf=gl=F [f]1F gl

S4 Computation: Convolution Mode

Consider a single S4 SSM: o .
X = AXk_1 -+ Buk

yr = Cx; + Duy

yp = CA Bug+CA" Buj+---+ CABuy_, + CBuy
y = K * u.

Convolution kernel: K ¢ R" := (CB,CAB,..., CAL 1B)

Convolution Theorem:
Y

KcRY S(rFrr e K H{xP v B{IFFT

1
YI:L

S4 Computation: Convolution Mode

Consider a single S4 SSM: o .
X = AXk_1 -+ Buk

yr = Cx; + Duy

yp = CA Bug+CA" Buj+---+ CABuy_, + CBuy
y = K * u.

Convolution kernel: K ¢ R" := (CB,CAB,..., CAL 1B)

Convolution Theorem:
¥

Single S4 SSM

F1f«gl=F[f1F gl FFT
Given kernel, the convolution can be computed l
with O(L logL) cost and O(L) space a
Importantly, can be parallelized across the sequence l
K c R- >FrT > K PIXP v PIFFT

1
Xl:L

S4 Computation: Convolution Mode

Consider a single S4 SSM:
k
yp = CA Bug+ CA" 'Buy + -+ CABuy,_, + CBuy
y = K *u.

Convolution kernel: K ¢ RY = (CB,CAB,..., CAL 1B)

Total cost of S4 layer: (’)(HQL + HLlog L)

S4 Computation: Convolution Mode

Consider a single S4 SSM:
k
yp = CA Bug+ CA" 'Buy + -+ CABuy,_, + CBuy
y = K *u.

Convolution kernel: K ¢ RY = (CB,CAB,..., CAL 1B)

Total cost of S4 layer: (’)(HQL + HLlog L)

Nonlinear FFN

S4 Computation: Convolution Mode

Consider a single S4 SSM:
yp = CA Bug+ CA" 'Buy + -+ CABuy,_, + CBuy
y = K *u.

Convolution kernel: K ¢ RY = (CB,CAB,..., CAL 1B)

Total cost of S4 layer: O(|H 2L|+ H L log L[)

Nonlinear FFN Convolutions (H channels)

S4 Computation: Convolution Mode

Consider a single S4 SSM:
yp = CA Bug+ CA" 'Buy + -+ CABuy,_, + CBuy
y = K *u.

Convolution kernel: K ¢ RY = (CB,CAB,..., CAL 1B)

(If we can compute kernel efficiently....

. 2
Total cost of S4 layer: O (H~* L + H L lOg L b but this requires successive powers of A...)

Nonlinear FFN Convolutions (H channels)

S4 Computation: Convolution Mode

Consider a single S4 SSM:
yp = CA Bug+ CA" 'Buy + -+ CABuy,_, + CBuy
y = K *u.

Convolution kernel: K ¢ RY = (CB,CAB,..., CAL 1B)

Total cost of S4 layer: O(H2L + T, lOg Lb (If we can compute kernel efficiently....

but this requires successive powers of A...)

Nonlinear FFN Convolutions (H channels)

* Naively, computing the kernel requires O(N*2L) operations

S4 Computation: Convolution Mode

Consider a single S4 SSM:
yp = CA Bug+ CA" 'Buy + -+ CABuy,_, + CBuy
y = K *u.

Convolution kernel: K ¢ RY = (CB,CAB,..., CAL 1B)

Total cost of S4 layer: O(H2L + T, lOg Lb (If we can compute kernel efficiently....

but this requires successive powers of A...)
Nonlinear FFN Convolutions (H channels)

* Naively, computing the kernel requires O(N*2L) operations -

 If dynamics matrix is diagonal, Vandermonde matrices can be used, O(NL) 1 ﬂo
time and space naively, but can in theory be cheaper S — — 1 Ay
K =[BoCy ... By_1Cn_1] ,
1 An—4

Consider a single S4 SSM:

S4 Computation: Convolution Mode

yp = CA Bug+ CA" 'Buy + -+ CABuy,_, + CBuy

y = K *u.

Convolution kernel:

Total cost of S4 layer: O(H?2T,

K cRY:

|

— (CB,CAB,....CA ~'B)

HLlog L)

(If we can compute kernel efficiently....
but this requires successive powers of A...)

Nonlinear FFN Convolutions (H channels)

Naively, computing the kernel requires O(N*2L) operations

If dynamics matrix is diagonal, Vandermonde matrices can be used, O(NL)

time and space naively, but can in theory be cheaper

S4 used a diagonal plus low rank (DPLR) dynamics matrix, so required a
sophisticated algorithm which resulted in the use of Cauchy kernels

——————————— \

Single S4 SSM

(

LD

: q DPLR
A \
|

I B

' S4
game >SSM
I A

|

Legend:

I Learnable parameter
Instantiated variable

Frequency domain
convolution kernel generation

--

--

--

3 Operation

— Message between layers

|
|
|
|
|
|
|
|
|
I
|
|
|
!

Nonlinearity
y

: Mixing layer |

V
ul

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

Gu et al. HIPPO: Recurren t Memory with Optimal Polynomial Projections. (2020)

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

f(t)
0 1 2 Tirzr"\et 4 5 6 0 to Time ¢t t,
coef,

0.1 r 1.5

s |_?171‘)= %{| J
Discrete-time HiPPO Recurrence 2 BRI
< Continuous-time HIPPO ODE
Crr+1 = Aka + kak discretize

d
—=c(t) = A(t)e(t) + B(O)f(t)

Gu et al. HIPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

f(t)
0 1 2 Tir?uet 4 5 6 0 to Time ¢ t,
coef,
0.1 1.5
c(ty) = ‘_3171 c(ty) = "[”ﬁ,‘
Discrete-time HiPPO Recurrence e S /
< Continuous-time HIPPO ODE
Ciry1 = Aka + kak discretize

d
—c(t) = A(t)e(t) + BIOF ()

