
Deep State Space Models

Stats 305B

Jimmy Smith

03/04/2024

Linderman
Lab

Agenda

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

• Introduction, motivation, prior approaches

• Linear state space models (SSMs) overview

• S4, convolutions, parameterization

• S5, diagonalization, parallel scans

• S6/Mamba, data-dependent dynamics

• Conclusion

Agenda

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

• Introduction, motivation, prior approaches
• Linear state space models (SSMs) overview

• S4, convolutions, parameterization

• S5, diagonalization, parallel scans

• S6/Mamba, data-dependent dynamics

• Conclusion

Motivation: Efficiently modeling long sequences

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

onset Go cue acquisition
Target Target Target Target

Figure 1: NLB ‘21 datasets span four diverse brain area/task combinations. For each behavioral task
(center row), the top left panel presents the distribution of firing rates of the neurons in the dataset, while the top
right highlights the recorded brain area. Lower panels present sample spike rasters, aligned to task events. Tasks:
Motor cortical (MC) datasets include a center-out instructed delay reaching task with stereotyped conditions
(Maze) and a continuous series of reaches in a random target task (RTT). Data from somatosensory cortex (Area
2) include externally-perturbed movements and volitional, goal-directed movements. Data from dorso-medial
frontal cortex (DMFC) are during the Ready-Set-Go (RSG) cognitive time interval reproduction task.

All datasets contain electrophysiological measurements recorded using intracortical microelectrode
arrays. Preliminary signal processing was applied to the raw voltage recordings to extract spiking
activity. While this process of spike sorting is imperfect and a subject of active study, we view it as a
distinct problem from the process of extracting latent structure in the data, and thus provide datasets in
spike-sorted form. Detailed descriptions of each dataset can be found in the Appendix. All datasets are
available through DANDI (Distributed Archives for Neurophysiology Data Integration) in the NWB
(Neurodata without Borders) standard [27]. Links can be found at https://neurallatents.github.io/.
Note that our benchmark uses select recording sessions from larger datasets with potentially many
other sessions. Thus, related data to those we present here may have been separately uploaded for
public use (e.g., on DANDI), but those releases exclude the specific recording sessions used for
NLB’21.

MC_Maze. The Maze datasets consist of recordings from primary motor and dorsal premotor cortices
while a monkey made reaches with an instructed delay to visually presented targets while avoiding the
boundaries of a virtual maze [28]. The monkey made reaches in 108 behavioral task configurations,
where each task configuration used a different combination of target position, numbers of virtual
barriers, and barrier positions. These different configurations elicited a wide variety of straight and
curved reach trajectories, and each configuration was attempted by the monkey many times in random
order, resulting in thousands of trials recorded across a given experimental session.

The Maze datasets are exceptional in their combination of behavioral richness (number of task con-
figurations), stereotyped behavior across repeated trials (tens of repeats for each task configuration),
and high total trial counts (thousands) – these attributes support averaging neuronal activity across
repeated trials as a simple, first-pass de-noising strategy [3], while retaining enough diversity in task
conditions to allow rich investigation into the structure of the population activity [29]. Additionally,
the instructed delay paradigm allows movement preparation before presenting a go cue, which enables
a clean separation of the neural processes related to preparation and execution [28, 30]. Due to the
instructed delay paradigm and lack of unpredictable task events, population activity during the execu-
tion phase is largely predictable based on the state of the neural population at preparation, creating
a unique case where activity can be well-modeled as an autonomous dynamical system [30–32, 4].
With their unique properties, the Maze datasets have been extensively used in neuroscientific studies -
in particular, they have been critical for revealing a plethora of insights into the structure of neural
population activity during movement preparation and execution [28, 31, 33–40]. They have also been
used for validating a few LVMs individually [41, 32, 42, 8].

MC_Maze consists of one full session with 2869 total trials and 182 neurons, with simultaneously
monitored hand kinematics. We expect this dataset to serve as a basic yet versatile baseline for LVM
development (akin to a “neuroscience MNIST”). Additionally, to support a data-scaling benchmark
that characterizes data efficiency of LVMs, we provide three scaled datasets, each from separate

4

Applications: text, audio, forecasting, neuroscience, images, videos

Recurrent Neural Networks

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

Image Source: https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

Recurrent Neural Networks

Image Source: https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

Recurrent Neural Networks (RNNs)

Parallelizable training X
Fast autoregressive generation ✓

Avoid vanishing gradients X

Inherently sequential forward and backward pass (discussed in RNN lecture)

Constant time and space required to perform single step of generation

Difficult to train to retain information from the past due to this (discussed in RNN lecture)

Recurrent Neural Networks

Image Source: https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

Recurrent Neural Networks (RNNs)

Parallelizable training X
Fast autoregressive generation ✓

Avoid vanishing gradients X

Inherently sequential forward and backward pass (discussed in RNN lecture)

Constant time and space required to perform single step of generation

Difficult to train to retain information from the past due to this (discussed in RNN lecture)

Recurrent Neural Networks

Image Source: https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

Recurrent Neural Networks (RNNs)

Parallelizable training X
Fast autoregressive generation ✓

Avoid vanishing gradients X

Inherently sequential forward and backward pass (discussed in RNN lecture)

Constant time and space required to perform single step of generation

Difficult to train to retain information from the past due to this (discussed in RNN lecture)

Attention

Image Source: Vaswani 2017 https://arxiv.org/abs/1706.03762

Attention

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/

Queries

Keys

Values

 L X L matrix

Attention

Attention

Parallelizable training ✓
Fast autoregressive generation X

Avoid vanishing gradients ✓

Training

Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Again quadratic complexity, have to compare to all past keys and values each step
(growing “state” size, aka KV cache)

O(1) maximum path length between tokens

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Attention

Parallelizable training ✓
Fast autoregressive generation X

Avoid vanishing gradients ✓

Training

Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Again quadratic complexity, have to compare to all past keys and values each step
(growing “state” size, aka KV cache)

O(1) maximum path length between tokens

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Attention

Parallelizable training ✓
Fast autoregressive generation X

Avoid vanishing gradients ✓

Training Autoregressive Generation

Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Again quadratic complexity, have to compare to all past keys and values each step
(growing “state” size, aka KV cache)

O(1) maximum path length between tokens

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Attention

Parallelizable training ✓
Fast autoregressive generation X

Avoid vanishing gradients ✓

Training Autoregressive Generation

Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Again quadratic complexity, have to compare to all past keys and values each step
(growing “state” size, aka KV cache)

O(1) maximum path length between tokens

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Attention

Parallelizable training ✓
Fast autoregressive generation X

Avoid vanishing gradients ✓

Training Autoregressive Generation

Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Again quadratic complexity, have to compare to all past keys and values each step
(growing “state” size, aka KV cache)

O(1) maximum path length between tokens

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Attention

Attention

Parallelizable training ✓
Fast autoregressive generation X

Avoid vanishing gradients ✓

Training Autoregressive Generation

Matrix multiplications, modern hardware (GPUs/TPUs) is highly optimized for this (though quadratic complexity)

Again quadratic complexity, have to compare to all past keys and values each step
(growing “state” size, aka KV cache)

O(1) maximum path length between tokens

Image Source: https://jalammar.github.io/illustrated-transformer/https://jalammar.github.io/illustrated-transformer/,
Oren 2024: https://arxiv.org/abs/2401.06104

Long Convolutions

Attention

Parallelizable training ✓
Fast autoregressive generation X

Avoid vanishing gradients ✓

FFTs, subquadratic complexity

Quadratic complexity, but can distill into SSM post training (Laughing Hyena, Massaroli 2023)

No recurrence to have to compute gradients through.

Poli et al. Hyena Hierarchy: Towards Larger Convolutional Language Models. 2023.
Massaroli et al. Laughing Hyena Distillery: Extracting Compact Recurrences From Convolutions. 2023.

Recurrent Neural
Networks (RNNs) Convolutions Attention Deep SSMs

e.g. S4 (Gu et al. ICLR 2022)

Parallelizable
training X ✓ ✓

(Quadratic complexity)
✓

(Subquadratic complexity)

Fast autoregressive
generation ✓ X X ✓

Avoid vanishing
gradients X ✓ ✓ ✓

Prior approaches to model long sequences

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

Attention Approximations

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

Image Source: https://hazyresearch.stanford.edu/blog/2023-12-11-zoology2-based,
Child 2019: https://arxiv.org/abs/1904.10509v1

Linearized Attention

e.g. Linear Transformers (Katharopoulos 2020),
Based (Arora 2024)

Attention Approximations

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

Image Source: https://hazyresearch.stanford.edu/blog/2023-12-11-zoology2-based,
Child 2019: https://arxiv.org/abs/1904.10509v1

Linearized Attention Sparse Attention

e.g. Linear Transformers (Katharopoulos 2020),
Based (Arora 2024)

e.g. Sparse Transformers (Child 2019),
Big Bird (Zaheer 2020)

Long range benchmarks
Table 10: Full results for the Long Range Arena (LRA) benchmark for long-range dependencies in sequence models.
(Top): Original Transformer variants in LRA. (Bottom): Other models reported in the literature.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67

Transformer 36.37 64.27 57.46 42.44 71.40 7 53.66
Local Attention 15.82 52.98 53.39 41.46 66.63 7 46.71
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 7 51.03
Longformer 35.63 62.85 56.89 42.22 69.71 7 52.88
Linformer 35.70 53.94 52.27 38.56 76.34 7 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 7 50.56
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 7 51.23
Synthesizer 36.99 61.68 54.67 41.61 69.45 7 52.40
BigBird 36.05 64.02 59.29 40.83 74.87 7 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 7 50.46
Performer 18.01 65.40 53.82 42.77 77.05 7 51.18

FNet 35.33 65.11 59.61 38.67 77.80 7 54.42
Nyströmformer 37.15 65.52 79.56 41.58 70.94 7 57.46
Luna-256 37.25 64.57 79.29 47.38 77.72 7 59.37
S4 (original) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
S4 (updated) 59.60 86.82 90.90 88.65 94.20 96.35 86.09

Benchmarks against E�cient Transformers Following [40], the Transformer models had 4 layers,
hidden dimension 256 with 4 heads, query/key/value projection dimension 128, and batch size 32, for a total
of roughly 600k parameters. The S4 model was parameter tied while keeping the depth and hidden dimension
constant (leading to a state size of N = 256).

We note that the relative orderings of these methods can vary depending on the exact hyperparameter
settings.

D.2 Long-Range Dependencies

This section includes information for reproducing our experiments on the Long-Range Arena and Speech
Commands long-range dependency tasks.

Long Range Arena Table 10 contains extended results table with all 11 methods considered in [40].

For the S4 model, hyperparameters for all datasets are reported in Table 11. For all datasets, we used the
AdamW optimizer with a constant learning rate schedule with decay on validation plateau. However, the
learning rate on HiPPO parameters (in particular ⇤,P ,Q,B,C,�) were reduced to a maximum starting
LR of 0.001, which improves stability since the HiPPO equation is crucial to performance.

The S4 state size was always fixed to N = 64.

As S4 is a sequence-to-sequence model with output shape (batch, length, dimension) and LRA tasks are
classification, mean pooling along the length dimension was applied after the last layer.

We note that most of these results were trained for far longer than what was necessary to achieve SotA results
(e.g., the Image task reaches SotA in 1 epoch). Results often keep improving with longer training times.

Updated results. The above hyperparameters describe the results reported in the original paper, shown in
Table 10, which have since been improved. See Appendix D.5.

Hardware. All models were run on single GPU. Some tasks used an A100 GPU (notably, the Path-X
experiments), which has a larger max memory of 40Gb. To reproduce these on smaller GPUs, the batch size
can be reduced or gradients can be accumulated for two batches.

26

Long Range Arena

Table 2: Deep SSMs: The S4 parameterization with Algorithm 1
is asymptotically more e�cient than the LSSL.

Training Step (ms) Memory Alloc. (MB)

Dim. 128 256 512 128 256 512

LSSL 9.32 20.6 140.7 222.1 1685 13140
S4 4.77 3.07 4.75 5.3 12.6 33.5

Ratio 1.9⇥ 6.7⇥ 29.6⇥ 42.0⇥ 133⇥ 392⇥

Table 3: Benchmarks vs. e�cient Transformers

Length 1024 Length 4096

Speed Mem. Speed Mem.

Transformer 1⇥ 1⇥ 1⇥ 1⇥

Performer 1.23⇥ 0.43⇥ 3.79⇥ 0.086⇥
Linear Trans. 1.58⇥ 0.37⇥ 5.35⇥ 0.067⇥

S4 1.58⇥ 0.43⇥ 5.19⇥ 0.091⇥

Figure 2: Visualizations of a trained S4 model on LRA Path-X. SSM convolution kernels K 2 16384 are reshaped
into a 128⇥ 128 image. (Left) Example from the Path-X task, which involves deducing if the markers are connected
by a path (Top) Filters from the first layer (Bottom) Filters from the last layer.

Table 4: (Long Range Arena) (Top) Original Transformer variants in LRA. Full results in Appendix D.2. (Bottom)
Other models reported in the literature. Please read Appendix D.5 before citing this table.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Transformer 36.37 64.27 57.46 42.44 71.40 7 53.66
Reformer 37.27 56.10 53.40 38.07 68.50 7 50.56
BigBird 36.05 64.02 59.29 40.83 74.87 7 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 7 50.46
Performer 18.01 65.40 53.82 42.77 77.05 7 51.18

FNet 35.33 65.11 59.61 38.67 77.80 7 54.42
Nyströmformer 37.15 65.52 79.56 41.58 70.94 7 57.46
Luna-256 37.25 64.57 79.29 47.38 77.72 7 59.37
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09

e�cient Transformer variants benchmarked by Tay et al. [40]—Linear Transformer [22] and Performer [8]—in
a parameter-matched setting (Table 3, following the protocol of Tay et al. [40]).

4.2 Learning Long Range Dependencies

As described in Sections 2.2 and 3.1, S4 uses a principled approach to address LRDs based on the HiPPO
theory of continuous-time memorization. Our goal in this section is to validate that S4 achieves high
performance on di�cult tasks that require long-range reasoning. We focus here on two problems: (i) the
Long-Range Arena, a well-known benchmark designed to test e�cient sequence models on LRDs, and (ii) a
speech classification problem as a real-world test of LRDs.

Long Range Arena (LRA). LRA [40] contains 6 tasks with lengths 1K-16K steps, encompassing modalities

8

Path-X example:

Tay et al. Long Range Arena: A Benchmark for Efficient Transformers. 2020.
Linsley et al. Learning long-range spatial dependencies with horizontal gated recurrent units. 2018.

Recurrent Neural
Networks (RNNs) Convolutions Attention Deep SSMs

e.g. S4 (Gu et al. ICLR 2022)

Parallelizable
training X ✓ ✓

(Quadratic complexity)
✓

(Subquadratic complexity)

Fast autoregressive
generation ✓ X X ✓

Avoid vanishing
gradients X ✓ ✓ ✓

Deep SSMs

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

Recurrent Neural
Networks (RNNs) Convolutions Attention Deep SSMs

e.g. S4 (Gu et al. ICLR 2022)

Parallelizable
training X ✓ ✓

(Quadratic complexity)
✓

(Subquadratic complexity)

Fast autoregressive
generation ✓ X X ✓

Avoid vanishing
gradients X ✓ ✓ ✓

Deep SSMs

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

• In order to deal with long-range temporal dependencies needed for raw audio generation,
we develop new architectures based on dilated causal convolutions, which exhibit very
large receptive fields.

• We show that when conditioned on a speaker identity, a single model can be used to gener-
ate different voices.

• The same architecture shows strong results when tested on a small speech recognition
dataset, and is promising when used to generate other audio modalities such as music.

We believe that WaveNets provide a generic and flexible framework for tackling many applications
that rely on audio generation (e.g. TTS, music, speech enhancement, voice conversion, source sep-
aration).

2 WAVENET

In this paper we introduce a new generative model operating directly on the raw audio waveform.
The joint probability of a waveform x = {x1, . . . , xT } is factorised as a product of conditional
probabilities as follows:

p (x) =
TY

t=1

p (xt | x1, . . . , xt�1) (1)

Each audio sample xt is therefore conditioned on the samples at all previous timesteps.

Similarly to PixelCNNs (van den Oord et al., 2016a;b), the conditional probability distribution is
modelled by a stack of convolutional layers. There are no pooling layers in the network, and the
output of the model has the same time dimensionality as the input. The model outputs a categorical
distribution over the next value xt with a softmax layer and it is optimized to maximize the log-
likelihood of the data w.r.t. the parameters. Because log-likelihoods are tractable, we tune hyper-
parameters on a validation set and can easily measure if the model is overfitting or underfitting.

2.1 DILATED CAUSAL CONVOLUTIONS

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Figure 2: Visualization of a stack of causal convolutional layers.

The main ingredient of WaveNet are causal convolutions. By using causal convolutions, we
make sure the model cannot violate the ordering in which we model the data: the prediction
p (xt+1 | x1, ..., xt) emitted by the model at timestep t cannot depend on any of the future timesteps
xt+1, xt+2, . . . , xT as shown in Fig. 2. For images, the equivalent of a causal convolution is a
masked convolution (van den Oord et al., 2016a) which can be implemented by constructing a mask
tensor and doing an elementwise multiplication of this mask with the convolution kernel before ap-
plying it. For 1-D data such as audio one can more easily implement this by shifting the output of a
normal convolution by a few timesteps.

At training time, the conditional predictions for all timesteps can be made in parallel because all
timesteps of ground truth x are known. When generating with the model, the predictions are se-
quential: after each sample is predicted, it is fed back into the network to predict the next sample.

