
Denoising Diffusion Models
STATS305B: Applied Statistics II

Scott Linderman

March 5, 2025

1 / 35

Last Time...

Outline:

▶ Recurrent Neural Networks

▶ Backpropagation Through Time

▶ Vanishing Gradients and Gated RNNs

▶ Other Variations and Uses of RNNs

▶ Revisiting HMMs

▶ Linear RNNs and Parallel Inference

2 / 35

Today...

Outline:

▶ Denoising Diffusion Models

▶ Noising and Generative Processes

▶ Evidence Lower Bound

▶ Continuous Time Limit

3 / 35

Key Ideas
Diffusion models work by

1. Using a fixed, user-defined noising process to convert data into noise.

2. Learning to invert this process so that starting from noise, we can generate samples that
approximate the data distribution.

We can think of the DDPM as a giant latent variable model, where the latent variables are noisy
versions of the data.

As with VAEs, given the latent variables, learning the mapping from latents to observed data is a
supervised regression problem.

4 / 35

Noising process
Let x ≡ x0 ∈ R be our observed data (assume scalar for now).

The noising process is a joint distribution over a sequence of latent variables x0:T ,

q(x0:T) = q(x0)
T
∏

t=1

q(xt | xt−1).

where q(x0) =
1
n

∑n
i=1δx(i)0

(x0) is the empirical measure of the data.

At each step, the latents will become increasingly noisy versions of the original data, until at time T
the latent variable xT is essentially pure noise.

The generative model samples pure noise and attempts to invert the noising process to produce
samples that approximate q(x0).

5 / 35

Gaussian noising process
For continuous data, the standard noising process is a first-order Gaussian autoregressive (AR)
process,

q(xt | xt−1) = N(xt | λtxt−1,σ2t).

The hyperparameters {λt,σ2t }
T
t=1 and the number of steps T are fixed (not learned). We restrict λt < 1

so that the process contracts

6 / 35

Conditional Distributions
Since the noising process has linear Gaussian dynamics, we can compute conditional distributions in
closed form.

q(xt | x0) =
∫

q(xt | xt−1)q(xt−1 | x0)dxt−1

=

∫

N(xt | λtxt−1,σ2t)N(xt−1 | λt−1|0x0, σ2t−1|0)dxt−1

= N(xt | λtλt−1|0x0,λ2tσ
2
t−1|0+σ

2
t)

= N
�

xt | λt|0x0,σ2t|0
�

,

7 / 35

Conditional Distributions
where the parameters are defined recursively,

λt|0 = λtλt−1|0 =
t
∏

s=1

λs

σ2t|0 = λ
2
tσ

2
t−1|0+σ

2
t

with base case λ1|0 = λ1 and σ
2
1|0 = σ

2
1 .

8 / 35

Variance preserving diffusions
It is common to set,

σ2t = 1−λ2t ,

in which case the conditional variance simplifies to,

σ2t|0 = 1−
t
∏

s=1

λ2s = 1−λ2t|0.

Under this setting, the noising process preserves the variance of the marginal distributions.

If E[x0] = 0 and Var[x0] = 1, then the marginal distribution of xt will be zero mean and unit variance
as well.

9 / 35

Limiting Distribution
Consider the following two limits:

1. As T →∞, the conditional distribution goes to a standard normal, q(xT | x0)→ N(0,1), which
makes the marginal distribution q(xT) easy to sample from.

2. When λt → 1, the noising process adds infinitesimal noise so that xt ≈ xt−1, which makes the
inverse process easier to learn.

These two limits are in conflict with one another! If we add a small amount of noise at each time step,
the inverse process is easier to learn, but we need to take many time steps to converge to a Gaussian
stationary distribution.

10 / 35

Generative process
The generative process is a parameteric model that learns to invert the noise process,

p(x0:T ;θ) = p(xT)
0
∏

t=T−1
p(xt | xt+1;θ).

The initial distribution p(xT) has no parameters because it is set to the stationary distribution of the
noising process, q(x∞).

E.g., for the Gaussian noising process above, p(xT) = N(0,1).

11 / 35

Evidence Lower Bound
Like the other latent variable models we studied in this course, we will estimate the parameters by
maximizing an evidence lower bound (ELBO),

L (θ) = Eq(x0)Eq(x1:T | x0) [log p(x0:T ;θ)− log q(x1:T | x0)]

= Eq(x0)Eq(x1:T | x0) [log p(x0:T ;θ)] + c,

where q(x1:T | x0) is the conditional distibution of x1:T under the noising process.

Since q is fixed, the objective simplifies to maximizing the expected log likelihood.