Intuitively, we can think of the memory representation C(t) c RY as being the

coefficient vector of the optimal polynomial approximation to the history of f(t)

Gu et al. HIPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

ft)
2n+1)Y2(2k+1)/2 ifn >k
0 1 23 4 5 6 0 to Time ¢ t,] Apr =<n+1 ifn=%k
coef, 0 ifn<k
0.1 1.5
C(tO)zl_ﬁl‘ fh) = 11”4‘
Discrete-time HiPPO Recurrence e S 7
< Conti -time HiPPO ODE
Ck+1 = Aka + kak discretize ontinuous-time A

d
—c(t) = A(t)e(t) + BIOF ()

Intuitively, we can think of the memory representation C(t) c RY as being the

coefficient vector of the optimal polynomial approximation to the history of f(t)

Gu et al. HIPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

f(t)
0 1 2 3 .4 5 6 0 to Time ¢t t,
coef,
0.1 1.5
c(ty) = |_3171‘ () = [‘1\”“
Discrete-time HiPPO Recurrence Lk S /
< Continuous-time HIPPO ODE
Crr+1 =Aka +kak discretize

d
—c(t) = A(t)e(t) + BIOF ()

Intuitively, we can think of the memory representation c(t) c RY as being the

coefficient vector of the optimal polynomial approximation to the history of f(t)

(2n + 1)12(2k +1)Y/2 ifn >k
Ank =< n+1 ifn==%k
0 ifn<k

S4 work found using these matrices
were really important for LRA

Gu et al. HIPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

2n + 1)12(2k +1)2 ifn >k

Apk = qn+1 iftn=Fk S4 work found using these matrices
0 itn <k were really important for LRA

_ Normal T
ALegS — ALegS _ PLegSPLegs

Gu et al. HIPPO: Recurrent memory with optimal polynomial projections. (2020)
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

2n + 1)12(2k +1)2 ifn >k

Ang =qn+1 itn =~k S4 work found using these matrices
0 itn <k were really important for LRA

_ Normal T
ALegS — ALegS _ PLegSPLegs

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

Gu et al. HIPPO: Recurrent memory with optimal polynomial projections. (2020)
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

2n + 1)12(2k +1)2 ifn >k

Apk = qn+1 iftn=Fk S4 work found using these matrices
0 itn <k were really important for LRA

_ Normal T
ALegS — ALegS _ PLegSPLegs

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

From S4 paper: Theorem 1. All HiPPO matrices from [16] have a NPLR representation

A=VAV*—PQ' =V (A - (V*P)(V*Q)*)V* (6)

for unitary V. € CN*N | diagonal A, and low-rank factorization P,Q € RN *". These matrices HiPPO- LegS,
LegT, LagT all satisfy r =1 or r = 2. In particular, equation (2) is NPLR with r = 1.

Gu et al. HIPPO: Recurrent memory with optimal polynomial projections. (2020)
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 Parameterization and Initialization

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HIPPO matrices.

2n + 1)12(2k +1)2 ifn >k

Ang =qn+1 itn =~k S4 work found using these matrices
0 itn <k were really important for LRA

_ Normal T
ALegS — ALegS _ PLegSPLegs

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

From S4 paper: Theorem 1. All HiPPO matrices from [16] have a NPLR representation

A=VAV*—PQ' =V (A - (V*P)(V*Q)*)V* (6)

for unitary V. € CN*N | diagonal A, and low-rank factorization P,Q € RN *". These matrices HiPPO- LegS,
LegT, LagT all satisfy r =1 or r = 2. In particular, equation (2) is NPLR with r = 1.

+ We will discuss what
these matrices are doing more later.

A

Gu et al. HIPPO: Recurrent memory with optimal polynomial projections. (2020)
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

Background: S4 needs to be an RNN and CNN

— 1 1M P
TN
y p—]? * U
RNN CNN
Fast Discrete Representations

S4 needs to be both an RNN and a CNN

This Is elegant! But there are limitations:
* CNN mode requires time-invariant system

* CNN mode cannot easily access states
« Complicated implementation

Agenda

e Introduction, motivation, prior approaches
* Linear state space models (SSMs) overview
* S4, convolutions, parameterization

« S5, diagonalization, parallel scans

« S6/Mamba, data-dependent dynamics

* Conclusion

Can we get the same

parallelizability, efficiency and performance,
as S4 while addressing these limitations?

Smith, Warrington, Linderman. Simplified State Space Layers for Sequence Modeling. 2022.

From S4 to S5: Fully Recurrent

Convolution

Convolution limitations:
 Requires time-invariant
sysiem
« Cannot easily access states

From S4 to S5: Fully Recurrent

Parallel scan (prefix-sum)

Convolution limitations: Scan allows:
 Requires time-invariant Time-varying systems

system Access to states
« Cannot easily access states (parallel or autoregressive)

From S4 to S5:

From S4 to S5: SISO to MIMO

Independent
single-input, single-output (SISO)
seguence maps

H mdependent 54 SSMs:
A.XkllH 7L Buk

From S4 to S5: SISO to MIMO

Independent
single-input, single-output (SISO)
seguence maps

H independent 54 S5Ms:
X_S:H): AXS_lH) + B'lll{

B

[~=—— === ===

N 1
HN H

Large effective state size
prevents the use of (basic) parallel scans.

From S4 to S5: SISO to MIMO

One
multi-input, multi-output (MIMO)
sequence map

! S5 SSM: A
XK — K‘Xk—l "’ Buk
| Al || B

From S4 to S5: SISO to MIMO

Proposition 2. (Informal) The output of a MIMO S5 SSM is a
different projection of the same underlying dynamics of an
S4 system.

Proof. See Appendix D.2.