2

S4 captures long-range dependencies
Table 10: Full results for the Long Range Arena (LRA) benchmark for long-range dependencies in sequence models.
(Top): Original Transformer variants in LRA. (Bottom): Other models reported in the literature.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67

Transformer 36.37 64.27 57.46 42.44 71.40 7 53.66
Local Attention 15.82 52.98 53.39 41.46 66.63 7 46.71
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 7 51.03
Longformer 35.63 62.85 56.89 42.22 69.71 7 52.88
Linformer 35.70 53.94 52.27 38.56 76.34 7 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 7 50.56
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 7 51.23
Synthesizer 36.99 61.68 54.67 41.61 69.45 7 52.40
BigBird 36.05 64.02 59.29 40.83 74.87 7 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 7 50.46
Performer 18.01 65.40 53.82 42.77 77.05 7 51.18

FNet 35.33 65.11 59.61 38.67 77.80 7 54.42
Nyströmformer 37.15 65.52 79.56 41.58 70.94 7 57.46
Luna-256 37.25 64.57 79.29 47.38 77.72 7 59.37
S4 (original) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
S4 (updated) 59.60 86.82 90.90 88.65 94.20 96.35 86.09

Benchmarks against E�cient Transformers Following [40], the Transformer models had 4 layers,
hidden dimension 256 with 4 heads, query/key/value projection dimension 128, and batch size 32, for a total
of roughly 600k parameters. The S4 model was parameter tied while keeping the depth and hidden dimension
constant (leading to a state size of N = 256).

We note that the relative orderings of these methods can vary depending on the exact hyperparameter
settings.

D.2 Long-Range Dependencies

This section includes information for reproducing our experiments on the Long-Range Arena and Speech
Commands long-range dependency tasks.

Long Range Arena Table 10 contains extended results table with all 11 methods considered in [40].

For the S4 model, hyperparameters for all datasets are reported in Table 11. For all datasets, we used the
AdamW optimizer with a constant learning rate schedule with decay on validation plateau. However, the
learning rate on HiPPO parameters (in particular ⇤,P ,Q,B,C,�) were reduced to a maximum starting
LR of 0.001, which improves stability since the HiPPO equation is crucial to performance.

The S4 state size was always fixed to N = 64.

As S4 is a sequence-to-sequence model with output shape (batch, length, dimension) and LRA tasks are
classification, mean pooling along the length dimension was applied after the last layer.

We note that most of these results were trained for far longer than what was necessary to achieve SotA results
(e.g., the Image task reaches SotA in 1 epoch). Results often keep improving with longer training times.

Updated results. The above hyperparameters describe the results reported in the original paper, shown in
Table 10, which have since been improved. See Appendix D.5.

Hardware. All models were run on single GPU. Some tasks used an A100 GPU (notably, the Path-X
experiments), which has a larger max memory of 40Gb. To reproduce these on smaller GPUs, the batch size
can be reduced or gradients can be accumulated for two batches.

26

Long Range Arena

Table 2: Deep SSMs: The S4 parameterization with Algorithm 1
is asymptotically more e�cient than the LSSL.

Training Step (ms) Memory Alloc. (MB)

Dim. 128 256 512 128 256 512

LSSL 9.32 20.6 140.7 222.1 1685 13140
S4 4.77 3.07 4.75 5.3 12.6 33.5

Ratio 1.9⇥ 6.7⇥ 29.6⇥ 42.0⇥ 133⇥ 392⇥

Table 3: Benchmarks vs. e�cient Transformers

Length 1024 Length 4096

Speed Mem. Speed Mem.

Transformer 1⇥ 1⇥ 1⇥ 1⇥

Performer 1.23⇥ 0.43⇥ 3.79⇥ 0.086⇥
Linear Trans. 1.58⇥ 0.37⇥ 5.35⇥ 0.067⇥

S4 1.58⇥ 0.43⇥ 5.19⇥ 0.091⇥

Figure 2: Visualizations of a trained S4 model on LRA Path-X. SSM convolution kernels K 2 16384 are reshaped
into a 128⇥ 128 image. (Left) Example from the Path-X task, which involves deducing if the markers are connected
by a path (Top) Filters from the first layer (Bottom) Filters from the last layer.

Table 4: (Long Range Arena) (Top) Original Transformer variants in LRA. Full results in Appendix D.2. (Bottom)
Other models reported in the literature. Please read Appendix D.5 before citing this table.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Transformer 36.37 64.27 57.46 42.44 71.40 7 53.66
Reformer 37.27 56.10 53.40 38.07 68.50 7 50.56
BigBird 36.05 64.02 59.29 40.83 74.87 7 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 7 50.46
Performer 18.01 65.40 53.82 42.77 77.05 7 51.18

FNet 35.33 65.11 59.61 38.67 77.80 7 54.42
Nyströmformer 37.15 65.52 79.56 41.58 70.94 7 57.46
Luna-256 37.25 64.57 79.29 47.38 77.72 7 59.37
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09

e�cient Transformer variants benchmarked by Tay et al. [40]—Linear Transformer [22] and Performer [8]—in
a parameter-matched setting (Table 3, following the protocol of Tay et al. [40]).

4.2 Learning Long Range Dependencies

As described in Sections 2.2 and 3.1, S4 uses a principled approach to address LRDs based on the HiPPO
theory of continuous-time memorization. Our goal in this section is to validate that S4 achieves high
performance on di�cult tasks that require long-range reasoning. We focus here on two problems: (i) the
Long-Range Arena, a well-known benchmark designed to test e�cient sequence models on LRDs, and (ii) a
speech classification problem as a real-world test of LRDs.

Long Range Arena (LRA). LRA [40] contains 6 tasks with lengths 1K-16K steps, encompassing modalities

8

Path-X example:

S4 captures long-range dependencies
Table 10: Full results for the Long Range Arena (LRA) benchmark for long-range dependencies in sequence models.
(Top): Original Transformer variants in LRA. (Bottom): Other models reported in the literature.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67

Transformer 36.37 64.27 57.46 42.44 71.40 7 53.66
Local Attention 15.82 52.98 53.39 41.46 66.63 7 46.71
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 7 51.03
Longformer 35.63 62.85 56.89 42.22 69.71 7 52.88
Linformer 35.70 53.94 52.27 38.56 76.34 7 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 7 50.56
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 7 51.23
Synthesizer 36.99 61.68 54.67 41.61 69.45 7 52.40
BigBird 36.05 64.02 59.29 40.83 74.87 7 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 7 50.46
Performer 18.01 65.40 53.82 42.77 77.05 7 51.18

FNet 35.33 65.11 59.61 38.67 77.80 7 54.42
Nyströmformer 37.15 65.52 79.56 41.58 70.94 7 57.46
Luna-256 37.25 64.57 79.29 47.38 77.72 7 59.37
S4 (original) 58.35 76.02 87.09 87.26 86.05 88.10 80.48
S4 (updated) 59.60 86.82 90.90 88.65 94.20 96.35 86.09

Benchmarks against E�cient Transformers Following [40], the Transformer models had 4 layers,
hidden dimension 256 with 4 heads, query/key/value projection dimension 128, and batch size 32, for a total
of roughly 600k parameters. The S4 model was parameter tied while keeping the depth and hidden dimension
constant (leading to a state size of N = 256).

We note that the relative orderings of these methods can vary depending on the exact hyperparameter
settings.

D.2 Long-Range Dependencies

This section includes information for reproducing our experiments on the Long-Range Arena and Speech
Commands long-range dependency tasks.

Long Range Arena Table 10 contains extended results table with all 11 methods considered in [40].

For the S4 model, hyperparameters for all datasets are reported in Table 11. For all datasets, we used the
AdamW optimizer with a constant learning rate schedule with decay on validation plateau. However, the
learning rate on HiPPO parameters (in particular ⇤,P ,Q,B,C,�) were reduced to a maximum starting
LR of 0.001, which improves stability since the HiPPO equation is crucial to performance.

The S4 state size was always fixed to N = 64.

As S4 is a sequence-to-sequence model with output shape (batch, length, dimension) and LRA tasks are
classification, mean pooling along the length dimension was applied after the last layer.

We note that most of these results were trained for far longer than what was necessary to achieve SotA results
(e.g., the Image task reaches SotA in 1 epoch). Results often keep improving with longer training times.

Updated results. The above hyperparameters describe the results reported in the original paper, shown in
Table 10, which have since been improved. See Appendix D.5.

Hardware. All models were run on single GPU. Some tasks used an A100 GPU (notably, the Path-X
experiments), which has a larger max memory of 40Gb. To reproduce these on smaller GPUs, the batch size
can be reduced or gradients can be accumulated for two batches.

26

Long Range Arena

Table 2: Deep SSMs: The S4 parameterization with Algorithm 1
is asymptotically more e�cient than the LSSL.

Training Step (ms) Memory Alloc. (MB)

Dim. 128 256 512 128 256 512

LSSL 9.32 20.6 140.7 222.1 1685 13140
S4 4.77 3.07 4.75 5.3 12.6 33.5

Ratio 1.9⇥ 6.7⇥ 29.6⇥ 42.0⇥ 133⇥ 392⇥

Table 3: Benchmarks vs. e�cient Transformers

Length 1024 Length 4096

Speed Mem. Speed Mem.

Transformer 1⇥ 1⇥ 1⇥ 1⇥

Performer 1.23⇥ 0.43⇥ 3.79⇥ 0.086⇥
Linear Trans. 1.58⇥ 0.37⇥ 5.35⇥ 0.067⇥

S4 1.58⇥ 0.43⇥ 5.19⇥ 0.091⇥

Figure 2: Visualizations of a trained S4 model on LRA Path-X. SSM convolution kernels K 2 16384 are reshaped
into a 128⇥ 128 image. (Left) Example from the Path-X task, which involves deducing if the markers are connected
by a path (Top) Filters from the first layer (Bottom) Filters from the last layer.

Table 4: (Long Range Arena) (Top) Original Transformer variants in LRA. Full results in Appendix D.2. (Bottom)
Other models reported in the literature. Please read Appendix D.5 before citing this table.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg

Transformer 36.37 64.27 57.46 42.44 71.40 7 53.66
Reformer 37.27 56.10 53.40 38.07 68.50 7 50.56
BigBird 36.05 64.02 59.29 40.83 74.87 7 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 7 50.46
Performer 18.01 65.40 53.82 42.77 77.05 7 51.18

FNet 35.33 65.11 59.61 38.67 77.80 7 54.42
Nyströmformer 37.15 65.52 79.56 41.58 70.94 7 57.46
Luna-256 37.25 64.57 79.29 47.38 77.72 7 59.37
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09

e�cient Transformer variants benchmarked by Tay et al. [40]—Linear Transformer [22] and Performer [8]—in
a parameter-matched setting (Table 3, following the protocol of Tay et al. [40]).

4.2 Learning Long Range Dependencies

As described in Sections 2.2 and 3.1, S4 uses a principled approach to address LRDs based on the HiPPO
theory of continuous-time memorization. Our goal in this section is to validate that S4 achieves high
performance on di�cult tasks that require long-range reasoning. We focus here on two problems: (i) the
Long-Range Arena, a well-known benchmark designed to test e�cient sequence models on LRDs, and (ii) a
speech classification problem as a real-world test of LRDs.

Long Range Arena (LRA). LRA [40] contains 6 tasks with lengths 1K-16K steps, encompassing modalities

8

Path-X example:

Agenda

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

• Introduction, motivation, prior approaches

• Linear state space models (SSMs) overview
• S4, convolutions, parameterization

• S5, diagonalization, parallel scans

• S6/Mamba, data-dependent dynamics

• Conclusion

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input Signal:

Hidden State:

Output Signal:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dh(t)

dt
= Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)

dx(t)

dt
= A(t)x(t) +B(t)u(t) (2)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

hk = Ahk�1 +Bxk, yk = Chk +Dxk, (3)

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dh(t)

dt
= Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)

dx(t)

dt
= A(t)x(t) +B(t)u(t) (2)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

hk = Ahk�1 +Bxk, yk = Chk +Dxk, (3)

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

dh(t)

dt
= Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)

dx(t)

dt
= A(t)x(t) +B(t)u(t) (2)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

hk = Ahk�1 +Bxk, yk = Chk +Dxk, (3)

xk = A(u1:k)xk�1 +B(u1:k)uk (4)

xk = A(�k)xk�1 +B(�k)uk (5)

u0
k
= f(yk) (6)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

2.2 PARALLELIZING LINEAR STATE SPACE MODELS WITH SCANS

We use parallel scans to efficiently compute the states of a discretized linear SSM. Given a binary
associative operator • (i.e. (a • b) • c = a • (b • c)) and a sequence of L elements [a1, a2, ..., aL], the
scan operation (sometimes referred to as all-prefix-sum) returns the sequence

[a1, (a1 • a2), ..., (a1 • a2 • ... • aL)]. (7)

Computing a length L linear recurrence of a discretized SSM, xk = Axk�1 +Buk as in (3), is a
specific example of a scan operation. As discussed in Section 1.4 of Blelloch (1990), parallelizing
the linear recurrence of the latent transitions in the discretized SSM above can be computed in a
parallel time of O(T� logL), assuming L processors, where T� represents the cost of matrix-matrix
multiplication. For a general matrix A 2 RP⇥P , T� is O(P 3). This can be prohibitively expensive
in deep learning settings. However, if A is a diagonal matrix, the parallel time becomes O(P logL)
with L processors and only requires O(PL) space. Finally, we note that efficient parallel scans are
implemented in a work-efficient manner, thus the total computational cost of the parallel scan with a
diagonal matrix is O(PL) operations. See Appendix H for more information on parallel scans.

2.3 S4: STRUCTURED STATE SPACE SEQUENCE LAYERS

The S4 layer (Gu et al., 2021a) defines a nonlinear sequence-to-sequence transformation, mapping
from an input sequence u1:L 2 RL⇥H to an output sequence u0

1:L 2 RL⇥H . An S4 layer contains a
bank of H independent single-input, single-output (SISO) SSMs with N -dimensional states. Each
S4 SSM is applied to one dimension of the input sequence. This results in an independent linear
transformation from each input channel to each preactivation channel. A nonlinear activation function
is then applied to the preactivations. Finally, a position-wise linear mixing layer is applied to combine
the independent features and produce the output sequence u0

1:L. Figure 4a in the appendix illustrates
the view of the S4 layer as a bank of independent SSMs. Figure 2a shows an alternative view of S4
as one large SSM with state size HN and block-diagonal state, input and output matrices.

Each S4 SSM leverages the HiPPO framework for online function approximation (Gu et al., 2020a)
by initializing the state matrices with a HiPPO matrix (most often the HiPPO-LegS matrix). This was

3

State Matrix:

Input Matrix:
Output Matrix:

Feedthrough Matrix:

Continuous-time, linear state space model (SSM):

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Discretized linear SSM:

Published as a conference paper at ICLR 2023

dh(t)

dt
= Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)

dx(t)

dt
= A(t)x(t) +B(t)u(t) (2)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

hk = Ahk�1 +Bxk, yk = Chk +Dxk, (3)

xk = A(u1:k)xk�1 +B(u1:k)uk (4)

xk = A(�k)xk�1 +B(�k)uk (5)

u0
k
= f(yk) (6)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

2.2 PARALLELIZING LINEAR STATE SPACE MODELS WITH SCANS

We use parallel scans to efficiently compute the states of a discretized linear SSM. Given a binary
associative operator • (i.e. (a • b) • c = a • (b • c)) and a sequence of L elements [a1, a2, ..., aL], the
scan operation (sometimes referred to as all-prefix-sum) returns the sequence

[a1, (a1 • a2), ..., (a1 • a2 • ... • aL)]. (7)

Computing a length L linear recurrence of a discretized SSM, xk = Axk�1 +Buk as in (3), is a
specific example of a scan operation. As discussed in Section 1.4 of Blelloch (1990), parallelizing
the linear recurrence of the latent transitions in the discretized SSM above can be computed in a
parallel time of O(T� logL), assuming L processors, where T� represents the cost of matrix-matrix
multiplication. For a general matrix A 2 RP⇥P , T� is O(P 3). This can be prohibitively expensive
in deep learning settings. However, if A is a diagonal matrix, the parallel time becomes O(P logL)
with L processors and only requires O(PL) space. Finally, we note that efficient parallel scans are
implemented in a work-efficient manner, thus the total computational cost of the parallel scan with a
diagonal matrix is O(PL) operations. See Appendix H for more information on parallel scans.

2.3 S4: STRUCTURED STATE SPACE SEQUENCE LAYERS

The S4 layer (Gu et al., 2021a) defines a nonlinear sequence-to-sequence transformation, mapping
from an input sequence u1:L 2 RL⇥H to an output sequence u0

1:L 2 RL⇥H . An S4 layer contains a
bank of H independent single-input, single-output (SISO) SSMs with N -dimensional states. Each
S4 SSM is applied to one dimension of the input sequence. This results in an independent linear
transformation from each input channel to each preactivation channel. A nonlinear activation function
is then applied to the preactivations. Finally, a position-wise linear mixing layer is applied to combine
the independent features and produce the output sequence u0

1:L. Figure 4a in the appendix illustrates
the view of the S4 layer as a bank of independent SSMs. Figure 2a shows an alternative view of S4
as one large SSM with state size HN and block-diagonal state, input and output matrices.