We can simplify further by expanding the log probability of the generative model,

L (θ) = Eq(x0)
T−1
∑

t=0

Eq(xt ,xt+1 | x0)
�

log p(xt | xt+1;θ)
�

∝ Eq(x0)Et∼Unif(0,T−1)Eq(xt ,xt+1 | x0)
�

log p(xt | xt+1;θ)
�

which only depends on pairwise conditionals.
12 / 35

Gaussian generative process
Since the noising process above adds a small amount of Gaussian noise at each step, it is reasonable
to model the generative process as Gaussian as well,

p(xt | xt+1;θ) = N(xt | µθ (xt+1, t), eσ2t)

where

▶ µθ : R× [0,T] 7→ R is a nonlinear mean function that should denoise xt+1 to obtain the
expected value of xt

▶
eσ2t is a fixed variance for the generative process.

13 / 35

Parameter sharing
Rather than learn a separate function for each time point, it is common to parameterize the mean
function as a function of both the state xt+1 and the time t.

E.g., µθ (·, ·) can be a neural network that takes in the state and a positional embedding of the time t,
like the sinusoidal embeddings used in transformers.

14 / 35

Generative Process Variance
You could try to learn the generative process variance as a function of xt+1 and t as well, but the
literature suggests this is difficult to make work in practice.

Instead, is common to set the variance to either

▶
eσ2t = σ

2
t = 1−λ2t , the conditional variance in the noising process, which tends to overestimate

the conditional variance of the true generative process

▶
eσ2t = Varq[xt | x0, xt+1], the conditional variance of the noising process given the data x0 and the
next state xt+1. This tends to underestimate the conditional variance of the true generative
process.

15 / 35

Rao-Blackwellization
Under this Gaussian model for the generative process, we can analytically compute one of the
expectations in the ELBO. This is called Rao-Blackwellization. It reduces the variance of the objective,
which is good for SGD!

Using the chain rule and the Gaussian generative model,

Eq(xt ,xt+1 | x0)
�

log p(xt | xt+1;θ)
�

= Eq(xt+1 | x0)Eq(xt | xt+1,x0)
�

logN(xt | µθ (xt+1, t), eσ2t)
�

We already computed the conditional distribution q(xt+1 | x0) = N(xt+1 | λt+1|0x0,σ2t+1|0) above. It
turns out the second term is Gaussian as well!

16 / 35

Conditionals of a Gaussian noising process
Show that

q(xt | xt+1, x0) = N(xt | µt|t+1,0,σ2t|t+1,0)

where

µt|t+1,0 = atx0+ btxt+1

17 / 35

Conditionals of a Gaussian noising process
is a linear combination of x0 and xt+1 with weights,

at =
σ2t|t+1,0λt|0

σ2t|0

bt =
σ2t|t+1,0λt+1

σ2t+1

σ2t|t+1,0 =

�

1

σ2t|0
+
λ2t+1

σ2t+1

�−1

18 / 35

Derivation
By Bayes rule and the Markovian structure of the noising process,

q(xt | xt+1, x0)∝ q(xt | x0)q(xt+1 | xt)

= N(xt | λt|0x0,σ2t|0)N(xt+1 | λt+1xt,σ2t+1)

= N(xt | µt|t+1,0,σ2t|t+1,0)

where, by completing the square,

σ2t|t+1,0 =

�

1

σ2t|0
+
λ2t+1

σ2t+1

�−1

µt|t+1,0 = σ
2
t|t+1,0

�

λt|0x0
σ2t|0

+
λt+1xt+1
σ2t+1

�

.

The forms for at and bt can now be read off.

19 / 35

Gaussian cross-entropy
Finally, to simplify the objective we need the Gaussian cross-entropy,

Let q(x) = N(x | µq,σ2q) and p(x) = N(x | µp,σ2p).

Show that,

Eq(x)[log p(x)] = logN(µq | µp,σ2p)−
1
2

σ2q

σ2p

20 / 35

The Simplified ELBO
Putting it all together,

L (θ) = Eq(x0)EtEq(xt+1 | x0)Eq(xt |x0,xt+1)
�

log p(xt | xt+1;θ)
�

= Eq(x0)EtEq(xt+1 | x0)

�

logN(atx0+ btxt+1 | µθ (xt+1, t), eσ2t)−
1
2

σ2t|t+1,0

eσ2t

�

=
1
2
Eq(x0)EtEq(xt+1 | x0)

�

1

eσ2t

�

atx0+ btxt+1 −µθ (xt+1, t)
�2
�

+ c

where we have absorbed terms that are independent of θ into the constant c.

21 / 35

Denoising mean function
The loss function above suggests a particular form of the mean function,

µθ (xt+1, t) = at x̂0(xt+1, t;θ) + btxt+1,

where the only part that is learned is x̂0(xt+1, t;θ), a function that attempts to denoise the current
state.

Since xt+1 is given and at and bt are determined solely by the hyperparameters, we can use them in
the mean function.

Under this parameterization, the loss function reduces to,

L (θ) =
1
2
Eq(x0)EtEq(xt+1 | x0)

�

a2t
eσ2t

�

x0 − x̂0(xt+1, t;θ)
�2
�

+ c

One nice thing about this formulation is that the mean function is always outputting the same thing —
an estimate of the completely denoised data, x̂0, regardless of the time t.