Implication: S5 can leverage initialization schemes from S4

From S4 to S5: SISO to MIMO

From S4 to S5: SISO to MIMO

S4

ui | ud | uj| ui uj
| ug[u| ug| oee [ud
1 A 1 §5)
Xic Al X1 + Bl X | u ui" ug u§ uﬁ uZ
x}f = Az xl%—l + Bz * ul%
X A3 Xie—1 + B3 % | ui
Vi | = Cl Xk
}': p— CZ xl%

=X
Il
&>
X,

From S4 to S5: SISO to MIMO

S4
1 — 1 - Assume tied state matrices
Xk A1 Xje—1 + Bl * | up
x;f — ZZ xi% 1 + Ez * uf:
x3 A; i 4 [Bg|k |u
Vi | = Cl Xk
Yi | = Cz xi

Il
&>
LE

From S4 to S5: SISO to MIMO

S4
1 — 1 - Assume tied state matrices
Xk A1 Xje—1 + Bl * | up
el = A, 2| 4 [Bo|* |4
x3 A, i 4 [Bg|k |u
Vi | = Cl Xk
Yi | = Cz xi

Il
&>
LE

From S4 to S5: SISO to MIMO

S4
Zl 1 + §1 3
= A, | 4 |By|*
Zl 1 + EB %
G
— + C; +
L Cg

From S4 to S5: SISO to MIMO

Yie

Yk

Yk

S4

— 2
% — Zl xl%—l + BZ * Uy,
xk —
— 3
A Xie-1 + BB * | uj
x? Al
Cq

X

Yk

Yk

Yk

S5

Al Xje—1
Cy
CZ Xi
C3

From S4 to S5: SISO to MIMO

Yie

Yk

Yk

S4

— 2
Xi Aq x| == |Bp| % |
k —
X + * | ug
Xi Al X -1 B3
Cl

X

Yk

Yi

Yic

S5

Al Xje—1
Cy
CZ Xi
C3

From S4 to S5: SISO to MIMO

Yk

Yk

Yk

L
Il

S4

3
X -1

S5

C2 X

Different output projection of the same underlying dynamics.
So, S4 parameterization and initialization ideas work in S5 also.

Xk

From S4 to S5: Diagonalized dynamics

Diagonal plus low-rank
state matrix

From S4 to S5: Diagonalized dynamics

Diagonal
state matrix

Similar findings to DSS (Gupta et al. 2022)
and S4D (Gu et al. 2022)

Diagonalization

dx(t)
dt

y(t) = Cx(t) + Du(t)

= Ax(t) + Bu(t) Diagonalize: A=VAV!l AeC*" vecChxr

Diagonalization
dx(t)

dt
dV—1x(t) B 1 .
y(t) = Cx(t) + Du(t) 0 = AVIx(h) + VT Buh).

= Ax(t) + Bu(t) Diagonalize: A=VAV!l AeC*" vecChxr

Diagonalization

d’;ff) = Ax(t) + Bu(t) Diagonalize: A =VAV! AecC™" VeCH”’
dV—1x ! _1
y(t) = Cx(t) + Du(t) O Av=ix(r) + VI Bu()

Defining %(t) = V~'x(t), B = V~'B, and C = CV gives a reparameterized system,

dx(t) _ A%(t) + Bu(t), y(t) = Cx(t) + Du(t).

Diagonalization

d};it) = Ax(t) + Bu(t) Diagonalize: A =VAV A € CPxF V e CP*F
dV—1x(¢
y(t) = Cx(t) + Du(t) O Av=ix(r) + VI Bu()
Defining %(t) = V~'x(t), B = V~'B, and C = CV gives a reparameterized system,
diit) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.

Diagonalization

d};it) = Ax(t) + Bu(t) Diagonalize: A =VAV A € CPxP V e CP*F
dV—1x(t
y(t) = Cx(t) + Du(t) O Av=ix(r) + VI Bu()
Defining %(t) = V~'x(¢), B = V!B, and C = CV gives a reparameterized system,
df;it) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t).

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.

But almost all square matrices are diagonalizable over the complex plane:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Diagonalization

d’;i” = Ax(t) + Bu(t) Diagonalize: A =VAV~! AeC™" VveCH”’
dV—1x ! _1
y(t) = Cx(t) + Du(t) O Av=ix(r) + VI Bu()

Defining %(t) = V~'x(¢), B = V!B, and C = CV gives a reparameterized system,

dx(t) _ A%(t) + Bu(t), y(t) = Cx(t) + Du(t).

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.
But almost all square matrices are diagonalizable over the complex plane:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Many of the recent deep SSM papers have shown empirical ablations suggesting the importance of complex
parameterizations for performance for many data modalities (caveat: probably not so important for language).

Diagonalization

d};it) = Ax(t) + Bu(t) Diagonalize: A =VAV A € CPxP V e CP*F
dV—1x(¢
y(t) = Cx(t) + Du(t) O Av=ix(r) + VI Bu()
Defining %(t) = V~'x(¢), B = V!B, and C = CV gives a reparameterized system,
dx(?) — AX(t) + Bu(t), y(t) = Cx(t) + Du(t).
diagonal, complex dt

N\

X = KXk_l -+ Euk

Stability criteria:

 To avoid exploding, discrete eigenvalues should be within the complex unit circle

-1.0 -0.5 0.0 05 1.0

Figure 3 | Eigenvalues of a diago-
nal matrix A with entries sampled
using Lemma 3.2. For rpin, = 0,
rmax = 1, the distribution coin-
cides with Glorot init. in the limit.

Image source: Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

Diagonalization

d};it) = Ax(t) + Bu(t) Diagonalize: A =VAV A € CPxP V e CP*F
dV—1x(¢
y(t) = Cx(t) + Du(t) O Av=ix(r) + VI Bu()
Defining %(t) = V~'x(¢), B = V!B, and C = CV gives a reparameterized system,
dx(?) — AX(t) + Bu(t), y(t) = Cx(t) + Du(t).
diagonal, complex dt

N\

X = KXk_l -+ Euk

Stability criteria:

 To avoid exploding, discrete eigenvalues should be within the complex unit circle

 To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same for
vanishing gradients, see RNN lecture BPTT section).