Each S4 SSM leverages the HiPPO framework for online function approximation (Gu et al., 2020a)
by initializing the state matrices with a HiPPO matrix (most often the HiPPO-LegS matrix). This was

3

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

E.g. using Zero-order hold (ZOH):

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input Signal:

Hidden State:

Output Signal:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:
Output Matrix:

Feedthrough Matrix:

Continuous-time, linear state space model (SSM):

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Discretized linear SSM:

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

E.g. using Zero-order hold (ZOH):

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

u(t) 2 RU

x(t) 2 RN

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input Signal:

Hidden State:

Output Signal:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:
Output Matrix:

Feedthrough Matrix:

Continuous-time, linear state space model (SSM):

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Discretized linear SSM:

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

E.g. using Zero-order hold (ZOH):

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

u(t) 2 RU

x(t) 2 RN

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input Signal:

Hidden State:

Output Signal:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:
Output Matrix:

Feedthrough Matrix:

Continuous-time, linear state space model (SSM):

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Discretized linear SSM:

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

E.g. using Zero-order hold (ZOH):

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

u(t) 2 RU

x(t) 2 RN

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input Signal:

Hidden State:

Output Signal:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:
Output Matrix:

Feedthrough Matrix:

Continuous-time, linear state space model (SSM):

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Discretized linear SSM:

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

E.g. using Zero-order hold (ZOH):

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

u(t) 2 RU

x(t) 2 RN

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input Signal:

Hidden State:

Output Signal:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:
Output Matrix:

Feedthrough Matrix:

Continuous-time, linear state space model (SSM):

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Discretized linear SSM:

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

E.g. using Zero-order hold (ZOH):

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

u(t) 2 RU

x(t) 2 RN

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Input Signal:

Hidden State:

Output Signal:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:
Output Matrix:

Feedthrough Matrix:

Continuous-time, linear state space model (SSM):

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Discretized linear SSM:

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

E.g. using Zero-order hold (ZOH):

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

u(t) 2 RU

x(t) 2 RN

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Treat as learnable parameter.

Key idea of Deep SSMs: Linear in time, nonlinear in depth

Input sequence

State Space Layer
Linear SSM

Nonlinearity

Output sequence

Nonlinear activation:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

E.g: gelu, GLU, layer norm, dropout, etc.

Key idea of Deep SSMs: Linear in time, nonlinear in depth

State Space Layer
Linear SSM

Nonlinearity

State Space Layer
Linear SSM

Nonlinearity

Key idea of Deep SSMs: Linear in time, nonlinear in depth
Input sequence

Encoder

State Space Layer
Linear SSM

Nonlinearity

Decoder

Output sequence

State Space Layer
Linear SSM

Nonlinearity

Key idea of Deep SSMs: Linear in time, nonlinear in depth
Input sequence

Encoder

State Space Layer
Linear SSM

Nonlinearity

Decoder

Output sequence

State Space Layer
Linear SSM

Nonlinearity

Linear in time: Efficient parallelization across the sequence

Key idea of Deep SSMs: Linear in time, nonlinear in depth
Input sequence

Encoder

State Space Layer
Linear SSM

Nonlinearity

Decoder

Output sequence

State Space Layer
Linear SSM

Nonlinearity

Linear in time: Efficient parallelization across the sequence

Nonlinear in depth: Stack of state space layers

 can represent nonlinear systems

Key idea of Deep SSMs: Linear in time, nonlinear in depth
Input sequence

Encoder

State Space Layer
Linear SSM

Nonlinearity

Decoder

Output sequence

State Space Layer
Linear SSM

Nonlinearity

Linear in time: Efficient parallelization across the sequence

Nonlinear in depth: Stack of state space layers

 can represent nonlinear systems
Expressivity Results:
• Orvieto et al. 2023: https://arxiv.org/abs/2307.11888
• Wang et al. 2023: https://arxiv.org/abs/2309.13414

https://arxiv.org/abs/2307.11888
https://arxiv.org/abs/2309.13414

Key idea of Deep SSMs: Linear in time, nonlinear in depth
Input sequence

Encoder

State Space Layer
Linear SSM

Nonlinearity

Decoder

Output sequence

State Space Layer
Linear SSM

Nonlinearity

Discretized:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

•Fast parallel processing

•Fast stateful autoregressive generation

•Can precisely initialize to handle long-range
dependencies (e.g. HiPPO framework, Gu et al. 2020)

Key idea of Deep SSMs: Linear in time, nonlinear in depth
Input sequence

Encoder

State Space Layer
Linear SSM

Nonlinearity

Decoder

Output sequence

State Space Layer
Linear SSM

Nonlinearity

Note, prior attempts at linear RNNs:
• QRNNs (Bradbury 2017)
• SRUs (Lei 2017)
• Linear surrogate RNNs (Martin 2018)

Likely reasons why more recent round of linear SSMs/RNNs have gained popularity:
• Improved parameterizations
• Ideas from Transformers, e.g. backbones, layer normalizations, etc.
• Improved parallel algorithm implementations

Agenda

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

• Introduction, motivation, prior approaches

• Linear state space models (SSMs) overview

• S4, convolutions, parameterization
• S5, diagonalization, parallel scans

• S6/Mamba, data-dependent dynamics

• Conclusion

S4: Structural State Space Sequence Models

Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

S4 can be an RNN

RNN

S4 can be run as either an RNN for fast autoregressive generation
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

S4 can be an RNN or a CNN

RNN CNN

S4 can be run as either an RNN or a CNN for fast parallel processing

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Convolution
Kernel:

Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

1

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

1

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

1

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

1

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

1

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

1

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

1

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

1

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

1

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

1

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

State Matrix:

Input Matrix:

Output Matrix:

S4: Stack of single-input, single-output (SISO) SSMs

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal x(t) 2 RU , a latent state h(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

x(t) 2 RU

h(t) 2 RN

y(t) 2 RM

A 2 RN⇥N

B 2 RN⇥U

C 2 RM⇥N

D 2 RM⇥U

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

3

1

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

1

Motivation for this structure:
• Computation (1D convolutions)
• Parameterization and Initialization (HiPPO, designed for SISO SSMs)
• Parameter efficient way to expand the state size

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

S4 Computation: RNN Mode

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Unroll the recurrence:

Consider a single S4 SSM:

Convolution equivalence holds for
any linear time-invariant (LTI) system

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Unroll the recurrence:

Consider a single S4 SSM:

Convolution equivalence holds for
any linear time-invariant (LTI) system

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Unroll the recurrence:

Consider a single S4 SSM:

Convolution equivalence holds for
any linear time-invariant (LTI) system

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Unroll the recurrence:

Consider a single S4 SSM:

Convolution equivalence holds for
any linear time-invariant (LTI) system

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Unroll the recurrence:

Consider a single S4 SSM:

Convolution equivalence holds for
any linear time-invariant (LTI) system

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Unroll the recurrence:

Consider a single S4 SSM:

Convolution kernel:

Convolution equivalence holds for
any linear time-invariant (LTI) system

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Consider a single S4 SSM:

Convolution kernel:

Stack of SISO SSMs gives a range of 1D convolution kernels that
that can capture different timescales:

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Consider a single S4 SSM:

Convolution kernel:

Figure 1: S4D is a diagonal SSM which inherits the strengths of S4 while being much simpler. (Left) The diagonal
structure allows it to be viewed as a collection of 1-dimensional SSMs. (Right) As a convolutional model, S4D has a
simple interpretable convolution kernel which can be implemented in two lines of code. Colors denote independent
1-D SSMs; purple denotes trainable parameters.

a good initialization is critical. Gu et al. [9] showed that it is di�cult to find a performant diagonal SSM,
and that many alternative parameterizations of the state matrix – including by random diagonal matrices –
are much less e↵ective empirically, which motivated the necessity of the more complicated HiPPO matrix.
However, recently Gupta [11] made the empirical observation that a variant of S4 using a particular diagonal
matrix is nearly as e↵ective as the original S4 method. This matrix is based on the original HiPPO matrix
and is defined by simply chopping o↵ the low-rank term in the DPLR representation.

The discovery of performant diagonal state matrices opens up new possibilities for simplifying deep state space
models, and consolidating models such as S4 and DSS to understand and improve them. First, the strongest
version of DSS computes the SSM with a complex-valued softmax that complicates the algorithm, and is
actually less e�cient than S4. Additionally, DSS and S4 di↵er in several auxiliary aspects of parameterizing
SSMs that can conflate performance e↵ects, making it more di�cult to isolate the core e↵ects of diagonal
versus DPLR state matrices. Most importantly, DSS relies on initializing the state matrix to a particular
approximation of S4’s HiPPO matrix. While S4’s matrix has a mathematical interpretation for addressing
long-range dependencies, the e�cacy of the diagonal approximation to it remains theoretically unexplained.

In this work, we seek to systematically understand how to train diagonal SSMs. We introduce the S4D
method, a diagonal SSM which combines the best of S4’s computation and parameterization and DSS’s
initialization, resulting in a method that is extremely simple, theoretically princpled, and empirically e↵ective.

• First, we describe S4D, a simple method outlined by S4 for computing diagonal instead of DPLR matrices,
which is based on Vandermonde matrix multiplication and is even simpler and more e�cient than
the DSS. Outside of the core state matrix, we categorize di↵erent representations of the other components
of SSMs, introducing flexible design choices that capture both S4 and DSS and allow di↵erent SSM
parameterizations to be systematically compared (Section 3).

• We provide a new mathematical analysis of DSS’s initialization, showing that the diagonal approximation
of the original HiPPO matrix surprisingly produces the same dynamics as S4 when the state size goes
to infinity. We propose even simpler variants of diagonal SSMs using di↵erent initializations of the state
matrix (Section 4).

• We perform a controlled study of these various design choices across many domains, tasks, and sequence
lengths, and additionally compare diagonal (S4D) versus DPLR (S4) variants. Our best S4D methods are
competitive with S4 on almost all settings, with near state-of-the-art results on image, audio, and medical
time series benchmarks, and achieving 85% on the Long Range Arena benchmark (Section 5).

2

Stack of SISO SSMs gives a range of 1D convolution kernels that
that can capture different timescales:

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Convolution Theorem:

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Convolution Theorem:

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Convolution Theorem:

Given kernel, the convolution can be computed
with O(L logL) cost and O(L) space

Importantly, can be parallelized across the sequence

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Total cost of S4 layer:

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Total cost of S4 layer:
Nonlinear FFN

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Total cost of S4 layer:
Nonlinear FFN Convolutions (H channels)

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Total cost of S4 layer: (If we can compute kernel efficiently….
but this requires successive powers of A…)

Nonlinear FFN Convolutions (H channels)

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Total cost of S4 layer: (If we can compute kernel efficiently….
but this requires successive powers of A…)

Nonlinear FFN Convolutions (H channels)

• Naively, computing the kernel requires O(N^2L) operations

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Total cost of S4 layer: (If we can compute kernel efficiently….
but this requires successive powers of A…)

Nonlinear FFN Convolutions (H channels)

• Naively, computing the kernel requires O(N^2L) operations
• If dynamics matrix is diagonal, Vandermonde matrices can be used, O(NL)

time and space naively, but can in theory be cheaper

S4 Computation: Convolution Mode

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Consider a single S4 SSM:

Convolution kernel:

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

problem, the LSSL leveraged the HiPPO theory of continuous-time memorization [16]. HiPPO specifies a
class of certain matrices A 2 N⇥N that when incorporated into (1), allows the state x(t) to memorize the
history of the input u(t). The most important matrix in this class is defined by equation (2), which we will
call the HiPPO matrix. For example, the LSSL found that simply modifying an SSM from a random matrix
A to equation (2) improved its performance on the sequential MNIST benchmark from 60% to 98%.

(HiPPO Matrix) Ank = �

8
><

>:

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

. (2)

2.3 Discrete-time SSM: The Recurrent Representation

To be applied on a discrete input sequence (u0, u1, . . .) instead of continuous function u(t), (1) must be
discretized by a step size � that represents the resolution of the input. Conceptually, the inputs uk can be
viewed as sampling an implicit underlying continuous signal u(t), where uk = u(k�).

To discretize the continuous-time SSM, we follow prior work in using the bilinear method [43], which converts
the state matrix A into an approximation A . The discrete SSM is

xk = Axk�1 +Buk A = (I ��/2 ·A)�1(I +�/2 ·A)

yk = Cxk B = (I ��/2 ·A)�1�B C = C.
(3)

Equation (3) is now a sequence-to-sequence map uk 7! yk instead of function-to-function. Moreover the state
equation is now a recurrence in xk, allowing the discrete SSM to be computed like an RNN. Concretely,
xk 2 N can be viewed as a hidden state with transition matrix A.

Notationally, throughout this paper we use A,B, . . . to denote discretized SSM matrices defined by (3).
Note that these matrices are a function of both A as well as a step size �; we suppress this dependence for
notational convenience when it is clear.

2.4 Training SSMs: The Convolutional Representation

The recurrent SSM (3) is not practical for training on modern hardware due to its sequentiality. Instead, there
is a well-known connection between linear time-invariant (LTI) SSMs such as (1) and continuous convolutions.
Correspondingly, (3) can actually be written as a discrete convolution.

For simplicity let the initial state be x�1 = 0. Then unrolling (3) explicitly yields

x0 = Bu0 x1 = ABu0 +Bu1 x2 = A
2
Bu0 +ABu1 +Bu2 . . .

y0 = CBu0 y1 = CABu0 +CBu1 y2 = CA
2
Bu0 +CABu1 +CBu2 . . .

This can be vectorized into a convolution (4) with an explicit formula for the convolution kernel (5).

yk = CA
k
Bu0 +CA

k�1
Bu1 + · · ·+CABuk�1 +CBuk

y = K ⇤ u.
(4)

K 2 RL := KL(A,B,C) :=
⇣
CA

i
B
⌘

i2[L]
= (CB,CAB, . . . ,CA

L�1
B). (5)

In other words, equation (4) is a single (non-circular) convolution and can be computed very e�ciently with
FFTs, provided that K is known. However, computing K in (5) is non-trivial and is the focus of our technical
contributions in Section 3. We call K the SSM convolution kernel or filter.

4

Total cost of S4 layer: (If we can compute kernel efficiently….
but this requires successive powers of A…)

Nonlinear FFN Convolutions (H channels)

• Naively, computing the kernel requires O(N^2L) operations
• If dynamics matrix is diagonal, Vandermonde matrices can be used, O(NL)

time and space naively, but can in theory be cheaper
• S4 used a diagonal plus low rank (DPLR) dynamics matrix, so required a

sophisticated algorithm which resulted in the use of Cauchy kernels

Published as a conference paper at ICLR 2023

ÏÏ

p
q
Λ

DPLR

B
C
Δ

S4
SSM

Frequency domain
convolution kernel generation

Woodbury identity
Roots of unity
Cauchy kernel K ✕ y

u

FFT

IFFT
y1

Nonlinearity

Mixing layer

u1

Single S4 SSM

u’1

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

^

^

1:L

1:L

1:L

^

(a) S4 layer (Gu et al., 2021a) offline processing.

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

(b) S5 layer offline processing. Duplicated from the main text.

Figure 4: The computational components of the S4 layer (Gu et al., 2021a) (top) and the S5
layer (bottom) for offline application to a sequence. (a) The S4 layer applies an independent
SSM to each dimension of the input sequence u1:L 2 RL⇥H . This requires a Cauchy kernel
computation to compute the convolution kernel coefficients in the frequency domain. Convolutions
are computed using FFTs to produce the independent SSM outputs y1:L 2 RL⇥H . A nonlinear
activation function that includes a mixing layer is applied to the SSM outputs to produce the layer
outputs. (b) (Reproduced from Figure 1) The S5 layer uses a parallel scan on a diagonalized linear
SSM to compute the SSM outputs y1:L 2 RL⇥H . A nonlinear activation function is applied to the
SSM outputs to produce the layer outputs.

B.1.3 INITIALIZATION OF THE TIMESCALES

Prior work (Gupta et al., 2022; Gu et al., 2023) found the initialization of this timescale parameter
to be important. This is studied in detail in Gu et al. (2023). We sample these parameters in
line with S4 and sample each element of log� 2 RP from a uniform distribution on the interval
[log �min, log �max), where the default range is �min = 0.001 and �max = 0.1. The only exception is
the Path-X experiment, where we initialize from �min = 0.0001 and �max = 0.1 to account for the
longer timescales as discussed in Gu et al. (2023).

B.2 COMPARISON OF S4 AND S5 COMPUTATIONAL ELEMENTS

In Figure 4 we illustrate a comparison of the computational details of the S4 and S5 layers for efficient,
parallelized offline processing.

17

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent Memory with Optimal Polynomial Projections. (2020)

S4 work found using these matrices
 were really important for LRA

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent memory with optimal polynomial projections. (2020)
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 work found using these matrices
 were really important for LRA

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent memory with optimal polynomial projections. (2020)
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 work found using these matrices
 were really important for LRA

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent memory with optimal polynomial projections. (2020)
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 work found using these matrices
 were really important for LRA

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

From S4 paper:

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

S4 Parameterization and Initialization

Gu et al. HiPPO: Recurrent memory with optimal polynomial projections. (2020)
Gu et al. Efficiently modeling long sequences with structured state spaces. (2021)

S4 work found using these matrices
 were really important for LRA

These matrices cannot be diagonalized numerically, but can be conjugated into diagonal plus low-rank form:

Published as a conference paper at ICLR 2023

B S5 LAYER DETAILS

B.1 INITIALIZATION DETAILS

B.1.1 INITIALIZATION OF THE STATE MATRIX

Here we provide additional details to supplement the discussion of initialization in Section 3.2. Gu
et al. (2023) explains the ability of S4 to capture long-range dependencies when using the HiPPO-
LegS matrix via decomposing the input with respect to an infinitely long, exponentially decaying
measure. The HiPPO-LegS matrix and corresponding SISO input vector are defined as

(ALegS)nk = �

8
<

:

(2n+ 1)1/2(2k + 1)1/2, n > k

n+ 1, n = k

0, n < k

. (8)

(bLegS)n = (2n+ 1)
1
2 . (9)

Note that in Section 4.2, the input matrix BLegS 2 RN⇥H used in Corollary 1 is formed by
concatenating H copies of bLegS 2 RN .