-1.0 -0.5 0.0 05 1.0

Figure 3 | Eigenvalues of a diago-
nal matrix A with entries sampled
using Lemma 3.2. For rpi, = 0,
rmax = 1, the distribution coin-
cides with Glorot init. in the limit.

Image source: Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

How important is HIPPO?

X = KXk_l -+ Euk

-1.0 -0.5 0.0 05 1.0

Figure 3 | Eigenvalues of a diago-
nal matrix A with entries sampled

Stability criteria: using Lemma 3.2. For rmin = 0,
- - n - - - - - 'max =]., the distribution coin-
 To avoid exploding, discrete eigenvalues should be within the complex unit circle cides with Glorot init. in the limit.

* To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same
for vanishing gradients, see RNN lecture BPTT section).

HiPPO initialization gives these nice properties with stable, slowly decaying eigenvalues

How important is HIPPO?

X = KXk_l -+ Euk

Stability criteria:

-1.0 -0.5 0.0 05 1.0

Figure 3 | Eigenvalues of a diago-
nal matrix A with entries sampled
using Lemma 3.2. For rpjn = 0,
rmax = 1, the distribution coin-

 To avoid exploding, discrete eigenvalues should be within the complex unit circle cides with Glorot init. in the limit.
* To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same

for vanishing gradients, see RNN lecture BPTT section).

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized
without explicit discretization or HIPPO, but still achieve similar performance on benchmarks

magnitude . phase

A = éxp(—exp(b;”?)‘ +i exp(()’jl -)l)

Linear Recurrent Unit (LRU) S{able exponential paramhetrization

z = diag(A)xx—1 + ¥ © Bug . (l - |/1-|2)1/2
J J

Normalization

Test accuracy on LRA tasks

skip connection Q S4/5 level
L s L 90% - o = A | | =A= sCIFAR
o @~ ListOps
7 S 80% 1 {~ PathFinder
L/ —_— _—
| [}~ PathX
LRU L >< — 70%{ A A |
Lin.E d —1 — | :
pvsdin SRvo w TN S L o| ;Paromuncoar
e —— Recurrent | —y (sameforall | 1/ = ayer ? O O Text/Retrieval always
\ - u |, timestamps) | |/ | aligned with S4/5
! Unit 1 T # class 50%1 K} Q ¢! O
m Bzl O 1 efficiency boost
H H H H : H Recurrent —» tanh linear linear + stable +) norm
L Block Variants dense dense diag. +ringinit. (LRU)

Y
x number of layers

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

How important is HIPPO?

X = KXk_l -+ Euk

-1.0 -0.5 0.0 05 1.0

Figure 3 | Eigenvalues of a diago-
nal matrix A with entries sampled

Stability criteria: using Lemma 3.2. For rmin = 0,
- - n - - - - - 'max =]., the distribution coin-
 To avoid exploding, discrete eigenvalues should be within the complex unit circle cides with Glorot init. in the limit.

* To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same
for vanishing gradients, see RNN lecture BPTT section).

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized
without explicit discretization or HIPPO, but still achieve similar performance on benchmarks

- magnitude phase
Takeaways: ; — ,
_ log . log
« C I rameterization important for som | - 4j = exp(—exp(y;) +1exp(6;)
Omp ex pa a e e Iza Io I po a O SO e Linear Recurrent Unit (LRU) Stable exponential paramhetrization |
. 1/2
problems zy = diag(l)zk—1 + 7 © Buy 2
}/j < 1 o | /1/' |
Normalization
)) Test accuracy on LRA tasks
skip connection O Q S4/5 level
S L s L 90% 1 A | | =&~ sCIFAR
ﬁ ﬁ\ A A O~ ListOps
f /é“f’ 80% - {)~ PathFinder
LRU [> 70%1{ A A (- PatnX
Lin. Encoder i — 1 .
: MLP/GLU | | ||| Linear + Performa
t(is;::;t;:pail) Sl :: (same for all _; _— Layer @ 60% 1 O O © Text?RStrr[iY;:glcilggys
\/ Ref:urrent | | timestamps) | |/ | | aligned with S4/5
1 Unit 4m # class 50%1 K} Q 4 O
:: Bzl '®) t efficiency boost
H H H H H Recurrent — tanh linear linear +stable +Y norm
I Block Variants dense dense diag. + ring init. (LRU)

Y
x number of layers

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

How important is HIPPO?

X = KXk_l -+ Euk

-1.0 -0.5 0.0 05 1.0

Figure 3 | Eigenvalues of a diago-
nal matrix A with entries sampled

Stability criteria: using Lemma 3.2. For rmin = 0,
- - n - - - - - 'max =]., the distribution coin-
 To avoid exploding, discrete eigenvalues should be within the complex unit circle cides with Glorot init. in the limit.

* To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same
for vanishing gradients, see RNN lecture BPTT section).

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized
without explicit discretization or HIPPO, but still achieve similar performance on benchmarks

Takeaways: } magnitude — : .: phasehw :
. - - /1/- = exp(—exp(v. °) +iexp(6.°))
« Complex parameterization important for some Linear Recurrent Unit (LRU) Stabie exponential paramitization J

problems zy, = diag(1)zx—1 + 7 © Buy, L (1 1A) 112
 HiPPO+discretization gives an intelligent eigenvalue /]

distribution near the complex unit circle

Normalization

Test accuracy on LRA tasks

skip connection O Q S4/5 level
S L s L 90% - 2 A A | | =A— sCIFAR
er O~ ListOps
P S 80% 1 {— PathFinder
L/ _— —_—
|)~ PathX
LRU < — 70%{ A « |
Lin. Encoder —t T 1| 1
. MLP/GLU , ||| Linear @ + Performance on
LV — i
f.ﬁ"l'i;f: azll Linear) (sameforall [[/ | b 60% O O o Text/Retrieval always
acali o) Recurrent [
\ - |, timestamps) | |/ | aligned with S4/5
! Unit / 4l # class 50% 1 K3 Q ¢ O
m Bzl O t efficiency boost
H H H H H Recurrent — tanh linear linear + stable +}Y norm
L Block Variants dense dense diag. +ringinit. (LRU)

Y
x number of layers

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

How important is HIPPO?