Theorem 1 of Gu et al. (2021a) then shows that the HiPPO matrices in Gu et al. (2020a), AHiPPO 2

RN⇥N can be represented with a normal plus low-rank (NPLR) form consisting of a normal matrix,
ANormal

HiPPO = V⇤V⇤
2 RN⇥N , and a low-rank term

AHiPPO = ANormal
HiPPO �PQ> = V (⇤� (V⇤P)(V⇤Q)⇤)V⇤ (10)

A = ⇤� (V⇤P)(V⇤Q)⇤ (11)

for unitary V 2 CN⇥N , diagonal ⇤ 2 CN⇥N , and low-rank factorization P,Q 2 RN⇥r. The right
hand side of this equation shows HiPPO matrices can be conjugated into a diagonal plus low-rank
(DPLR) form. The HiPPO-LegS matrix can therefore be written in terms of the normal HiPPO-N
matrix and low-rank term PLegS 2 RN (Goel et al., 2022) as

ALegS = ANormal
LegS �PLegsP

>
Legs (12)

where

ANormal
LegSnk

= �

8
<

:

(n+ 1
2)

1/2(k + 1
2)

1/2
, n > k

1
2 , n = k

(n+ 1
2)

1/2(k + 1
2)

1/2
, n < k

. (13)

PLegsn = (n+
1

2
)

1
2 (14)

Our default is to set the S5 layer state matrix A = ANormal
LegS 2 RP⇥P , and take the eigendecomposi-

tion of this matrix to recover the initial ⇤. We often find it beneficial to also use V and V�1 = V⇤

to initialize B̃ and C̃, as described below.

As mentioned in Section 4.3, we also found that performance on many tasks benefited from initializing
the S5 state matrix as block-diagonal, with each block on the diagonal equal to ANormal

LegS 2 RR⇥R,
where R here is less than the state dimension P , e.g. R = P

4 when 4 blocks are used on the diagonal.
We then take the eigendecomposition of this matrix to initialize ⇤, as well as B̃ and C̃. We note that
even in this case, B̃ and C̃ are still initialized in dense form and there is no constraint that requires
A to remain block-diagonal during learning. In the hyperparameter table in Appendix G, the J

hyperparameter indicates the number of these HiPPO-N blocks used on the diagonal for initialization,
where J = 1 indicates we used the default case of initializing with a single HiPPO-N matrix. We
discuss the motivation for this block-diagonal initialization further in Appendix D.4.

16

+

From S4 paper:

We will discuss what
 these matrices are doing more later.

Main idea: Using HiPPO Theory (Gu et al. 2020), can represent history of a scalar signal
using a SISO linear SSM with special state matrix, HiPPO matrices.

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

Background: S4 needs to be an RNN and CNN

RNN CNN

S4 needs to be both an RNN and a CNN

This is elegant! But there are limitations:
• CNN mode requires time-invariant system
• CNN mode cannot easily access states
• Complicated implementation

Agenda

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

• Introduction, motivation, prior approaches

• Linear state space models (SSMs) overview

• S4, convolutions, parameterization

• S5, diagonalization, parallel scans
• S6/Mamba, data-dependent dynamics

• Conclusion

Can we get the same
 parallelizability, efficiency and performance,

as S4 while addressing these limitations?

Smith, Warrington, Linderman. Simplified State Space Layers for Sequence Modeling. 2022.

From S4 to S5: Fully Recurrent
Convolution

Figure 1: S4D is a diagonal SSM which inherits the strengths of S4 while being much simpler. (Left) The diagonal
structure allows it to be viewed as a collection of 1-dimensional SSMs. (Right) As a convolutional model, S4D has a
simple interpretable convolution kernel which can be implemented in two lines of code. Colors denote independent
1-D SSMs; purple denotes trainable parameters.

a good initialization is critical. Gu et al. [9] showed that it is di�cult to find a performant diagonal SSM,
and that many alternative parameterizations of the state matrix – including by random diagonal matrices –
are much less e↵ective empirically, which motivated the necessity of the more complicated HiPPO matrix.
However, recently Gupta [11] made the empirical observation that a variant of S4 using a particular diagonal
matrix is nearly as e↵ective as the original S4 method. This matrix is based on the original HiPPO matrix
and is defined by simply chopping o↵ the low-rank term in the DPLR representation.

The discovery of performant diagonal state matrices opens up new possibilities for simplifying deep state space
models, and consolidating models such as S4 and DSS to understand and improve them. First, the strongest
version of DSS computes the SSM with a complex-valued softmax that complicates the algorithm, and is
actually less e�cient than S4. Additionally, DSS and S4 di↵er in several auxiliary aspects of parameterizing
SSMs that can conflate performance e↵ects, making it more di�cult to isolate the core e↵ects of diagonal
versus DPLR state matrices. Most importantly, DSS relies on initializing the state matrix to a particular
approximation of S4’s HiPPO matrix. While S4’s matrix has a mathematical interpretation for addressing
long-range dependencies, the e�cacy of the diagonal approximation to it remains theoretically unexplained.

In this work, we seek to systematically understand how to train diagonal SSMs. We introduce the S4D
method, a diagonal SSM which combines the best of S4’s computation and parameterization and DSS’s
initialization, resulting in a method that is extremely simple, theoretically princpled, and empirically e↵ective.

• First, we describe S4D, a simple method outlined by S4 for computing diagonal instead of DPLR matrices,
which is based on Vandermonde matrix multiplication and is even simpler and more e�cient than
the DSS. Outside of the core state matrix, we categorize di↵erent representations of the other components
of SSMs, introducing flexible design choices that capture both S4 and DSS and allow di↵erent SSM
parameterizations to be systematically compared (Section 3).

• We provide a new mathematical analysis of DSS’s initialization, showing that the diagonal approximation
of the original HiPPO matrix surprisingly produces the same dynamics as S4 when the state size goes
to infinity. We propose even simpler variants of diagonal SSMs using di↵erent initializations of the state
matrix (Section 4).

• We perform a controlled study of these various design choices across many domains, tasks, and sequence
lengths, and additionally compare diagonal (S4D) versus DPLR (S4) variants. Our best S4D methods are
competitive with S4 on almost all settings, with near state-of-the-art results on image, audio, and medical
time series benchmarks, and achieving 85% on the Long Range Arena benchmark (Section 5).

2

Convolution limitations:
• Requires time-invariant

system
• Cannot easily access states

From S4 to S5: Fully Recurrent
Convolution Parallel scan (prefix-sum)

Figure 1: S4D is a diagonal SSM which inherits the strengths of S4 while being much simpler. (Left) The diagonal
structure allows it to be viewed as a collection of 1-dimensional SSMs. (Right) As a convolutional model, S4D has a
simple interpretable convolution kernel which can be implemented in two lines of code. Colors denote independent
1-D SSMs; purple denotes trainable parameters.

a good initialization is critical. Gu et al. [9] showed that it is di�cult to find a performant diagonal SSM,
and that many alternative parameterizations of the state matrix – including by random diagonal matrices –
are much less e↵ective empirically, which motivated the necessity of the more complicated HiPPO matrix.
However, recently Gupta [11] made the empirical observation that a variant of S4 using a particular diagonal
matrix is nearly as e↵ective as the original S4 method. This matrix is based on the original HiPPO matrix
and is defined by simply chopping o↵ the low-rank term in the DPLR representation.

The discovery of performant diagonal state matrices opens up new possibilities for simplifying deep state space
models, and consolidating models such as S4 and DSS to understand and improve them. First, the strongest
version of DSS computes the SSM with a complex-valued softmax that complicates the algorithm, and is
actually less e�cient than S4. Additionally, DSS and S4 di↵er in several auxiliary aspects of parameterizing
SSMs that can conflate performance e↵ects, making it more di�cult to isolate the core e↵ects of diagonal
versus DPLR state matrices. Most importantly, DSS relies on initializing the state matrix to a particular
approximation of S4’s HiPPO matrix. While S4’s matrix has a mathematical interpretation for addressing
long-range dependencies, the e�cacy of the diagonal approximation to it remains theoretically unexplained.

In this work, we seek to systematically understand how to train diagonal SSMs. We introduce the S4D
method, a diagonal SSM which combines the best of S4’s computation and parameterization and DSS’s
initialization, resulting in a method that is extremely simple, theoretically princpled, and empirically e↵ective.

• First, we describe S4D, a simple method outlined by S4 for computing diagonal instead of DPLR matrices,
which is based on Vandermonde matrix multiplication and is even simpler and more e�cient than
the DSS. Outside of the core state matrix, we categorize di↵erent representations of the other components
of SSMs, introducing flexible design choices that capture both S4 and DSS and allow di↵erent SSM
parameterizations to be systematically compared (Section 3).

• We provide a new mathematical analysis of DSS’s initialization, showing that the diagonal approximation
of the original HiPPO matrix surprisingly produces the same dynamics as S4 when the state size goes
to infinity. We propose even simpler variants of diagonal SSMs using di↵erent initializations of the state
matrix (Section 4).

• We perform a controlled study of these various design choices across many domains, tasks, and sequence
lengths, and additionally compare diagonal (S4D) versus DPLR (S4) variants. Our best S4D methods are
competitive with S4 on almost all settings, with near state-of-the-art results on image, audio, and medical
time series benchmarks, and achieving 85% on the Long Range Arena benchmark (Section 5).

2

Scan allows:
• Time-varying systems
• Access to states  

(parallel or autoregressive)

Convolution limitations:
• Requires time-invariant

system
• Cannot easily access states

From S4 to S5:

From S4 to S5: SISO to MIMO

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

compactness we denote the concatenation of the H S4 SSM states at discrete time index k as
x(1:H)
k

=
⇥
(x(1)

k
)>, . . . , (x(H)

k
)>

⇤>, and the H SSM outputs as yk =
⇥
y(1)
k

, . . . ,y(H)
k

⇤>.

3 THE S5 LAYER

In this section we present the S5 layer. We describe its structure, parameterization and computation,
particularly focusing on how each of these differ from S4.

3.1 S5 STRUCTURE: FROM SISO TO MIMO

The S5 layer replaces the bank of SISO SSMs (or large block-diagonal system) in S4 with a multi-
input, multi-output (MIMO) SSM, as in (1), with a latent state size P , and input and output dimension
H . The discretized version of this MIMO SSM can be applied to a vector-valued input sequence
u1:L 2 RL⇥H , to produce a vector-valued sequence of SSM outputs (or preactivations) y1:L 2 RL⇥H ,
using latent states xk 2 RP . A nonlinear activation function is then applied to produce a sequence
of layer outputs u0

1:L 2 RL⇥H . See Figure 2b for an illustration. Unlike S4, we do not require
an additional position-wise linear layer, since these features are already mixed. We note here that
compared to the HN latent size of the block-diagonal SSM in the S4 layer, S5’s latent size P can be
significantly smaller, allowing for the use of efficient parallel scans, as we discuss in Section 3.3.

4

Independent
single-input, single-output (SISO)

sequence maps

From S4 to S5: SISO to MIMO

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

compactness we denote the concatenation of the H S4 SSM states at discrete time index k as
x(1:H)
k

=
⇥
(x(1)

k
)>, . . . , (x(H)

k
)>

⇤>, and the H SSM outputs as yk =
⇥
y(1)
k

, . . . ,y(H)
k

⇤>.

3 THE S5 LAYER

In this section we present the S5 layer. We describe its structure, parameterization and computation,
particularly focusing on how each of these differ from S4.

3.1 S5 STRUCTURE: FROM SISO TO MIMO

The S5 layer replaces the bank of SISO SSMs (or large block-diagonal system) in S4 with a multi-
input, multi-output (MIMO) SSM, as in (1), with a latent state size P , and input and output dimension
H . The discretized version of this MIMO SSM can be applied to a vector-valued input sequence
u1:L 2 RL⇥H , to produce a vector-valued sequence of SSM outputs (or preactivations) y1:L 2 RL⇥H ,
using latent states xk 2 RP . A nonlinear activation function is then applied to produce a sequence
of layer outputs u0

1:L 2 RL⇥H . See Figure 2b for an illustration. Unlike S4, we do not require
an additional position-wise linear layer, since these features are already mixed. We note here that
compared to the HN latent size of the block-diagonal SSM in the S4 layer, S5’s latent size P can be
significantly smaller, allowing for the use of efficient parallel scans, as we discuss in Section 3.3.

4

Independent
single-input, single-output (SISO)

sequence maps

Large effective state size
prevents the use of (basic) parallel scans.

From S4 to S5: SISO to MIMO

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

compactness we denote the concatenation of the H S4 SSM states at discrete time index k as
x(1:H)
k

=
⇥
(x(1)

k
)>, . . . , (x(H)

k
)>

⇤>, and the H SSM outputs as yk =
⇥
y(1)
k

, . . . ,y(H)
k

⇤>.

3 THE S5 LAYER

In this section we present the S5 layer. We describe its structure, parameterization and computation,
particularly focusing on how each of these differ from S4.

3.1 S5 STRUCTURE: FROM SISO TO MIMO

The S5 layer replaces the bank of SISO SSMs (or large block-diagonal system) in S4 with a multi-
input, multi-output (MIMO) SSM, as in (1), with a latent state size P , and input and output dimension
H . The discretized version of this MIMO SSM can be applied to a vector-valued input sequence
u1:L 2 RL⇥H , to produce a vector-valued sequence of SSM outputs (or preactivations) y1:L 2 RL⇥H ,
using latent states xk 2 RP . A nonlinear activation function is then applied to produce a sequence
of layer outputs u0

1:L 2 RL⇥H . See Figure 2b for an illustration. Unlike S4, we do not require
an additional position-wise linear layer, since these features are already mixed. We note here that
compared to the HN latent size of the block-diagonal SSM in the S4 layer, S5’s latent size P can be
significantly smaller, allowing for the use of efficient parallel scans, as we discuss in Section 3.3.

4

Independent
single-input, single-output (SISO)

sequence maps

Large effective state size
prevents the use of (basic) parallel scans.

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

compactness we denote the concatenation of the H S4 SSM states at discrete time index k as
x(1:H)
k

=
⇥
(x(1)

k
)>, . . . , (x(H)

k
)>

⇤>, and the H SSM outputs as yk =
⇥
y(1)
k

, . . . ,y(H)
k

⇤>.

3 THE S5 LAYER

In this section we present the S5 layer. We describe its structure, parameterization and computation,
particularly focusing on how each of these differ from S4.

3.1 S5 STRUCTURE: FROM SISO TO MIMO

The S5 layer replaces the bank of SISO SSMs (or large block-diagonal system) in S4 with a multi-
input, multi-output (MIMO) SSM, as in (1), with a latent state size P , and input and output dimension
H . The discretized version of this MIMO SSM can be applied to a vector-valued input sequence
u1:L 2 RL⇥H , to produce a vector-valued sequence of SSM outputs (or preactivations) y1:L 2 RL⇥H ,
using latent states xk 2 RP . A nonlinear activation function is then applied to produce a sequence
of layer outputs u0

1:L 2 RL⇥H . See Figure 2b for an illustration. Unlike S4, we do not require
an additional position-wise linear layer, since these features are already mixed. We note here that
compared to the HN latent size of the block-diagonal SSM in the S4 layer, S5’s latent size P can be
significantly smaller, allowing for the use of efficient parallel scans, as we discuss in Section 3.3.

4

One
multi-input, multi-output (MIMO)

sequence map

From S4 to S5: SISO to MIMO

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

compactness we denote the concatenation of the H S4 SSM states at discrete time index k as
x(1:H)
k

=
⇥
(x(1)

k
)>, . . . , (x(H)

k
)>

⇤>, and the H SSM outputs as yk =
⇥
y(1)
k

, . . . ,y(H)
k

⇤>.

3 THE S5 LAYER

In this section we present the S5 layer. We describe its structure, parameterization and computation,
particularly focusing on how each of these differ from S4.

3.1 S5 STRUCTURE: FROM SISO TO MIMO

The S5 layer replaces the bank of SISO SSMs (or large block-diagonal system) in S4 with a multi-
input, multi-output (MIMO) SSM, as in (1), with a latent state size P , and input and output dimension
H . The discretized version of this MIMO SSM can be applied to a vector-valued input sequence
u1:L 2 RL⇥H , to produce a vector-valued sequence of SSM outputs (or preactivations) y1:L 2 RL⇥H ,
using latent states xk 2 RP . A nonlinear activation function is then applied to produce a sequence
of layer outputs u0

1:L 2 RL⇥H . See Figure 2b for an illustration. Unlike S4, we do not require
an additional position-wise linear layer, since these features are already mixed. We note here that
compared to the HN latent size of the block-diagonal SSM in the S4 layer, S5’s latent size P can be
significantly smaller, allowing for the use of efficient parallel scans, as we discuss in Section 3.3.

4

Independent
single-input, single-output (SISO)

sequence maps

Large effective state size
prevents the use of parallel scans.

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

compactness we denote the concatenation of the H S4 SSM states at discrete time index k as
x(1:H)
k

=
⇥
(x(1)

k
)>, . . . , (x(H)

k
)>

⇤>, and the H SSM outputs as yk =
⇥
y(1)
k

, . . . ,y(H)
k

⇤>.

3 THE S5 LAYER

In this section we present the S5 layer. We describe its structure, parameterization and computation,
particularly focusing on how each of these differ from S4.

3.1 S5 STRUCTURE: FROM SISO TO MIMO

The S5 layer replaces the bank of SISO SSMs (or large block-diagonal system) in S4 with a multi-
input, multi-output (MIMO) SSM, as in (1), with a latent state size P , and input and output dimension
H . The discretized version of this MIMO SSM can be applied to a vector-valued input sequence
u1:L 2 RL⇥H , to produce a vector-valued sequence of SSM outputs (or preactivations) y1:L 2 RL⇥H ,
using latent states xk 2 RP . A nonlinear activation function is then applied to produce a sequence
of layer outputs u0

1:L 2 RL⇥H . See Figure 2b for an illustration. Unlike S4, we do not require
an additional position-wise linear layer, since these features are already mixed. We note here that
compared to the HN latent size of the block-diagonal SSM in the S4 layer, S5’s latent size P can be
significantly smaller, allowing for the use of efficient parallel scans, as we discuss in Section 3.3.

4

One
multi-input, multi-output (MIMO)

sequence map

Proposition 2. (Informal) The output of a MIMO S5 SSM is a
different projection of the same underlying dynamics of an
S4 system.

Proof. See Appendix D.2.

Implication: S5 can leverage initialization schemes from S4

From S4 to S5: SISO to MIMO

From S4 to S5: SISO to MIMO
S4

From S4 to S5: SISO to MIMO
S4

Assume tied state matrices

From S4 to S5: SISO to MIMO
S4

Assume tied state matrices

From S4 to S5: SISO to MIMO
S4

From S4 to S5: SISO to MIMO
S4

S5

From S4 to S5: SISO to MIMO
S4

S5

From S4 to S5: SISO to MIMO
S4

S5

Different output projection of the same underlying dynamics.
So, S4 parameterization and initialization ideas work in S5 also.

From S4 to S5: Diagonalized dynamics
Diagonal plus low-rank

state matrix

Published as a conference paper at ICLR 2023

B S5 LAYER DETAILS

B.1 INITIALIZATION DETAILS

B.1.1 INITIALIZATION OF THE STATE MATRIX

Here we provide additional details to supplement the discussion of initialization in Section 3.2. Gu
et al. (2023) explains the ability of S4 to capture long-range dependencies when using the HiPPO-
LegS matrix via decomposing the input with respect to an infinitely long, exponentially decaying
measure. The HiPPO-LegS matrix and corresponding SISO input vector are defined as

(ALegS)nk = �

8
<

:

(2n+ 1)1/2(2k + 1)1/2, n > k

n+ 1, n = k

0, n < k

. (8)

(bLegS)n = (2n+ 1)
1
2 . (9)

Note that in Section 4.2, the input matrix BLegS 2 RN⇥H used in Corollary 1 is formed by
concatenating H copies of bLegS 2 RN .

Theorem 1 of Gu et al. (2021a) then shows that the HiPPO matrices in Gu et al. (2020a), AHiPPO 2

RN⇥N can be represented with a normal plus low-rank (NPLR) form consisting of a normal matrix,
ANormal

HiPPO = V⇤V⇤
2 RN⇥N , and a low-rank term

AHiPPO = ANormal
HiPPO �PQ> = V (⇤� (V⇤P)(V⇤Q)⇤)V⇤ (10)

A = ⇤� (V⇤P)(V⇤Q)⇤ (11)

for unitary V 2 CN⇥N , diagonal ⇤ 2 CN⇥N , and low-rank factorization P,Q 2 RN⇥r. The right
hand side of this equation shows HiPPO matrices can be conjugated into a diagonal plus low-rank
(DPLR) form. The HiPPO-LegS matrix can therefore be written in terms of the normal HiPPO-N
matrix and low-rank term PLegS 2 RN (Goel et al., 2022) as

ALegS = ANormal
LegS �PLegsP

>
Legs (12)

where

ANormal
LegSnk

= �

8
<

:

(n+ 1
2)

1/2(k + 1
2)

1/2
, n > k

1
2 , n = k

(n+ 1
2)

1/2(k + 1
2)

1/2
, n < k

. (13)

PLegsn = (n+
1

2
)

1
2 (14)

Our default is to set the S5 layer state matrix A = ANormal
LegS 2 RP⇥P , and take the eigendecomposi-

tion of this matrix to recover the initial ⇤. We often find it beneficial to also use V and V�1 = V⇤

to initialize B̃ and C̃, as described below.

As mentioned in Section 4.3, we also found that performance on many tasks benefited from initializing
the S5 state matrix as block-diagonal, with each block on the diagonal equal to ANormal

LegS 2 RR⇥R,
where R here is less than the state dimension P , e.g. R = P

4 when 4 blocks are used on the diagonal.
We then take the eigendecomposition of this matrix to initialize ⇤, as well as B̃ and C̃. We note that
even in this case, B̃ and C̃ are still initialized in dense form and there is no constraint that requires
A to remain block-diagonal during learning. In the hyperparameter table in Appendix G, the J

hyperparameter indicates the number of these HiPPO-N blocks used on the diagonal for initialization,
where J = 1 indicates we used the default case of initializing with a single HiPPO-N matrix. We
discuss the motivation for this block-diagonal initialization further in Appendix D.4.

16

+

From S4 to S5: Diagonalized dynamics
Diagonal plus low-rank

state matrix

Published as a conference paper at ICLR 2023

B S5 LAYER DETAILS

B.1 INITIALIZATION DETAILS

B.1.1 INITIALIZATION OF THE STATE MATRIX

Here we provide additional details to supplement the discussion of initialization in Section 3.2. Gu
et al. (2023) explains the ability of S4 to capture long-range dependencies when using the HiPPO-
LegS matrix via decomposing the input with respect to an infinitely long, exponentially decaying
measure. The HiPPO-LegS matrix and corresponding SISO input vector are defined as

(ALegS)nk = �

8
<

:

(2n+ 1)1/2(2k + 1)1/2, n > k

n+ 1, n = k

0, n < k

. (8)

(bLegS)n = (2n+ 1)
1
2 . (9)

Note that in Section 4.2, the input matrix BLegS 2 RN⇥H used in Corollary 1 is formed by
concatenating H copies of bLegS 2 RN .

Theorem 1 of Gu et al. (2021a) then shows that the HiPPO matrices in Gu et al. (2020a), AHiPPO 2

RN⇥N can be represented with a normal plus low-rank (NPLR) form consisting of a normal matrix,
ANormal

HiPPO = V⇤V⇤
2 RN⇥N , and a low-rank term

AHiPPO = ANormal
HiPPO �PQ> = V (⇤� (V⇤P)(V⇤Q)⇤)V⇤ (10)

A = ⇤� (V⇤P)(V⇤Q)⇤ (11)

for unitary V 2 CN⇥N , diagonal ⇤ 2 CN⇥N , and low-rank factorization P,Q 2 RN⇥r. The right
hand side of this equation shows HiPPO matrices can be conjugated into a diagonal plus low-rank
(DPLR) form. The HiPPO-LegS matrix can therefore be written in terms of the normal HiPPO-N
matrix and low-rank term PLegS 2 RN (Goel et al., 2022) as

ALegS = ANormal
LegS �PLegsP

>
Legs (12)

where

ANormal
LegSnk

= �

8
<

:

(n+ 1
2)

1/2(k + 1
2)

1/2
, n > k

1
2 , n = k

(n+ 1
2)

1/2(k + 1
2)

1/2
, n < k

. (13)

PLegsn = (n+
1

2
)

1
2 (14)

Our default is to set the S5 layer state matrix A = ANormal
LegS 2 RP⇥P , and take the eigendecomposi-

tion of this matrix to recover the initial ⇤. We often find it beneficial to also use V and V�1 = V⇤

to initialize B̃ and C̃, as described below.

As mentioned in Section 4.3, we also found that performance on many tasks benefited from initializing
the S5 state matrix as block-diagonal, with each block on the diagonal equal to ANormal

LegS 2 RR⇥R,
where R here is less than the state dimension P , e.g. R = P

4 when 4 blocks are used on the diagonal.
We then take the eigendecomposition of this matrix to initialize ⇤, as well as B̃ and C̃. We note that
even in this case, B̃ and C̃ are still initialized in dense form and there is no constraint that requires
A to remain block-diagonal during learning. In the hyperparameter table in Appendix G, the J

hyperparameter indicates the number of these HiPPO-N blocks used on the diagonal for initialization,
where J = 1 indicates we used the default case of initializing with a single HiPPO-N matrix. We
discuss the motivation for this block-diagonal initialization further in Appendix D.4.

16

+

Published as a conference paper at ICLR 2023

B S5 LAYER DETAILS

B.1 INITIALIZATION DETAILS

B.1.1 INITIALIZATION OF THE STATE MATRIX

Here we provide additional details to supplement the discussion of initialization in Section 3.2. Gu
et al. (2023) explains the ability of S4 to capture long-range dependencies when using the HiPPO-
LegS matrix via decomposing the input with respect to an infinitely long, exponentially decaying
measure. The HiPPO-LegS matrix and corresponding SISO input vector are defined as

(ALegS)nk = �

8
<

:

(2n+ 1)1/2(2k + 1)1/2, n > k

n+ 1, n = k

0, n < k

. (8)

(bLegS)n = (2n+ 1)
1
2 . (9)

Note that in Section 4.2, the input matrix BLegS 2 RN⇥H used in Corollary 1 is formed by
concatenating H copies of bLegS 2 RN .

Theorem 1 of Gu et al. (2021a) then shows that the HiPPO matrices in Gu et al. (2020a), AHiPPO 2

RN⇥N can be represented with a normal plus low-rank (NPLR) form consisting of a normal matrix,
ANormal

HiPPO = V⇤V⇤
2 RN⇥N , and a low-rank term

AHiPPO = ANormal
HiPPO �PQ> = V (⇤� (V⇤P)(V⇤Q)⇤)V⇤ (10)

A = ⇤� (V⇤P)(V⇤Q)⇤ (11)

for unitary V 2 CN⇥N , diagonal ⇤ 2 CN⇥N , and low-rank factorization P,Q 2 RN⇥r. The right
hand side of this equation shows HiPPO matrices can be conjugated into a diagonal plus low-rank
(DPLR) form. The HiPPO-LegS matrix can therefore be written in terms of the normal HiPPO-N
matrix and low-rank term PLegS 2 RN (Goel et al., 2022) as

ALegS = ANormal
LegS �PLegsP

>
Legs (12)

where

ANormal
LegSnk

= �

8
<

:

(n+ 1
2)

1/2(k + 1
2)

1/2
, n > k

1
2 , n = k

(n+ 1
2)

1/2(k + 1
2)

1/2
, n < k

. (13)

PLegsn = (n+
1

2
)

1
2 (14)

Our default is to set the S5 layer state matrix A = ANormal
LegS 2 RP⇥P , and take the eigendecomposi-

tion of this matrix to recover the initial ⇤. We often find it beneficial to also use V and V�1 = V⇤

to initialize B̃ and C̃, as described below.

As mentioned in Section 4.3, we also found that performance on many tasks benefited from initializing
the S5 state matrix as block-diagonal, with each block on the diagonal equal to ANormal

LegS 2 RR⇥R,
where R here is less than the state dimension P , e.g. R = P

4 when 4 blocks are used on the diagonal.
We then take the eigendecomposition of this matrix to initialize ⇤, as well as B̃ and C̃. We note that
even in this case, B̃ and C̃ are still initialized in dense form and there is no constraint that requires
A to remain block-diagonal during learning. In the hyperparameter table in Appendix G, the J

hyperparameter indicates the number of these HiPPO-N blocks used on the diagonal for initialization,
where J = 1 indicates we used the default case of initializing with a single HiPPO-N matrix. We
discuss the motivation for this block-diagonal initialization further in Appendix D.4.

16

Diagonal
state matrix

Similar findings to DSS (Gupta et al. 2022)
and S4D (Gu et al. 2022)

Diagonalization

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Diagonalize:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Note real diagonal matrices would be restricted in expressivity in terms of which dynamics could be represented.

But almost all real square matrices are diagonalizable over the complex plane:

Many of the recent deep SSM papers have shown empirical ablations suggesting the importance of complex
parameterizations for performance for many data modalities (caveat: probably not so important for language).

Diagonalization

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Diagonalize:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Note real diagonal matrices would be restricted in expressivity in terms of which dynamics could be represented.

But almost all real square matrices are diagonalizable over the complex plane:

Many of the recent deep SSM papers have shown empirical ablations suggesting the importance of complex
parameterizations for performance for many data modalities (caveat: probably not so important for language).

Diagonalization

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Diagonalize:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Note real diagonal matrices would be restricted in expressivity in terms of which dynamics could be represented.

But almost all real square matrices are diagonalizable over the complex plane:

Many of the recent deep SSM papers have shown empirical ablations suggesting the importance of complex
parameterizations for performance for many data modalities (caveat: probably not so important for language).

Diagonalization

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Diagonalize:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.

But almost all real square matrices are diagonalizable over the complex plane:

Many of the recent deep SSM papers have shown empirical ablations suggesting the importance of complex
parameterizations for performance for many data modalities (caveat: probably not so important for language).

Diagonalization

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Diagonalize:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.

But almost all square matrices are diagonalizable over the complex plane:

Many of the recent deep SSM papers have shown empirical ablations suggesting the importance of complex
parameterizations for performance for many data modalities (caveat: probably not so important for language).

Diagonalization

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Diagonalize:

Proof: https://chiasme.wordpress.com/2013/09/03/almost-all-matrices-are-diagonalizable/

Note: real-valued diagonal matrices would be restricted in expressivity in terms of which dynamics can be represented.

But almost all square matrices are diagonalizable over the complex plane:

Many of the recent deep SSM papers have shown empirical ablations suggesting the importance of complex
parameterizations for performance for many data modalities (caveat: probably not so important for language).

Diagonalization

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Diagonalize:

Stability criteria:
• To avoid exploding, discrete eigenvalues should be within the complex unit circle

Image source: Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

diagonal, complex

Diagonalization

Published as a conference paper at ICLR 2023

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk(1:H) (1:H)
(1:H)

(1:H)
(1:H)

(a) Internal structure of a single S4 layer (Gu et al., 2021a) when viewed as a block-diagonal system.

Next k

A B

xk-1

Nonlinearity u’kA B

uk Single S4 layer

C

Emission:
yk = Cxk

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

Mixing layer:
u’k = f(y’k)

y’k

xk-1

yk Nonlinearity u’k
uk Single S5 layer

Layer input, u1:L 1 k L

Layer output, u’1:L 1 k L

xk Emission:
yk = Cxk

C

H independent S4 SSMs:
xk = Axk-1 + Buk

S5 SSM:
xk = Axk-1 + Buk

A

Legend:
Learnable parameter Operation
Instantiated variable Message between layers

Next k

yk

xk

(b) Internal structure of a single S5 layer.

Figure 2: Schematic of the internal structure of a discretized S4 layer (Gu et al., 2021a) (top) and S5
layer (bottom). Note D is omitted for simplicity. We view an S4 layer as a single block-diagonal SSM
with a latent state of size HN , followed by a nonlinearity and mixing layer to mix the independent
features. (b) In contrast, the S5 layer uses a dense, MIMO linear SSM with latent size P ⌧ HN .

latent dynamics from (1) as

dV�1x(t)

dt
= ⇤V�1x(t) +V�1Bu(t). (8)

Defining x̃(t) = V�1x(t), B̃ = V�1B, and C̃ = CV gives a reparameterized system,

dx̃(t)

dt
= ⇤x̃(t) + B̃u(t), y(t) = C̃x̃(t) +Du(t). (9)

This is a linear SSM with a diagonal state matrix. This diagonalized system can be discretized with
a timescale parameter � 2 R+ using the ZOH method to give another diagonalized system with
parameters

⇤ = e
⇤�

, B = ⇤�1(⇤� I)B̃, C = C̃, D = D. (10)

A = e
A�

, B = A�1(A� I)B, C = C, D = D. (11)

In practice, we use a vector of learnable timescale parameters � 2 RN (see Section 4.3) and restrict
the feedthrough matrix D to be diagonal. The S5 layer therefore has the learnable parameters:
B̃ 2 CP⇥H , C̃ 2 CH⇥P , diag(D) 2 RH , diag(⇤) 2 CP , and � 2 RP .

5

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Diagonalize:

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

diagonal, complex

Stability criteria:
• To avoid exploding, discrete eigenvalues should be within the complex unit circle
• To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same for

vanishing gradients, see RNN lecture BPTT section).

Image source: Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

How important is HiPPO?

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Stability criteria:
• To avoid exploding, discrete eigenvalues should be within the complex unit circle
• To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same

for vanishing gradients, see RNN lecture BPTT section).

HiPPO initialization gives these nice properties with stable, slowly decaying eigenvalues

Figure 1: S4D is a diagonal SSM which inherits the strengths of S4 while being much simpler. (Left) The diagonal
structure allows it to be viewed as a collection of 1-dimensional SSMs. (Right) As a convolutional model, S4D has a
simple interpretable convolution kernel which can be implemented in two lines of code. Colors denote independent
1-D SSMs; purple denotes trainable parameters.

a good initialization is critical. Gu et al. [9] showed that it is di�cult to find a performant diagonal SSM,
and that many alternative parameterizations of the state matrix – including by random diagonal matrices –
are much less e↵ective empirically, which motivated the necessity of the more complicated HiPPO matrix.
However, recently Gupta [11] made the empirical observation that a variant of S4 using a particular diagonal
matrix is nearly as e↵ective as the original S4 method. This matrix is based on the original HiPPO matrix
and is defined by simply chopping o↵ the low-rank term in the DPLR representation.

The discovery of performant diagonal state matrices opens up new possibilities for simplifying deep state space
models, and consolidating models such as S4 and DSS to understand and improve them. First, the strongest
version of DSS computes the SSM with a complex-valued softmax that complicates the algorithm, and is
actually less e�cient than S4. Additionally, DSS and S4 di↵er in several auxiliary aspects of parameterizing
SSMs that can conflate performance e↵ects, making it more di�cult to isolate the core e↵ects of diagonal
versus DPLR state matrices. Most importantly, DSS relies on initializing the state matrix to a particular
approximation of S4’s HiPPO matrix. While S4’s matrix has a mathematical interpretation for addressing
long-range dependencies, the e�cacy of the diagonal approximation to it remains theoretically unexplained.

In this work, we seek to systematically understand how to train diagonal SSMs. We introduce the S4D
method, a diagonal SSM which combines the best of S4’s computation and parameterization and DSS’s
initialization, resulting in a method that is extremely simple, theoretically princpled, and empirically e↵ective.