X = KXk_l -+ Euk

-1.0 -0.5 0.0 05 1.0

Figure 3 | Eigenvalues of a diago-
nal matrix A with entries sampled

Stability criteria: using Lemma 3.2. For rmin = 0,
- - n - - - - - 'max =]., the distribution coin-
 To avoid exploding, discrete eigenvalues should be within the complex unit circle cides with Glorot init. in the limit.

* To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same
for vanishing gradients, see RNN lecture BPTT section).

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized
without explicit discretization or HIPPO, but still achieve similar performance on benchmarks

Takeaways: } magnitude — : : phasel - :
. . . A; = exp(—exp(v;”©) + iexp(6."))
« Complex parameterization important for some Linear Recurrent Unit (LRU) Stabie exponential paramitization

problems zy, = diag(1)zx—1 + 7 © Buy, L (1 LA)1/2
 HiPPO+discretization gives an intelligent eigenvalue /]

distribution near the complex unit circle

Normalization

Test accuracy on LRA tasks

= = = =] [skip connection 54/5 level
* Discretization also provides normalizing effect on | . / . o-—p] - o
Ny / > / 07 A
i I < A @~ ListOps
eﬁeCtlve Inputs ﬂ /i\‘oe:’ 80% {~ PathFinder
LV —_— ed
LRU — >< — 70%4 A X O PathX
Lin. Encoder —7 L — -
: |, MP/GLu | | | || Linear Performz
t(is;:tr:‘st;r(:pasn) ;:ce:rrrent —: (sameforall | |/ - b @ 60%1 O O o éxt?Rstrggzglcslxi/[;ys
M Unit ||, timestamps) _; || # class 50% - K) Q Kﬂ - aligned with S4/5
:: :/ : Q T efficiency boost
H H H H H Recurrent —» tanh linear linear +stable +}Y norm
I Block Variants dense dense diag. +ringinit. (LRU)

Y
x number of layers

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

From S4 to S5: Diagonalized dynamics

MIMO + diagonalized dynamics:

enables the use of efficient parallel scans.

From S4 to S5: Fully Recurrent

Parallel scan

Convolution limitations: Scan allows:
 Requires time-invariant Time-varying systems

system Access to states
« Cannot access states (parallel or autoregressive)

From S4 to S5: Fully Recurrent

Proposition 1. (Informal) An S5 layer is as efficient
as an S4 layer.

Proof. See Appendix C.1.

From S4 to S5: Parallel Scans

L

O(logL)

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]
Sequential Scan
(3 sequential steps required)

a

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]
Sequential Scan
(3 sequential steps required)

a
a+b

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan
(3 sequential steps required)

a
a+b
a+b+c

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan
(3 sequential steps required)

a

a+b
a+b+c
a+b+c+d

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan Parallel Scan
(3 sequential steps required) (2 sequential steps required)
a
ash _e Je Je Jd]
a+b+c

a+b+c+d

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan Parallel Scan
(3 sequential steps required) (2 sequential steps required)
a
asb Ce e Jle Jl 4
I S~

ibrosd e) [e)

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan Parallel Scan
(3 sequential steps required) (2 sequential steps required)
a a b , C d
Z: E+c [i\J‘E/]{ \l[/»]
a+b+c+d [ath } [c+d]

[a+b+c+d]

From S4 to S5: Parallel Scans

Consider the scalar sequence: [a,b,c,d] and the addition operator +.
Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

[a, a+b, a+b+c, a+b+c+d]

Sequential Scan Parallel Scan
(3 sequential steps required) (2 sequential steps required)
2 a b , C d
. T O)
a+b+c+d [a+b } [c+d]
\/
[at+tb+c+d]

Given sufficient processors, number of sequential steps
scales logarithmically in sequence length

From S4 to S5: Parallel Scans

rr = Axi_1 + Buyg

Sequential Scan

. . Parallel Scan
(3 sequential steps required)

(2 sequential steps required)

L1 = B?_Ll

From S4 to S5: Parallel Scans

rr = Axi_1 + Buyg

Sequential Scan

. . Parallel Scan
(3 sequential steps required)

(2 sequential steps required)

L1 = B?_Ll
ro = ABu; + Buo

From S4 to S5: Parallel Scans

rr = Axp—1 + Bug

Sequential Scan

. . Parallel Scan
(3 sequential steps required)

(2 sequential steps required)

L1 = B’I_Ll
ro = ABu; + Buo

T3 = KQEM + ABusy + Bus

From S4 to S5: Parallel Scans

rr = Axp—1 + Bug

Sequential Scan

. . Parallel Scan
(3 sequential steps required)

(2 sequential steps required)

L1 =— B’I_Ll
ro = ABu; + Buo

r3 = KQEM + ABusy + Bus

3= —2— — __
rs = A Bu; + A Bus + ABus + Buy

From S4 to S5: Parallel Scans

Tr = Axp_q + Euk Binary associative operator: ¢; ¢ ¢; := (¢j .0 © Giay Gj.a @ Gip+ qip)
Sequential Scan Parallel Scan

(3 sequential steps required) (2 sequential steps required)

1 = Bu C(A,Buy) | | (A, Bu) | [(A Bus) | [(A Bu,) |

ro = ABu; + Bus

r3 = KQEU.l + ABusy + Bus

Ty = KBEU.l -+ KQEUQ + ABus + Buy

From S4 to S5: Parallel Scans

T = ngk_l 1 Euk Binary associative operator: ¢; ® ¢; := (qi0 © Giay Qia @ Qb+ Qi)
Sequential Scan Parallel Scan

(3 sequential steps required) (2 sequential steps required)

n = Bu, (A Buy) | | (A Bu,) | [(A Buy | [(A Bu, |

Tro = A_Bul -+ EUQ \4/
T, S - _ 2 2

Ty = AQBul + ABus + Bus [(A%, ABu, + Bu,)] [(A%, ABus + Bu)]

3= —2— — __
ry = A Bu; + A Bus + ABus + Buy

From S4 to S5: Parallel Scans

T = K-’Ifk—l 1 Euk Binary associative operator: ¢; ® ¢; := (¢ .0 © Gi.as Qj.a @ Gip+ Gjp)
Sequential Scan Parallel Scan

(3 sequential steps required) (2 sequential steps required)

z1 = Buy (A,Buy) | [(A Bu,) | [(A Buy) | [(A Bu, |

To = Eul -} ﬁug
I, S - _ 2 IN 2

Ty = AQBul + ABus + Bug [(A, ABu, + Bu,)] [(A%, ABus + Bu,)]

T4 = K3§u1 1 KQEUQ + ABus + Buy Note: matrix-matrix multiplication,

this is why diagonalization is important to avoid cubic cost!

From S4 to S5: Parallel Scans

T = K-’Ifk—l 1 Euk Binary associative operator: ¢; ® ¢; := (¢ .0 © Gi.as Qj.a @ Gip+ Gjp)
Sequential Scan Parallel Scan

(3 sequential steps required) (2 sequential steps required)

Tl = % B [(A, Bul)J [(A, Buz)] (A, Bug)] [(A, Bu4)]

ro = ABu; + Buo

r3 = KQEuI + ABusy + Bug [(A%, ABu, + Bu,) [il]

33— — 2 SN =
re = A Bui +A Bus + ABus + Buy [(A4’ A°Bu, + A’Bu, + ABu,+ Bu,)]

Given sufficient processors, number of sequential steps
scales logarithmically in sequence length

From S4 to S5: Parallel Scans

rr = Axp—1 + Bug o

Assume:
e L processors

* Matrix-matrix multiplication cost 1,
O(loglL)

From S4 to S5: Parallel Scans

rr = Axp—1 + Bug o

Assume:
e L processors

* Matrix-matrix multiplication cost 1,
O(loglL)

Then, linear recurrence can be computed in
O(Ty log L) parallel time (Blelloch 1990).

From S4 to S5: Parallel Scans

rr = Axp—1 + Bug o

Assume:
e L processors

* Matrix-matrix multiplication cost 1,
O(loglL)

Then, linear recurrence can be computed in
O(Ty log L) parallel time (Blelloch 1990).

So, with diagonal state matrix, this becomes
O(P log L) parallel time.

From S4 to S5: Parallel Scans

rr = Axp—1 + Bug o

Assume:
e L processors

* Matrix-matrix multiplication cost 1,
O(loglL)

Then, linear recurrence can be computed in
O(Ty log L) parallel time (Blelloch 1990).

So, with diagonal state matrix, this becomes
O(P log L) parallel time.

Work/space complexity: (’)(P L) .

From S4 to S5: Parallel Scans

i = Axip_1 + Buy
H 1ndependent S4 SSMs:

Assume: (1:H)

e L processors X = Jr Buk
* Matrix-matrix multiplication cost 1,

Then, linear recurrence can be computed in
O(Ty log L) parallel time (Blelloch 1990).

_________.I_I
|I

&

So, with diagonal state matrix, this becomes
O(P log L) parallel time.

Work/space complexity: (’)(P L) .

Note: in the time domain, S4 has an effective
state dimension of HN >> P used by S5.
This prevents the practical use of (basic) parallel scans for S4.

From S4 to S5: Parallel Scans

.
H independent 54 §SMS:\
Offline/parallel processing Xlil'H): AXS_iH) 4 Bu,

sa: O(H2L + HLlog L)

ss: O (PHL + PL)

[
|
|

Online/Autoregressive Generation

: 2 SH SSM:
S4: O(H —|—HN) Xk:KXk_lJrEuk

s5: O(PH + P) A =

S5 retains S4’s high performance

Long Range Arena

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
(Input length) (2,048) (4,096) (4,000) (1,024) (1,024) (16,384)
Transformer 36.37 64.27 57.46 42.44 71.40 X 33.66
S4D-LegS 60.47 36.18 39.46 38.19 93.06 91.95 34.89
S4-LegS 59.60 36.32 90.90 38.65 94.20 96.35 36.09

S5 62.15 89.31 91.40 33.00 95.33 98.58 87.46

S5 retains S4’s high performance

Speech Commands 35-way Raw Speech Classification

Model Parameters 16kHz SkHz
(Input length) (16,000) (8,000)
InceptionNet 481K 61.24 05.18
ResNet-1 216K 77.86 08.74
XResNet-50 004K 83.01 07.72
ConvNet 26.2M 05.51 07.26
S4-LegS 307K 96.08 91.32
S4D-LegS 306K 05.83 01.08
S5 280K 96.52 94.53

Neural Latents Benchmark

J) s m m o . .
“ Table 1: Co-smoothing (in units of bits-per-spike) met- w/ Hyun Lee

ricon MC Maze and DMFC RSG benchmarks [Pei et al.,

Target Target 2021] for S5 compared to SOTA methods. Note: we
mon.??t. ., Q.olcue” __ acqu=3|t|on exclude ensemble methods and only consider single
Fg) B e ST T e models.

é e e Method MC Maze (T) DMFC RSG (T)

100 ms S5 (Ours) 0.3826 0.1981

SSLFADS 0.3748 N/A
DMFC_RSG STNDT 0.3691 0.1859
' 7) iLQR-VAE 0.3559 N/A
Hli | //' J Neural RoBERTa 0.3551 N/A
= RNNf{ 0.3382 0.1781

F|r|ng rate (spk/s)

AutoLFADS 0.3364 0.1829
MINT 0.3304 0.1821
NDT 0.3229 0.1720

Ready SLDS 0.2249 0.1243

Channels

100 ms https://eval.ai/web/challenges/challenge-page/1256/leaderboard/3188

S5 enables new capabilities

S5 enables new capabilities

S5 can use linear time-varying (LTV) state space models:
dx(t)
dt

= A(t)x(t) + B(t)u(t)

S5 enables new capabilities

S5 can use linear time-varying (LTV) state space models:
dx(t)
dt

 Context dependent dynamics

= A(t)x(t) + B(t)u(t)

X = A(uy.)xXp—1 + B(uy..)uy

S5 enables new capabilities

S5 can use linear time-varying (LTV) state space models:

dx(t)
= A(t)x(t) + B(t)u(?)