• First, we describe S4D, a simple method outlined by S4 for computing diagonal instead of DPLR matrices,
which is based on Vandermonde matrix multiplication and is even simpler and more e�cient than
the DSS. Outside of the core state matrix, we categorize di↵erent representations of the other components
of SSMs, introducing flexible design choices that capture both S4 and DSS and allow di↵erent SSM
parameterizations to be systematically compared (Section 3).

• We provide a new mathematical analysis of DSS’s initialization, showing that the diagonal approximation
of the original HiPPO matrix surprisingly produces the same dynamics as S4 when the state size goes
to infinity. We propose even simpler variants of diagonal SSMs using di↵erent initializations of the state
matrix (Section 4).

• We perform a controlled study of these various design choices across many domains, tasks, and sequence
lengths, and additionally compare diagonal (S4D) versus DPLR (S4) variants. Our best S4D methods are
competitive with S4 on almost all settings, with near state-of-the-art results on image, audio, and medical
time series benchmarks, and achieving 85% on the Long Range Arena benchmark (Section 5).

2

How important is HiPPO?

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized
without explicit discretization or HiPPO, but still achieve similar performance on benchmarks

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

Stability criteria:
• To avoid exploding, discrete eigenvalues should be within the complex unit circle
• To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same

for vanishing gradients, see RNN lecture BPTT section).

How important is HiPPO?

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized
without explicit discretization or HiPPO, but still achieve similar performance on benchmarks

Takeaways:
• Complex parameterization important for some

problems

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

Stability criteria:
• To avoid exploding, discrete eigenvalues should be within the complex unit circle
• To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same

for vanishing gradients, see RNN lecture BPTT section).

How important is HiPPO?

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized
without explicit discretization or HiPPO, but still achieve similar performance on benchmarks

Takeaways:
• Complex parameterization important for some

problems
• HiPPO+discretization gives an intelligent eigenvalue

distribution near the complex unit circle

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

Stability criteria:
• To avoid exploding, discrete eigenvalues should be within the complex unit circle
• To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same

for vanishing gradients, see RNN lecture BPTT section).

How important is HiPPO?

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (2)

u0
k
= f(yk) (3)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

LRU paper (Orvieto 2023), shows S4/S5 style linear RNNs can be parameterized
without explicit discretization or HiPPO, but still achieve similar performance on benchmarks

Takeaways:
• Complex parameterization important for some

problems
• HiPPO+discretization gives an intelligent eigenvalue

distribution near the complex unit circle
• Discretization also provides normalizing effect on

effective inputs

Orvieto et al. Resurrecting Recurrent Neural Networks for Long Sequences. 2023

Stability criteria:
• To avoid exploding, discrete eigenvalues should be within the complex unit circle
• To avoid vanishing too quickly, eigenvalues should be close to complex unit circle (same

for vanishing gradients, see RNN lecture BPTT section).

From S4 to S5: Diagonalized dynamics
Diagonal plus low-rank

state matrix

Published as a conference paper at ICLR 2023

B S5 LAYER DETAILS

B.1 INITIALIZATION DETAILS

B.1.1 INITIALIZATION OF THE STATE MATRIX

Here we provide additional details to supplement the discussion of initialization in Section 3.2. Gu
et al. (2023) explains the ability of S4 to capture long-range dependencies when using the HiPPO-
LegS matrix via decomposing the input with respect to an infinitely long, exponentially decaying
measure. The HiPPO-LegS matrix and corresponding SISO input vector are defined as

(ALegS)nk = �

8
<

:

(2n+ 1)1/2(2k + 1)1/2, n > k

n+ 1, n = k

0, n < k

. (8)

(bLegS)n = (2n+ 1)
1
2 . (9)

Note that in Section 4.2, the input matrix BLegS 2 RN⇥H used in Corollary 1 is formed by
concatenating H copies of bLegS 2 RN .

Theorem 1 of Gu et al. (2021a) then shows that the HiPPO matrices in Gu et al. (2020a), AHiPPO 2

RN⇥N can be represented with a normal plus low-rank (NPLR) form consisting of a normal matrix,
ANormal

HiPPO = V⇤V⇤
2 RN⇥N , and a low-rank term

AHiPPO = ANormal
HiPPO �PQ> = V (⇤� (V⇤P)(V⇤Q)⇤)V⇤ (10)

A = ⇤� (V⇤P)(V⇤Q)⇤ (11)

for unitary V 2 CN⇥N , diagonal ⇤ 2 CN⇥N , and low-rank factorization P,Q 2 RN⇥r. The right
hand side of this equation shows HiPPO matrices can be conjugated into a diagonal plus low-rank
(DPLR) form. The HiPPO-LegS matrix can therefore be written in terms of the normal HiPPO-N
matrix and low-rank term PLegS 2 RN (Goel et al., 2022) as

ALegS = ANormal
LegS �PLegsP

>
Legs (12)

where

ANormal
LegSnk

= �

8
<

:

(n+ 1
2)

1/2(k + 1
2)

1/2
, n > k

1
2 , n = k

(n+ 1
2)

1/2(k + 1
2)

1/2
, n < k

. (13)

PLegsn = (n+
1

2
)

1
2 (14)

Our default is to set the S5 layer state matrix A = ANormal
LegS 2 RP⇥P , and take the eigendecomposi-

tion of this matrix to recover the initial ⇤. We often find it beneficial to also use V and V�1 = V⇤

to initialize B̃ and C̃, as described below.

As mentioned in Section 4.3, we also found that performance on many tasks benefited from initializing
the S5 state matrix as block-diagonal, with each block on the diagonal equal to ANormal

LegS 2 RR⇥R,
where R here is less than the state dimension P , e.g. R = P

4 when 4 blocks are used on the diagonal.
We then take the eigendecomposition of this matrix to initialize ⇤, as well as B̃ and C̃. We note that
even in this case, B̃ and C̃ are still initialized in dense form and there is no constraint that requires
A to remain block-diagonal during learning. In the hyperparameter table in Appendix G, the J

hyperparameter indicates the number of these HiPPO-N blocks used on the diagonal for initialization,
where J = 1 indicates we used the default case of initializing with a single HiPPO-N matrix. We
discuss the motivation for this block-diagonal initialization further in Appendix D.4.

16

+

Published as a conference paper at ICLR 2023

B S5 LAYER DETAILS

B.1 INITIALIZATION DETAILS

B.1.1 INITIALIZATION OF THE STATE MATRIX

Here we provide additional details to supplement the discussion of initialization in Section 3.2. Gu
et al. (2023) explains the ability of S4 to capture long-range dependencies when using the HiPPO-
LegS matrix via decomposing the input with respect to an infinitely long, exponentially decaying
measure. The HiPPO-LegS matrix and corresponding SISO input vector are defined as

(ALegS)nk = �

8
<

:

(2n+ 1)1/2(2k + 1)1/2, n > k

n+ 1, n = k

0, n < k

. (8)

(bLegS)n = (2n+ 1)
1
2 . (9)

Note that in Section 4.2, the input matrix BLegS 2 RN⇥H used in Corollary 1 is formed by
concatenating H copies of bLegS 2 RN .

Theorem 1 of Gu et al. (2021a) then shows that the HiPPO matrices in Gu et al. (2020a), AHiPPO 2

RN⇥N can be represented with a normal plus low-rank (NPLR) form consisting of a normal matrix,
ANormal

HiPPO = V⇤V⇤
2 RN⇥N , and a low-rank term

AHiPPO = ANormal
HiPPO �PQ> = V (⇤� (V⇤P)(V⇤Q)⇤)V⇤ (10)

A = ⇤� (V⇤P)(V⇤Q)⇤ (11)

for unitary V 2 CN⇥N , diagonal ⇤ 2 CN⇥N , and low-rank factorization P,Q 2 RN⇥r. The right
hand side of this equation shows HiPPO matrices can be conjugated into a diagonal plus low-rank
(DPLR) form. The HiPPO-LegS matrix can therefore be written in terms of the normal HiPPO-N
matrix and low-rank term PLegS 2 RN (Goel et al., 2022) as

ALegS = ANormal
LegS �PLegsP

>
Legs (12)

where

ANormal
LegSnk

= �

8
<

:

(n+ 1
2)

1/2(k + 1
2)

1/2
, n > k

1
2 , n = k

(n+ 1
2)

1/2(k + 1
2)

1/2
, n < k

. (13)

PLegsn = (n+
1

2
)

1
2 (14)

Our default is to set the S5 layer state matrix A = ANormal
LegS 2 RP⇥P , and take the eigendecomposi-

tion of this matrix to recover the initial ⇤. We often find it beneficial to also use V and V�1 = V⇤

to initialize B̃ and C̃, as described below.

As mentioned in Section 4.3, we also found that performance on many tasks benefited from initializing
the S5 state matrix as block-diagonal, with each block on the diagonal equal to ANormal

LegS 2 RR⇥R,
where R here is less than the state dimension P , e.g. R = P

4 when 4 blocks are used on the diagonal.
We then take the eigendecomposition of this matrix to initialize ⇤, as well as B̃ and C̃. We note that
even in this case, B̃ and C̃ are still initialized in dense form and there is no constraint that requires
A to remain block-diagonal during learning. In the hyperparameter table in Appendix G, the J

hyperparameter indicates the number of these HiPPO-N blocks used on the diagonal for initialization,
where J = 1 indicates we used the default case of initializing with a single HiPPO-N matrix. We
discuss the motivation for this block-diagonal initialization further in Appendix D.4.

16

Diagonal
state matrix

Similar findings to DSS (Gupta et al. 2022)
and S4D (Gu et al. 2022)

+
MIMO + diagonalized dynamics:

enables the use of efficient parallel scans.

From S4 to S5: Fully Recurrent
Convolution Parallel scan

Figure 1: S4D is a diagonal SSM which inherits the strengths of S4 while being much simpler. (Left) The diagonal
structure allows it to be viewed as a collection of 1-dimensional SSMs. (Right) As a convolutional model, S4D has a
simple interpretable convolution kernel which can be implemented in two lines of code. Colors denote independent
1-D SSMs; purple denotes trainable parameters.

a good initialization is critical. Gu et al. [9] showed that it is di�cult to find a performant diagonal SSM,
and that many alternative parameterizations of the state matrix – including by random diagonal matrices –
are much less e↵ective empirically, which motivated the necessity of the more complicated HiPPO matrix.
However, recently Gupta [11] made the empirical observation that a variant of S4 using a particular diagonal
matrix is nearly as e↵ective as the original S4 method. This matrix is based on the original HiPPO matrix
and is defined by simply chopping o↵ the low-rank term in the DPLR representation.

The discovery of performant diagonal state matrices opens up new possibilities for simplifying deep state space
models, and consolidating models such as S4 and DSS to understand and improve them. First, the strongest
version of DSS computes the SSM with a complex-valued softmax that complicates the algorithm, and is
actually less e�cient than S4. Additionally, DSS and S4 di↵er in several auxiliary aspects of parameterizing
SSMs that can conflate performance e↵ects, making it more di�cult to isolate the core e↵ects of diagonal
versus DPLR state matrices. Most importantly, DSS relies on initializing the state matrix to a particular
approximation of S4’s HiPPO matrix. While S4’s matrix has a mathematical interpretation for addressing
long-range dependencies, the e�cacy of the diagonal approximation to it remains theoretically unexplained.

In this work, we seek to systematically understand how to train diagonal SSMs. We introduce the S4D
method, a diagonal SSM which combines the best of S4’s computation and parameterization and DSS’s
initialization, resulting in a method that is extremely simple, theoretically princpled, and empirically e↵ective.

• First, we describe S4D, a simple method outlined by S4 for computing diagonal instead of DPLR matrices,
which is based on Vandermonde matrix multiplication and is even simpler and more e�cient than
the DSS. Outside of the core state matrix, we categorize di↵erent representations of the other components
of SSMs, introducing flexible design choices that capture both S4 and DSS and allow di↵erent SSM
parameterizations to be systematically compared (Section 3).

• We provide a new mathematical analysis of DSS’s initialization, showing that the diagonal approximation
of the original HiPPO matrix surprisingly produces the same dynamics as S4 when the state size goes
to infinity. We propose even simpler variants of diagonal SSMs using di↵erent initializations of the state
matrix (Section 4).

• We perform a controlled study of these various design choices across many domains, tasks, and sequence
lengths, and additionally compare diagonal (S4D) versus DPLR (S4) variants. Our best S4D methods are
competitive with S4 on almost all settings, with near state-of-the-art results on image, audio, and medical
time series benchmarks, and achieving 85% on the Long Range Arena benchmark (Section 5).

2

Scan allows:
• Time-varying systems
• Access to states  

(parallel or autoregressive)

Convolution limitations:
• Requires time-invariant

system
• Cannot access states

From S4 to S5: Fully Recurrent
Convolution Parallel scan

Figure 1: S4D is a diagonal SSM which inherits the strengths of S4 while being much simpler. (Left) The diagonal
structure allows it to be viewed as a collection of 1-dimensional SSMs. (Right) As a convolutional model, S4D has a
simple interpretable convolution kernel which can be implemented in two lines of code. Colors denote independent
1-D SSMs; purple denotes trainable parameters.

a good initialization is critical. Gu et al. [9] showed that it is di�cult to find a performant diagonal SSM,
and that many alternative parameterizations of the state matrix – including by random diagonal matrices –
are much less e↵ective empirically, which motivated the necessity of the more complicated HiPPO matrix.
However, recently Gupta [11] made the empirical observation that a variant of S4 using a particular diagonal
matrix is nearly as e↵ective as the original S4 method. This matrix is based on the original HiPPO matrix
and is defined by simply chopping o↵ the low-rank term in the DPLR representation.

The discovery of performant diagonal state matrices opens up new possibilities for simplifying deep state space
models, and consolidating models such as S4 and DSS to understand and improve them. First, the strongest
version of DSS computes the SSM with a complex-valued softmax that complicates the algorithm, and is
actually less e�cient than S4. Additionally, DSS and S4 di↵er in several auxiliary aspects of parameterizing
SSMs that can conflate performance e↵ects, making it more di�cult to isolate the core e↵ects of diagonal
versus DPLR state matrices. Most importantly, DSS relies on initializing the state matrix to a particular
approximation of S4’s HiPPO matrix. While S4’s matrix has a mathematical interpretation for addressing
long-range dependencies, the e�cacy of the diagonal approximation to it remains theoretically unexplained.

In this work, we seek to systematically understand how to train diagonal SSMs. We introduce the S4D
method, a diagonal SSM which combines the best of S4’s computation and parameterization and DSS’s
initialization, resulting in a method that is extremely simple, theoretically princpled, and empirically e↵ective.

• First, we describe S4D, a simple method outlined by S4 for computing diagonal instead of DPLR matrices,
which is based on Vandermonde matrix multiplication and is even simpler and more e�cient than
the DSS. Outside of the core state matrix, we categorize di↵erent representations of the other components
of SSMs, introducing flexible design choices that capture both S4 and DSS and allow di↵erent SSM
parameterizations to be systematically compared (Section 3).

• We provide a new mathematical analysis of DSS’s initialization, showing that the diagonal approximation
of the original HiPPO matrix surprisingly produces the same dynamics as S4 when the state size goes
to infinity. We propose even simpler variants of diagonal SSMs using di↵erent initializations of the state
matrix (Section 4).

• We perform a controlled study of these various design choices across many domains, tasks, and sequence
lengths, and additionally compare diagonal (S4D) versus DPLR (S4) variants. Our best S4D methods are
competitive with S4 on almost all settings, with near state-of-the-art results on image, audio, and medical
time series benchmarks, and achieving 85% on the Long Range Arena benchmark (Section 5).

2

Scan allows:
• Time-varying systems
• Access to states  

(parallel or autoregressive)

Convolution limitations:
• Requires time-invariant

system
• Cannot access states

Proposition 1. (Informal) An S5 layer is as efficient
as an S4 layer.

Proof. See Appendix C.1.

From S4 to S5: Parallel Scans

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]
Sequential Scan

(3 sequential steps required)

a

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]
Sequential Scan

(3 sequential steps required)

a

a+b

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]
Sequential Scan

(3 sequential steps required)

a

a+b

a+b+c

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]
Sequential Scan

(3 sequential steps required)

a

a+b

a+b+c

a+b+c+d

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]
Sequential Scan

(3 sequential steps required)

a

a+b

a+b+c

a+b+c+d

Parallel Scan

(2 sequential steps required)

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]
Sequential Scan

(3 sequential steps required)

a

a+b

a+b+c

a+b+c+d

Parallel Scan

(2 sequential steps required)

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]
Sequential Scan

(3 sequential steps required)

a

a+b

a+b+c

a+b+c+d

Parallel Scan

(2 sequential steps required)

From S4 to S5: Parallel Scans
Consider the scalar sequence: [a,b,c,d] and the addition operator +.

Performing a scan (all prefix sum) on this sequence using + returns the cumulative sum:

 [a, a+b, a+b+c, a+b+c+d]
Sequential Scan

(3 sequential steps required)

a

a+b

a+b+c

a+b+c+d

Parallel Scan

(2 sequential steps required)

Given sufficient processors, number of sequential steps
scales logarithmically in sequence length

From S4 to S5: Parallel Scans

Sequential Scan

(3 sequential steps required)

Parallel Scan

(2 sequential steps required)

From S4 to S5: Parallel Scans

Sequential Scan

(3 sequential steps required)

Parallel Scan

(2 sequential steps required)

From S4 to S5: Parallel Scans

Sequential Scan

(3 sequential steps required)

Parallel Scan

(2 sequential steps required)

From S4 to S5: Parallel Scans

Sequential Scan

(3 sequential steps required)

Parallel Scan

(2 sequential steps required)

From S4 to S5: Parallel Scans

Sequential Scan

(3 sequential steps required)

Parallel Scan

(2 sequential steps required)

Binary associative operator:

From S4 to S5: Parallel Scans

Sequential Scan

(3 sequential steps required)

Parallel Scan

(2 sequential steps required)

Binary associative operator:

From S4 to S5: Parallel Scans

Sequential Scan

(3 sequential steps required)

Parallel Scan

(2 sequential steps required)

Binary associative operator:

Note: matrix-matrix multiplication,
 this is why diagonalization is important to avoid cubic cost!