 Context dependent dynamics

X = A(uip)xXg—1 + B(ug)ug
* lrregularly sampled time-series

X = K(Ak)Xk_l —+ E(Ak)uk

LTV example: Irregularly sampled time series

cos(6) —— Observed time point J

100

Time step
Model Relative speed T Regression MSE (x107°) |
mTAND 12x 65.64 (4.05)
RKN 1.9x 8.43 (0.61)
RKN-A; 1.9x 5.09 (0.40)
GRU 3.0x 9.44 (1.00)
GRU-A; 3.0x 5.44 (0.99)
Latent ODE 0.7x 15.70 (2.85)
ODE-RNN 1.0x 7.26 (0.41)
GRU-ODE-B 0.6x 9.78 (3.40)
f-CRU 1.2x 6.16 (0.88)
CRU 1.0x 4.63 (1.07)
CRU (our run) 1.0x 3.94 (0.21)

S5 36x 3.41 (0.27)

LTV example: Liquid S4

ku(A+Buk) xk_l—l—ﬁuk, Y = C xy

X0 — Euo, Yo = C*Bu()

x; = ABug + Buq -+ B ugus, y1 = CABug + CBuq +CB ugu;

X, = A“Bug + ABu7y + Buy+ AB ugus + AB u Uy + B u Uy + B ugu Uy
2 0 1 2 0“1 0 1 041

Yy = CAzBuO + CABuy + CBuy-+ CAB upu; + CAB uguy + CB ujuy + CB uguyio,

 Generally, LTV systems cannot be computed using convolutions.

 But Liquid-S4 work shows how this specific LTV form can be computed efficiently using
convolutions.

 Show strong results on benchmarks.

Hasani and Lechner et al. Liquid structural state-space models. 2022.

Agenda

e Introduction, motivation, prior approaches

* Linear state space models (SSMs) overview
* S4, convolutions, parameterization

e S5, diagonalization, parallel scans

« S6/Mamba, data-dependent dynamics
 Conclusion

SSMs/RNNs vs Softmax Attention on Language

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

SSMs/RNNs vs Softmax Attention on Language

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

SSMs/RNNs vs Softmax Attention on Language

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact
recall/retrieval/copying is extremely important for modeling language.

Hakuna Matata! It means no worries for the rest of your days! Hakuna Matata means no — worries
N—— ———— N——— N ——— N~~~ N——
Key-Value Key-Value Query AR Hit Query AR Hit

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

SSMs/RNNs vs Softmax Attention on Language

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact
recall/retrieval/copying is extremely important for modeling language.

Hakuna Matata! It means no worries for the rest of your days! Hakuna Matata means no — worries
S ———— N —— N ——— "~ N——
Key-Value Key-Value Query AR Hit Query AR Hit

But exact, lossless recall is difficult for fixed state models such as SSMs/RNNs compared to Softmax Attention.

(e -cbcD va. (ON o
il 8] b & iy
RNN RNN

(Unfolded)

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

SSMs/RNNs vs Softmax Attention on Language

Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact
recall/retrieval/copying is extremely important for modeling language.

Hakuna Matata! It means no worries for the rest of your days! Hakuna Matata means no — worries
S ———— N —— N ——— "~ N——
Key-Value Key-Value Query AR Hit Query AR Hit

But exact, lossless recall is difficult for fixed state models such as SSMs/RNNs compared to Softmax Attention.

(= e Voo NN
oo o oo oo o] ooy oo,
RNN RRN

(Unfolded)

Can we make better use of this fixed state with linear time-varying systems (LTV)?

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

Linear time-varying systems: S6/Mamba

Xk = A(u1.5)Xg—1 + B(ux)uy

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Xk = A(u1.5)Xg—1 + B(ux)uy

S4 + S5 + Liquid S4 = S6:

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Xk = A(u1.5)Xg—1 + B(ux)uy

S4 + S5 + Liquid S4 = S6:
 Keeps the stack of SISO SSMs as in S4

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Xk = A(u1.5)Xg—1 + B(ux)uy

S4 + S5 + Liquid S4 = S6:
 Keeps the stack of SISO SSMs as in S4
 But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Xk = A(u1.5)Xg—1 + B(ux)uy

S4 + S5 + Liquid S4 = S6:
 Keeps the stack of SISO SSMs as in S4

 But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
 Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general.

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Xk = A(u1.5)Xg—1 + B(ux)uy

S4 + S5 + Liquid S4 = S6:

 Keeps the stack of SISO SSMs as in S4

 But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
 Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general.

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x : (B,L,D) Input: x : (B,L,D)
Output: y: (B,L,D) Output: y : (B,L,D)
1: A : (D,N) « Parameter 1: A : (D,N) « Parameter
> Represents structured N X N matrix > Represents structured N X N matrix
2: B : (D,N) « Parameter 2: B :(B,L,N) « sz(x)
3: C : (D,N) « Parameter 3: C : (B,L,N) « s-(x)
4: A : (D) « t5(Parameter) 4: A : (B,L,D) « t5(Parameter+s,(x))
5: A,B : (D,N) « discretize(A, A, B) 5: A,B : (B,L,D,N) « discretize(A, A, B)
6: y « SSM(A, B, C)(x) 6: y « SSM(A, B, C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: returny 7: return y

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Xk = A(u1.5)Xg—1 + B(ux)uy

S4 + S5 + Liquid S4 = S6:

 Keeps the stack of SISO SSMs as in S4

 But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
 Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general.