From S4 to S5: Parallel Scans

Sequential Scan

(3 sequential steps required)

Parallel Scan

(2 sequential steps required)

Binary associative operator:

Given sufficient processors, number of sequential steps
scales logarithmically in sequence length

From S4 to S5: Parallel Scans

Assume:

• L processors

• Matrix-matrix multiplication cost

From S4 to S5: Parallel Scans

Assume:

• L processors

• Matrix-matrix multiplication cost

Then, linear recurrence can be computed in

 parallel time (Blelloch 1990).

From S4 to S5: Parallel Scans

Assume:

• L processors

• Matrix-matrix multiplication cost

Then, linear recurrence can be computed in

 parallel time (Blelloch 1990).

So, with diagonal state matrix, this becomes

 parallel time.

From S4 to S5: Parallel Scans

Assume:

• L processors

• Matrix-matrix multiplication cost

Then, linear recurrence can be computed in

 parallel time (Blelloch 1990).

So, with diagonal state matrix, this becomes

 parallel time.

Work/space complexity: .

From S4 to S5: Parallel Scans

Assume:

• L processors

• Matrix-matrix multiplication cost

Then, linear recurrence can be computed in

 parallel time (Blelloch 1990).

So, with diagonal state matrix, this becomes

 parallel time.

Work/space complexity: .

Note: in the time domain, S4 has an effective

state dimension of HN >> P used by S5.

This prevents the practical use of (basic) parallel scans for S4.

From S4 to S5: Parallel Scans

Offline/parallel processing

Online/Autoregressive Generation

S4:

S5:

S4:

S5:

S5 retains S4’s high performance

Published as a conference paper at ICLR 2023

Table 1: Test accuracy on the LRA benchmark tasks (Tay et al., 2021). 7 indicates the model did not
exceed random guessing. We include an expanded table, Table 7, with full citations and error bars in
the appendix. We follow the procedure reported in Gu et al. (2021a; 2022) and report means across
three seeds for S4, S4D (as reported by Gu et al. (2021a; 2022)) and S5. Bold scores indicate highest
performance, underlined scores indicate second placed performance. We also include the results for

the concurrent methods Liquid-S4 (Hasani et al., 2023) and Mega (Ma et al., 2023). Unlike S4
methods and S5, the best Mega model retains the transformer’s O(L2) complexity.

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
(Input length) (2,048) (4,096) (4,000) (1,024) (1,024) (16,384)

Transformer 36.37 64.27 57.46 42.44 71.40 7 53.66
S4D-LegS 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S4-LegS 59.60 86.82 90.90 88.65 94.20 96.35 86.09
S5 62.15 89.31 91.40 88.00 95.33 98.58 87.46

Table 2: Test accuracy on 35-way Speech Commands classification task (Warden, 2018). We include
an expanded table, Table 8, with error bars in the appendix. Training examples are one-second 16kHz
audio waveforms. Last column indicates 0-shot testing at 8kHz (constructed by naive decimation).

As in Gu et al. (2022), the mean across three random seeds is reported. Performance for the baselines
InceptionNet through to S4D-Lin are reported from Gu et al. (2022).

Model Parameters 16kHz 8kHz
(Input length) (16,000) (8,000)

InceptionNet 481K 61.24 05.18
ResNet-1 216K 77.86 08.74
XResNet-50 904K 83.01 07.72
ConvNet 26.2M 95.51 07.26

S4-LegS 307K 96.08 91.32
S4D-LegS 306K 95.83 91.08
Liquid-S4 224K 96.78 90.00

S5 280K 96.52 94.53

are parameterized in continuous-time, these models can be applied to datasets with different sampling
rates without the need for re-training, simply by globally re-scaling the timescale parameter � by the
ratio between the new and old sampling rates. The result of applying the best S5 model trained on
16kHz data, to the speech data sampled (via decimation) at 8kHz, without any additional fine-tuning,
is also presented in Table 2. S5 also improves this metric over the baseline methods.

6.3 VARIABLE OBSERVATION INTERVAL

The final application we study here highlights how S5 can naturally handle observations received at
irregular intervals. S5 does so by supplying a different �t value to the discretization at each step. We
use the pendulum regression example presented by Becker et al. (2019) and Schirmer et al. (2022),
illustrated in Figure 3. The input sequence is a sequence of L = 50 images, each 24⇥ 24 pixels in
size, that has been corrupted with a correlated noise process and sampled at irregular intervals from a
continuous trajectory of duration T = 100. The targets are the sine and cosine of the angle of the
pendulum, which follows a nonlinear dynamical system. The velocity is unobserved. We match the
architecture, parameter count and training procedure of Schirmer et al. (2022). Table 3 summarizes
the results of this experiment. S5 outperforms CRU on the regression task, recovering a lower mean
error. Furthermore, S5 is markedly faster than CRU on the same hardware.

8

Long Range Arena

S5 retains S4’s high performance

Published as a conference paper at ICLR 2023

Table 2: Test accuracy on 35-way Speech Commands classification task (Warden, 2018). We include
an expanded table, Table 8, with error bars in the appendix. Training examples are one-second 16kHz
audio waveforms. Last column indicates 0-shot testing at 8kHz (constructed by naive decimation).

As in Gu et al. (2022), the mean across three random seeds is reported. Performance for the baselines
InceptionNet through to S4D-Lin are reported from Gu et al. (2022).

Model Parameters 16kHz 8kHz
(Input length) (16,000) (8,000)

InceptionNet 481K 61.24 05.18
ResNet-1 216K 77.86 08.74
XResNet-50 904K 83.01 07.72
ConvNet 26.2M 95.51 07.26

S4-LegS 307K 96.08 91.32
S4D-LegS 306K 95.83 91.08
S5 280K 96.52 94.53

Figure 3: Illustration of the pendulum regression example. Shown in the top row are the images
used as input at the time points indicated. Shown on the bottom are the values of sin(✓t) and cos(✓t),
where ✓t is the angle of the pendulum at time t, that are used as the regression targets.

the results of this experiment. S5 outperforms CRU on the regression task, recovering a lower mean
error. Furthermore, S5 is markedly faster than CRU on the same hardware.

6.4 PIXEL-LEVEL 1-D IMAGE CLASSIFICATION

Table 10 in Appendix F.4 shows results of S5 on other common benchmarks including sequential
MNIST, permuted sequential MNIST and sequential CIFAR (color). We see that S5 broadly matches
the performance of S4, and outperforms a range of state-of-the-art RNN-based methods.

Table 3: Regression MSE ⇥10�3 (mean ± std) and relative application speed on the pendulum
regression task on a held-out test set. Performance for the baselines, mTAND through to CRU, are
reported from Schirmer et al. (2022). We include an expanded table, Table 9, and further details in
the appendix. Results for CRU (our run) and S5 are across twenty seeds.

Model Relative speed Regression MSE (⇥10�3)

mTAND (Shukla & Marlin, 2021) 12.2⇥ 65.64 (4.05)
RKN (Becker et al., 2019) 1.9⇥ 8.43 (0.61)
RKN-�t (Becker et al., 2019) 1.9⇥ 5.09 (0.40)
ODE-RNN (Rubanova et al., 2019) 1.0⇥ 7.26 (0.41)
CRU (Schirmer et al., 2022) 1.0⇥ 4.63 (1.07)

CRU (our run) 1.0⇥ 3.94 (0.21)
S5 86⇥ 3.41 (0.27)

9

Speech Commands 35-way Raw Speech Classification

Neural Latents Benchmark
w/ Hyun Lee

https://eval.ai/web/challenges/challenge-page/1256/leaderboard/3188

S5 enables new capabilities

S5 enables new capabilities
S5 can use linear time-varying (LTV) state space models:

 

 
 
 

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

dx(t)

dt
= A(t)x(t) +B(t)u(t) (2)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (3)

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

S5 enables new capabilities
S5 can use linear time-varying (LTV) state space models:

 

• Context dependent dynamics 
 
 

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

dx(t)

dt
= A(t)x(t) +B(t)u(t) (2)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (3)

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

xk = A(u1:k)xk�1 +B(u1:k)uk (4)

xk = A(�k)xk�1 +B(�k)uk (5)

u0
k
= f(yk) (6)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

2.2 PARALLELIZING LINEAR STATE SPACE MODELS WITH SCANS

We use parallel scans to efficiently compute the states of a discretized linear SSM. Given a binary
associative operator • (i.e. (a • b) • c = a • (b • c)) and a sequence of L elements [a1, a2, ..., aL], the
scan operation (sometimes referred to as all-prefix-sum) returns the sequence

[a1, (a1 • a2), ..., (a1 • a2 • ... • aL)]. (7)

Computing a length L linear recurrence of a discretized SSM, xk = Axk�1 +Buk as in (3), is a
specific example of a scan operation. As discussed in Section 1.4 of Blelloch (1990), parallelizing
the linear recurrence of the latent transitions in the discretized SSM above can be computed in a
parallel time of O(T� logL), assuming L processors, where T� represents the cost of matrix-matrix
multiplication. For a general matrix A 2 RP⇥P , T� is O(P 3). This can be prohibitively expensive
in deep learning settings. However, if A is a diagonal matrix, the parallel time becomes O(P logL)
with L processors and only requires O(PL) space. Finally, we note that efficient parallel scans are
implemented in a work-efficient manner, thus the total computational cost of the parallel scan with a
diagonal matrix is O(PL) operations. See Appendix H for more information on parallel scans.

2.3 S4: STRUCTURED STATE SPACE SEQUENCE LAYERS

The S4 layer (Gu et al., 2021a) defines a nonlinear sequence-to-sequence transformation, mapping
from an input sequence u1:L 2 RL⇥H to an output sequence u0

1:L 2 RL⇥H . An S4 layer contains a
bank of H independent single-input, single-output (SISO) SSMs with N -dimensional states. Each
S4 SSM is applied to one dimension of the input sequence. This results in an independent linear
transformation from each input channel to each preactivation channel. A nonlinear activation function
is then applied to the preactivations. Finally, a position-wise linear mixing layer is applied to combine
the independent features and produce the output sequence u0

1:L. Figure 4a in the appendix illustrates
the view of the S4 layer as a bank of independent SSMs. Figure 2a shows an alternative view of S4
as one large SSM with state size HN and block-diagonal state, input and output matrices.

Each S4 SSM leverages the HiPPO framework for online function approximation (Gu et al., 2020a)
by initializing the state matrices with a HiPPO matrix (most often the HiPPO-LegS matrix). This was
demonstrated empirically to lead to strong performance (Gu et al., 2021b;a), and can be shown as
approximating long-range dependencies with respect to an infinitely long, exponentially-decaying
measure (Gu et al., 2023). While the HiPPO-LegS matrix is not stably diagonalizable (Gu et al.,
2021a), it can be represented as a normal plus low-rank (NPLR) matrix. The normal component,
referred to as HiPPO-N and denoted ANormal

LegS , can be diagonalized. Thus, the HiPPO-LegS can be
conjugated into a diagonal plus low-rank (DPLR) form, which S4 then utilizes to derive an efficient
form of the convolution kernel. This motivates S4’s DPLR parameterization.

Efficiently applying the S4 layer requires two separate implementations depending on context: a
recurrent mode and a convolution mode. For online generation, the SSM is iterated recurrently, much
like other RNNs. However, when the entire sequence is available and the observations are evenly
spaced, a more efficient convolution mode is used. This takes advantage of the ability to represent the
linear recurrence as a one-dimensional convolution between the inputs and a convolution kernel for
each of the SSMs. Fast Fourier transforms (FFTs) can then be applied to efficiently parallelize this

3

S5 enables new capabilities
S5 can use linear time-varying (LTV) state space models:

 

• Context dependent dynamics 
 
 

• Irregularly sampled time-series

Published as a conference paper at ICLR 2023

B
C

Δ S5 SSM

A

y Non-
linearity

u

u’

Parallel
scan

Diagonalize Λ, B, C

x ✕

~ ~
1:L

1:L

1:L

1:LDiscretize
~C

Learnable parameter Operation Instantiated variable Message between layers

Figure 1: The computational components of an S5 layer for offline application to a sequence. The S5
layer uses a parallel scan on a diagonalized linear SSM to compute the SSM outputs y1:L 2 RL⇥H .
A nonlinear activation function is applied to the SSM outputs to produce the layer outputs. A similar
diagram for S4 is included in Appendix B.

The resulting state space layer has the same computational complexity as S4, but operates purely
recurrently and in the time domain.

We then establish a mathematical relationship between S4 and S5. This connection allows us to
inherit the HiPPO initialization schemes that are key to the success of S4. Unfortunately, the specific
HiPPO matrix that S4 uses for initialization cannot be diagonalized in a numerically stable manner
for use in S5. However, in line with recent work on the DSS (Gupta et al., 2022) and S4D (Gu et al.,
2022) layers, we found that a diagonal approximation to the HiPPO matrix achieves comparable
performance. We extend a result from Gu et al. (2022) to the MIMO setting, which justifies the
diagonal approximation for use in S5. We leverage the mathematical relationship between S4 and
S5 to inform several other aspects of parameterization and initialization, and we perform thorough
ablation studies to explore these design choices.

The final S5 layer has many desirable properties. It is straightforward to implement (see Appendix A),1
enjoys linear complexity in the sequence length, and can efficiently handle time-varying SSMs and
irregularly sampled observations (which is intractable with the convolution implementation of S4).
S5 achieves state-of-the-art performance on a variety of long-range sequence modeling tasks, with an
LRA average of 87.4%, and 98.5% accuracy on the most difficult Path-X task.

2 BACKGROUND

We provide the necessary background in this section prior to introducing the S5 layer in Section 3.

2.1 LINEAR STATE SPACE MODELS

Continuous-time linear SSMs are the core component of both the S4 layer and the S5 layer. Given
an input signal u(t) 2 RU , a latent state x(t) 2 RP and an output signal y(t) 2 RM , a linear
continuous-time SSM is defined by the differential equation:

dx(t)

dt
= Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (1)

dx(t)

dt
= A(t)x(t) +B(t)u(t) (2)

and is parameterized by a state matrix A 2 RP⇥P , an input matrix B 2 RP⇥U , an output matrix
C 2 RM⇥P and a feedthrough matrix D 2 RM⇥U . For a constant step size, �, the SSM can be
discretized using, e.g. Euler, bilinear or zero-order hold (ZOH) methods to define the linear recurrence

xk = Axk�1 +Buk, yk = Cxk +Duk, (3)

1The full S5 implementation is available at: https://github.com/lindermanlab/S5.

2

Published as a conference paper at ICLR 2023

xk = A(u1:k)xk�1 +B(u1:k)uk (4)

xk = A(�k)xk�1 +B(�k)uk (5)

u0
k
= f(yk) (6)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

2.2 PARALLELIZING LINEAR STATE SPACE MODELS WITH SCANS

We use parallel scans to efficiently compute the states of a discretized linear SSM. Given a binary
associative operator • (i.e. (a • b) • c = a • (b • c)) and a sequence of L elements [a1, a2, ..., aL], the
scan operation (sometimes referred to as all-prefix-sum) returns the sequence

[a1, (a1 • a2), ..., (a1 • a2 • ... • aL)]. (7)

Computing a length L linear recurrence of a discretized SSM, xk = Axk�1 +Buk as in (3), is a
specific example of a scan operation. As discussed in Section 1.4 of Blelloch (1990), parallelizing
the linear recurrence of the latent transitions in the discretized SSM above can be computed in a
parallel time of O(T� logL), assuming L processors, where T� represents the cost of matrix-matrix
multiplication. For a general matrix A 2 RP⇥P , T� is O(P 3). This can be prohibitively expensive
in deep learning settings. However, if A is a diagonal matrix, the parallel time becomes O(P logL)
with L processors and only requires O(PL) space. Finally, we note that efficient parallel scans are
implemented in a work-efficient manner, thus the total computational cost of the parallel scan with a
diagonal matrix is O(PL) operations. See Appendix H for more information on parallel scans.

2.3 S4: STRUCTURED STATE SPACE SEQUENCE LAYERS

The S4 layer (Gu et al., 2021a) defines a nonlinear sequence-to-sequence transformation, mapping
from an input sequence u1:L 2 RL⇥H to an output sequence u0

1:L 2 RL⇥H . An S4 layer contains a
bank of H independent single-input, single-output (SISO) SSMs with N -dimensional states. Each
S4 SSM is applied to one dimension of the input sequence. This results in an independent linear
transformation from each input channel to each preactivation channel. A nonlinear activation function
is then applied to the preactivations. Finally, a position-wise linear mixing layer is applied to combine
the independent features and produce the output sequence u0

1:L. Figure 4a in the appendix illustrates
the view of the S4 layer as a bank of independent SSMs. Figure 2a shows an alternative view of S4
as one large SSM with state size HN and block-diagonal state, input and output matrices.

Each S4 SSM leverages the HiPPO framework for online function approximation (Gu et al., 2020a)
by initializing the state matrices with a HiPPO matrix (most often the HiPPO-LegS matrix). This was
demonstrated empirically to lead to strong performance (Gu et al., 2021b;a), and can be shown as
approximating long-range dependencies with respect to an infinitely long, exponentially-decaying
measure (Gu et al., 2023). While the HiPPO-LegS matrix is not stably diagonalizable (Gu et al.,
2021a), it can be represented as a normal plus low-rank (NPLR) matrix. The normal component,
referred to as HiPPO-N and denoted ANormal

LegS , can be diagonalized. Thus, the HiPPO-LegS can be
conjugated into a diagonal plus low-rank (DPLR) form, which S4 then utilizes to derive an efficient
form of the convolution kernel. This motivates S4’s DPLR parameterization.