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x : (B,L,D) Input: x : (B,L,D)
Output: y: (B,L,D) Output: y : (B,L,D)
1: A : (D,N) « Parameter 1: A : (D,N) « Parameter
> Represents structured N X N matrix > Represents structured N X N matrix
2: B : (D,N) « Parameter 2: B :(B,L,N) « sz(x)
3: C : (D,N) « Parameter 3: C : (B,L,N) « s-(x)
4: A : (D) « t5(Parameter) 4: A : (B,L,D) « tp(Parameter+s,(x))
5: A,B : (D,N) « discretize(A, A, B) 5: A,B : (B,L,D,N) « discretize(A, A, B)
6: y « SSM(A, B, C)(x) 6: y « SSM(A, B,C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: returny 7: returny

Time varying dynamics allows for ignoring irrelevant inputs, or forgetting information that is no longer important to remember.

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Xp = A(uK)Xk—l -+ E(UK)uk

Algorithm 1 SSM (S4) Algorithm 2 SSM + Selection (S6)
Input: x : (B,L,D) Input: x : (B,L,D)
Output: y : (B,L,D) Output: y : (B,L,D)
1: A : (D,N) « Parameter 1: A : (D,N) « Parameter
> Represents structured N X N matrix > Represents structured N X N matrix
2: B : (D,N) « Parameter 2: B :(B,L,N) « sz(x)
3: C : (D,N) « Parameter 3: C : (B,L,N) « s-(x)
4: A : (D) « tp(Parameter) 4: A : (B,L,D) « tp(Parameter+s,(x))
5: A,B : (D,N) « discretize(A, A, B) 5: A,B : (B,L,D,N) « discretize(A, A, B)
6: y « SSM(A, B,C)(x) 6: y « SSM(A, B, C)(x)
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: returny 7: returny

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Xp = A(uK)Xk—l -+ E(UK)uk

Algorithm 1 SSM (S4)

Algorithm 2 SSM + Selection (S6)

Input: x : (B,L,D)
Output: y : (B,L,D)

: A : (D,N) « Parameter
> Represents structured N X N matrix

—

Input: x : (B,L,D)
Output: y : (B,L,D)
: A : (D,N) « Parameter

1

> Represents structured N X N matrix

 Scans are limited by memory bandwidth
 This scan loads SSM params from slow HBM to

2: B : (D,N) « Parameter 2: B :(B,L,N) « sz(x)
3: C : (D,N) « Parameter 3: C :(B,L,N) « s-(x) = = =
4: é:_(D) « Ta(Parameter) 4: é:_(B,L,D) « Ta(Parameter+s,(x)) faSt SRAM’ _performs the dlscretlz_atlon and
5: A,B : (D,N) < discretize(, A, B) s: A, B : (B,L,D,N) « discretize(A, A, B) recurrence in SRAM, and then writes outputs back
6: y « SSM(A, B, C)(x) 6: y « SSM(A, B, C)(x) to HBM
> Time-invariant: recurrence or convolution > Time-varying: recurrence (scan) only
7: returny 7: returny
A
| - > - g 1-—-
—_—— 7 > —— >
__f . .
—— T\:g > : N 7— -_ >
he—q D | () h,
Y, : s l
. TN J | —
“H N By)|] |Ce 7t
\\ / ' A >
N ATTTTT s t

Project

GPU HBM

Selection Mechanism

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Mamba block design:

A A A

SSM SSM projection

—(#) <0> <O'> <O> Sequence
transformation

Conv Conv

Nonlinearity

\ 7\ 71N 7\ 7| @ oo

H3 X Gated MLP — Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Mamba paper results:
 For language, showed comparable performance to Attention on perplexity and standard academic benchmarks
 Also shows strong performance modeling DNA

Linear time-varying systems: S6/Mamba

Mamba paper results:
 For language, showed comparable performance to Attention on perplexity and standard academic benchmarks
 Also shows strong performance modeling DNA

Many Mamba for X papers quickly followed showing strong results in vision, diffusion etc., suggesting these LTV
systems can be very strong models.

Linear time-varying systems: S6/Mamba

Mamba paper results:
 For language, showed comparable performance to Attention on perplexity and standard academic benchmarks

 Also shows strong performance modeling DNA

Many Mamba for X papers quickly followed showing strong results in vision, diffusion etc., suggesting these LTV
systems can be very strong models.

But recall/copying problem in language seems to persist...:

- Repeat after me: Transformers are better than state space models at copying https://arxiv.org/abs/2402.01032

- Simple linear attention models balance recall-throughput tradeoff https://arxiv.org/abs/2402.18668

- Can Mamba learn how to learn? A comparative study on in-context learning tasks: https://arxiv.org/abs/2402.04248
- Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models https://arxiv.org/abs/

2402.19427

@ Hidden) (Hidden) (Hidden) [Hidden) VS- %
kvoka1|kv2 ‘/qzl - /kv(;]/kv;J/kv;

RNN RNN
(Unfolded)

-

s oV
kvn I qn

=

- kvo[kv1[kv2|kvs- .

\‘—>-..

kv3' ‘q3

https://arxiv.org/abs/2402.01032
https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2402.04248
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2402.19427

Wrapping up

Deep SSMs show the promise of combining simple linear systems with deep learning techniques to create powerful and
efficient systems for a variety of data modalities.

Useful blogs/resources:

* https://srush.github.io/annotated-s4/

* https://srush.github.io/annotated-mamba/hard.html

* https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

Interesting questions/directions:

* Fixed state size vs memory capacity

LTI vs LTV systems, or FFTs vs Scans?

 Which data modalities do these methods (or their variants) excel or struggle on?
 Hybrid (attention + SSM) methods

* Importing more ideas from control theory and dynamical systems

 Connecting with probabilistic state space models

https://srush.github.io/annotated-s4/
https://srush.github.io/annotated-mamba/hard.html
https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

Thank you!

Email: jsmith14@stanford.edu

Feel free to reach out if you have questions or would like to discuss anything in more detail.