Efficiently applying the S4 layer requires two separate implementations depending on context: a
recurrent mode and a convolution mode. For online generation, the SSM is iterated recurrently, much
like other RNNs. However, when the entire sequence is available and the observations are evenly
spaced, a more efficient convolution mode is used. This takes advantage of the ability to represent the
linear recurrence as a one-dimensional convolution between the inputs and a convolution kernel for
each of the SSMs. Fast Fourier transforms (FFTs) can then be applied to efficiently parallelize this

3

Published as a conference paper at ICLR 2023

xk = A(u1:k)xk�1 +B(u1:k)uk (4)

xk = A(�k)xk�1 +B(�k)uk (5)

u0
k
= f(yk) (6)

where the discrete-time parameters are each a function, specified by the discretization method, of the
continuous-time parameters. See Iserles (2009) for more information on discretization methods.

2.2 PARALLELIZING LINEAR STATE SPACE MODELS WITH SCANS

We use parallel scans to efficiently compute the states of a discretized linear SSM. Given a binary
associative operator • (i.e. (a • b) • c = a • (b • c)) and a sequence of L elements [a1, a2, ..., aL], the
scan operation (sometimes referred to as all-prefix-sum) returns the sequence

[a1, (a1 • a2), ..., (a1 • a2 • ... • aL)]. (7)

Computing a length L linear recurrence of a discretized SSM, xk = Axk�1 +Buk as in (3), is a
specific example of a scan operation. As discussed in Section 1.4 of Blelloch (1990), parallelizing
the linear recurrence of the latent transitions in the discretized SSM above can be computed in a
parallel time of O(T� logL), assuming L processors, where T� represents the cost of matrix-matrix
multiplication. For a general matrix A 2 RP⇥P , T� is O(P 3). This can be prohibitively expensive
in deep learning settings. However, if A is a diagonal matrix, the parallel time becomes O(P logL)
with L processors and only requires O(PL) space. Finally, we note that efficient parallel scans are
implemented in a work-efficient manner, thus the total computational cost of the parallel scan with a
diagonal matrix is O(PL) operations. See Appendix H for more information on parallel scans.

2.3 S4: STRUCTURED STATE SPACE SEQUENCE LAYERS

The S4 layer (Gu et al., 2021a) defines a nonlinear sequence-to-sequence transformation, mapping
from an input sequence u1:L 2 RL⇥H to an output sequence u0

1:L 2 RL⇥H . An S4 layer contains a
bank of H independent single-input, single-output (SISO) SSMs with N -dimensional states. Each
S4 SSM is applied to one dimension of the input sequence. This results in an independent linear
transformation from each input channel to each preactivation channel. A nonlinear activation function
is then applied to the preactivations. Finally, a position-wise linear mixing layer is applied to combine
the independent features and produce the output sequence u0

1:L. Figure 4a in the appendix illustrates
the view of the S4 layer as a bank of independent SSMs. Figure 2a shows an alternative view of S4
as one large SSM with state size HN and block-diagonal state, input and output matrices.

Each S4 SSM leverages the HiPPO framework for online function approximation (Gu et al., 2020a)
by initializing the state matrices with a HiPPO matrix (most often the HiPPO-LegS matrix). This was
demonstrated empirically to lead to strong performance (Gu et al., 2021b;a), and can be shown as
approximating long-range dependencies with respect to an infinitely long, exponentially-decaying
measure (Gu et al., 2023). While the HiPPO-LegS matrix is not stably diagonalizable (Gu et al.,
2021a), it can be represented as a normal plus low-rank (NPLR) matrix. The normal component,
referred to as HiPPO-N and denoted ANormal

LegS , can be diagonalized. Thus, the HiPPO-LegS can be
conjugated into a diagonal plus low-rank (DPLR) form, which S4 then utilizes to derive an efficient
form of the convolution kernel. This motivates S4’s DPLR parameterization.

Efficiently applying the S4 layer requires two separate implementations depending on context: a
recurrent mode and a convolution mode. For online generation, the SSM is iterated recurrently, much
like other RNNs. However, when the entire sequence is available and the observations are evenly
spaced, a more efficient convolution mode is used. This takes advantage of the ability to represent the
linear recurrence as a one-dimensional convolution between the inputs and a convolution kernel for
each of the SSMs. Fast Fourier transforms (FFTs) can then be applied to efficiently parallelize this

3

LTV example: Irregularly sampled time series

Published as a conference paper at ICLR 2023

Table 2: Test accuracy on 35-way Speech Commands classification task (Warden, 2018). We include
an expanded table, Table 8, with error bars in the appendix. Training examples are one-second 16kHz
audio waveforms. Last column indicates 0-shot testing at 8kHz (constructed by naive decimation).

As in Gu et al. (2022), the mean across three random seeds is reported. Performance for the baselines
InceptionNet through to S4D-Lin are reported from Gu et al. (2022).

Model Parameters 16kHz 8kHz
(Input length) (16,000) (8,000)

InceptionNet 481K 61.24 05.18
ResNet-1 216K 77.86 08.74
XResNet-50 904K 83.01 07.72
ConvNet 26.2M 95.51 07.26

S4-LegS 307K 96.08 91.32
S4D-LegS 306K 95.83 91.08
Liquid-S4 224K 96.78 90.00

S5 280K 96.52 94.53

Figure 3: Illustration of the pendulum regression example. Shown in the top row are the images
used as input at the time points indicated. Shown on the bottom are the values of sin(✓t) and cos(✓t),
where ✓t is the angle of the pendulum at time t, that are used as the regression targets.

the results of this experiment. S5 outperforms CRU on the regression task, recovering a lower mean
error. Furthermore, S5 is markedly faster than CRU on the same hardware.

6.4 PIXEL-LEVEL 1-D IMAGE CLASSIFICATION

Table 10 in Appendix F.4 shows results of S5 on other common benchmarks including sequential
MNIST, permuted sequential MNIST and sequential CIFAR (color). We see that S5 broadly matches
the performance of S4, and outperforms a range of state-of-the-art RNN-based methods.

7 CONCLUSION

We introduce the S5 layer for long-range sequence modeling. The S5 layer modifies the internal
structure of the S4 layer, and replaces the frequency-domain approach used by S4 with a purely
recurrent, time-domain approach leveraging parallel scans. S5 achieves high performance while
retaining the computational efficiency of S4. S5 also provides further opportunities. For instance,
unlike the convolutional S4 methods, the parallel scan unlocks the ability to efficiently and easily
process time-varying SSMs whose parameters can vary with time. Section 6.3 illustrated an example
of this for sequences sampled at variable sampling rates. The concurrently developed method,
Liquid-S4 (Hasani et al., 2023), uses an input-dependent bilinear dynamical system and highlights
further opportunities for time-varying SSMs. The more general MIMO SSM design will also enable
connections to be made with classical probabilistic state space modeling as well as more recent
work on parallelizing filtering and smoothing operations (Särkkä & García-Fernández, 2020). More

9

Published as a conference paper at ICLR 2023

F.3 PENDULUM EXTENDED RESULTS

We also evaluate two ablations: S5-drop uses the same S5 architecture, but drops the dependence
on the inter-sample interval, i.e. �t , 1.0. We expect this network to perform poorly as it has no
knowledge of how long has elapsed between observations. S5-append uses the same S5 architecture,
but appends the integration timestep to the thirty-dimensional image encoding, prior to being input
into the dense S5 input layer. Hypothetically, we expect this network to perform as well as S5.
However, to do so, requires the S5 network to learn to process time, which may be difficult, especially
in more complex domains. We include these ablations in the bottom partition of Table 11.

Note that the runtimes quoted for the baseline methods (runtimes marked with a *) are as reported by
Schirmer et al. (2022). These times are the total time for a training epoch, and hence include any
time spent batching data. We re-ran the CRU using the original PyTorch code on the same hardware
as we run our JAX S5 experiments on (labelled CRU (our run)). For these experiments we used a
single NVIDIA GeForce RTX 2080 Ti. For these runs (CRU (our run), S5, S5-drop and S5-append)
we exclude the time spent batching the data to more faithfully compare the runtimes for the models
themselves. Also note that our S5 experiments will benefit from JAX compilation, but that this is not
sufficient to explain the difference in runtime.

Table 10: Test MSE ⇥10�3 and runtimes on the pendulum regression task. Performance for the
baselines, mTAND through to CRU, are reported from Schirmer et al. (2022), with mean and standard
deviations across five random seeds (standard deviation in parenthesis). Accompanying citation
indicates the original citation for the method. We re-ran the CRU (labelled CRU (our run)) and ran
our S5 methods across twenty random seeds. We report mean and variances of the MSE error on
the held-out test set, using a model selected using the validation set MSE. We refer the reader to
Schirmer et al. (2022) for full description of the baselines.

Model Relative speed " Regression MSE (⇥10�3) #

mTAND 12x 65.64 (4.05)
RKN 1.9x 8.43 (0.61)
RKN-�t 1.9x 5.09 (0.40)
GRU 3.0x 9.44 (1.00)
GRU-�t 3.0x 5.44 (0.99)
Latent ODE 0.7x 15.70 (2.85)
ODE-RNN 1.0x 7.26 (0.41)
GRU-ODE-B 0.6x 9.78 (3.40)
f-CRU 1.2x 6.16 (0.88)
CRU 1.0x 4.63 (1.07)

CRU (our run) 1.0x 3.94 (0.21)
S5 86x 3.41 (0.27)

30

LTV example: Liquid S4

Hasani and Lechner et al. Liquid structural state-space models. 2022.

• Generally, LTV systems cannot be computed using convolutions.
• But Liquid-S4 work shows how this specific LTV form can be computed efficiently using

convolutions.
• Show strong results on benchmarks.

Agenda

"̇ = $" + &'
(=)" + *'

" = $̅" + ,&'
(= ̅)" + -*'

(= -. ∗ '
$ =

1 0 0
1 2 0
1 3 3

Continuous
State Space Fast Discrete Representations

Long-Range
Dependencies

"' (
!

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A,B,C,D map an input signal u(t) to
output y(t) through a latent state x(t). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
di↵erent representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that e�ciently swaps between these representations, allowing it to handle a wide range of
tasks, be e�cient at both training and inference, and excel at long sequences.

well when equipped with special state matrices A recently derived to solve a problem of continuous-time
memorization [16, 45]. Their Linear State Space Layer (LSSL) conceptually unifies the strengths of CTM,
RNN and CNN models, and provides a proof of concept that deep SSMs can address LRDs in principle.

Unfortunately, the LSSL is infeasible to use in practice because of prohibitive computation and memory
requirements induced by the state representation. For state dimension N and sequence length L, computing
the latent state requires O(N2L) operations and O(NL) space – compared to a ⌦(L+N) lower bound for
both. Thus for reasonably sized models (e.g. N = 256 in Gu et al. [18]), the LSSL uses orders of magnitude
more memory than comparably-sized RNNs or CNNs. Although theoretically e�cient algorithms for the
LSSL were proposed, we show that these are numerically unstable. In particular, the special A matrix is
highly non-normal in the linear algebraic sense, which prevents the application of conventional algorithmic
techniques. Consequently, although the LSSL showed that SSMs have strong performance, they are currently
computationally impractical as a general sequence modeling solution.

In this work, we introduce the Structured State Space (S4) sequence model based on the SSM that solves
the critical computational bottleneck in previous work. Technically, S4 reparameterizes the structured state
matrices A appearing in Gu et al. [16], Voelker et al. [45] by decomposing them as the sum of a low-rank
and normal term. Additionally, instead of expanding the standard SSM in coe�cient space, we compute its
truncated generating function in frequency space, which can be simplified into a multipole-like evaluation.
Combining these two ideas, we show that the low-rank term can be corrected by the Woodbury identity
while the normal term can be diagonalized stably, ultimately reducing to a well-studied and theoretically
stable Cauchy kernel [29, 30]. This results in Õ(N + L) computation and O(N + L) memory usage, which is
essentially tight for sequence models. Compared to the LSSL, S4 is up to 30⇥ faster with 400⇥ less memory
usage, while exceeding the LSSL’s performance empirically.

Empirically, S4 significantly advances the state-of-the-art for LRD. On the LRA benchmark for e�cient
sequence models, S4 is as fast as all baselines while outperforming them by 20+ points on average. S4 is the
first model to solve the di�cult LRA Path-X task (length-16384), achieving 88% accuracy compared to
50% random guessing for all prior work. On speech classification with length-16000 sequences, S4 halves
the test error (1.7%) of specialized Speech CNNs – by contrast, all RNN and Transformer baselines fail to
learn (� 70% error).

Towards a general-purpose sequence model. Beyond LRD, a broad goal of machine learning is to
develop a single model that can be used across a wide range of problems. Models today are typically

2

• Introduction, motivation, prior approaches

• Linear state space models (SSMs) overview

• S4, convolutions, parameterization

• S5, diagonalization, parallel scans

• S6/Mamba, data-dependent dynamics
• Conclusion

SSMs/RNNs vs Softmax Attention on Language
Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

SSMs/RNNs vs Softmax Attention on Language
Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

SSMs/RNNs vs Softmax Attention on Language
Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact
recall/retrieval/copying is extremely important for modeling language.

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

SSMs/RNNs vs Softmax Attention on Language
Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact
recall/retrieval/copying is extremely important for modeling language.

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

But exact, lossless recall is difficult for fixed state models such as SSMs/RNNs compared to Softmax Attention.

Vs.

SSMs/RNNs vs Softmax Attention on Language
Deep SSMs, such as S4 and S5, mostly using LTI systems, have proven effective in a variety of data
modalities such as speech, image, video, reinforcement learning etc.

But language has proven troublesome compared to Softmax Attention.

Several works, such as Zoology (Arora et al. 2023), suggests the ability to perform exact
recall/retrieval/copying is extremely important for modeling language.

Arora et al. Zoology: Measuring and Improving Recall in Efficient Language Models. 2023.

But exact, lossless recall is difficult for fixed state models such as SSMs/RNNs compared to Softmax Attention.

Vs.

Can we make better use of this fixed state with linear time-varying systems (LTV)?

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

S4 + S5 + Liquid S4 = S6:

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

S4 + S5 + Liquid S4 = S6:
• Keeps the stack of SISO SSMs as in S4

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

S4 + S5 + Liquid S4 = S6:
• Keeps the stack of SISO SSMs as in S4
• But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.

Linear time-varying systems: S6/Mamba

S4 + S5 + Liquid S4 = S6:
• Keeps the stack of SISO SSMs as in S4
• But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
• Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general.

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

S4 + S5 + Liquid S4 = S6:
• Keeps the stack of SISO SSMs as in S4
• But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
• Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general.

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Time varying dynamics allows for ignoring irrelevant inputs, or forgetting information that is no longer important to remember.

S4 + S5 + Liquid S4 = S6:
• Keeps the stack of SISO SSMs as in S4
• But uses a parallel scan like S5 (but with a clever hardware-aware algorithm) to allow LTV.
• Time-varying, data-dependent SSM parameters, similar to Liquid-S4, but more general.

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

K K

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

• Scans are limited by memory bandwidth
• This scan loads SSM params from slow HBM to
fast SRAM, performs the discretization and
recurrence in SRAM, and then writes outputs back
to HBM

K K

Linear time-varying systems: S6/Mamba

Gu and Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces 2023

Mamba block design:

Linear time-varying systems: S6/Mamba
Mamba paper results:
• For language, showed comparable performance to Attention on perplexity and standard academic benchmarks
• Also shows strong performance modeling DNA

Linear time-varying systems: S6/Mamba
Mamba paper results:
• For language, showed comparable performance to Attention on perplexity and standard academic benchmarks
• Also shows strong performance modeling DNA

Many Mamba for X papers quickly followed showing strong results in vision, diffusion etc., suggesting these LTV
systems can be very strong models.

Linear time-varying systems: S6/Mamba
Mamba paper results:
• For language, showed comparable performance to Attention on perplexity and standard academic benchmarks
• Also shows strong performance modeling DNA

Many Mamba for X papers quickly followed showing strong results in vision, diffusion etc., suggesting these LTV
systems can be very strong models.

But recall/copying problem in language seems to persist…:
• Repeat after me: Transformers are better than state space models at copying https://arxiv.org/abs/2402.01032
• Simple linear attention models balance recall-throughput tradeoff https://arxiv.org/abs/2402.18668
• Can Mamba learn how to learn? A comparative study on in-context learning tasks: https://arxiv.org/abs/2402.04248
• Griffin: Mixing Gated Linear Recurrences with Local Attention for Efficient Language Models https://arxiv.org/abs/

2402.19427

Vs.

https://arxiv.org/abs/2402.01032
https://arxiv.org/abs/2402.18668
https://arxiv.org/abs/2402.04248
https://arxiv.org/abs/2402.19427
https://arxiv.org/abs/2402.19427

Wrapping up
Deep SSMs show the promise of combining simple linear systems with deep learning techniques to create powerful and
efficient systems for a variety of data modalities.

Interesting questions/directions:
• Fixed state size vs memory capacity
• LTI vs LTV systems, or FFTs vs Scans?
• Which data modalities do these methods (or their variants) excel or struggle on?
• Hybrid (attention + SSM) methods
• Importing more ideas from control theory and dynamical systems
• Connecting with probabilistic state space models

Useful blogs/resources:
• https://srush.github.io/annotated-s4/
• https://srush.github.io/annotated-mamba/hard.html
• https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

https://srush.github.io/annotated-s4/
https://srush.github.io/annotated-mamba/hard.html
https://maartengrootendorst.substack.com/p/a-visual-guide-to-mamba-and-state

Thank you!
Email: jsmith14@stanford.edu
Feel free to reach out if you have questions or would like to discuss anything in more detail.