22 / 35

Inverting the noising process
The generative process attempts to invert the noising process, but what is the actual inverse of the
process?

Since the noising process is a Markov chain, the reverse of the noising process must be Markovian as
well.

q(x0:T) = q(xT)
0
∏

t=T−1
q(xt | xt+1)

for some sequence of transition distributions q(xt | xt+1).

23 / 35

Inverting the noising process
We can obtain those transition distributions by marginalizing and conditioning,

q(xt | xt+1) =
∫

q(x0, xt | xt+1)dx0

=

∫

q(xt | x0, xt+1)q(x0 | xt+1)dx0.

Using Bayes’ rule,

q(x0 | xt+1) =
q(x0)q(xt+1 | x0)

∫

q(x′0)q(xt+1 | x
′
0)dx′0

24 / 35

Inverting the noising process
Now recall that q(x0) =

1
n

∑n
i=1δx(i)0

(x0) is the empirical measure of the data {x
(i)
0 }

n
i=1. Using this

fact, the conditional is,

q(x(i)0 | xt+1) =
q(xt+1 | x

(i)
0)

∑n
j=1 q(xt+1 | x

(j)
0)
≜ wi(xt+1),

where we have defined the weights wi(xt+1) for each data point i = 1, . . . ,n. They are non-negative
and sum to one.

Finally, we can give a simpler form for the optimal generative process,

q(xt | xt+1) =
n
∑

i=1

wi(xt+1)q(xt | x
(i)
0 , xt+1)

=
n
∑

i=1

wi(xt+1)N(xt | atx
(i)
0 + btxt+1,σ

2
t|t+1,0),

25 / 35

Inverting the noising process
which we recognize as a mixture of Gaussians, all with the same variance, with means biased toward
each of the n data points, and weighted by the relative likelihood of x(i)0 having produced xt+1.

For small step sizes, that mixture of Gaussians can be approximated by a single Gaussian with mean
equal to the expected value of the mixture,

E[xt | xt+1] =
n
∑

i=1

wi(xt+1)
�

atx
(i)
0 + btxt+1

�

For small steps, this expected value is approximately,

E[xt | xt+1]≈
xt+1
λt+1

+σ2t+1

n
∑

i=1

wi(xt+1)

λt|0x
(i)
0 − xt+1
σ2t|0

!

(See online notes for derivation.)

26 / 35

Inverting the noising process
Though it’s not immediately obvious, the second term in the expectation is related to the marginal
probability,

q(xt) =
1
n

n
∑

i=1

q(xt | x
(i)
0)

=
1
n

n
∑

i=1

N(xt | λt|0x
(i)
0 ,σ2t|0)

27 / 35

Inverting the noising process
Specifically, the second term is the Stein score function of the marginal probability,

∇x log qt(xt+1) =
∇xqt(xt+1)
qt(xt+1)

=

1
n

∑n
i=1N(xt+1 | λt|0x

(i)
0 ,σ2t|0)

�

− (xt+1−λt|0x
(i)
0)

σ2t|0

�

1
n

∑n
j=1N(xt+1 | λt|0x

(j)
0 ,σ2t|0)

=
n
∑

i=1

wi(xt+1)

λt|0x
(i)
0 − xt+1
σ2t|0

!

28 / 35

Final Form
Putting it all together, for small steps, the reverse process is approximately Gaussian with mean and
variance,

E[xt | xt+1]≈
xt+1
λt+1

+σ2t+1∇x log qt(xt+1)

Var[xt | xt+1]≈ σ2t+1.

This has a nice interpretation: to invert the noise process, first undo the contraction and then take a
step in the direction of the Stein score!

29 / 35

Continuous time limit
In practice, the best performing diffusion models are based on a continuous-time formulation of the
noising process as an SDE (Song et al., 2020).

To motivate this approach, think of the noise process above as a discretization of a continuous process
x(t) for t ∈ [0,1] with time steps of size ∆= 1

T .

That is, map xi 7→ x(i/T), λi 7→ λ(i/T), and σi 7→ σ(i/T) for i = 0,1, . . . ,T .

Then the discrete model is can be rewritten as,

x(t+∆)∼ N(λ(t)x(t),σ(t)2),

30 / 35

Continuous time limit
or equivalently,

x(t+∆)− x(t)∼ N
�

f (x(t), t)∆,g(t)2∆
�

f (x, t) =
1−λ(t)
∆

x

g(t) =
σ(t)

∆
.

We can view this as a discretization of the SDE,

dX = f (x, t)dt+ g(t)dW

where f (x, t) is the drift term, g(t) is the diffusion term, and dW is the Brownian motion.

The reverse (generative) process can be cast as an SDE as well!

31 / 35

Continuous time limit
Following our derivation of the inverse process above, we can show that the reverse process is,

dX =
�

f (x, t)− g(t)2∇x log qt(x)
�

dt+ g(t)dW

where dt is a negative time increment and dW is Brownian motion run in reverse time.

32 / 35

Multidimensional models
Very few things need to change in order to apply this idea to multidimensional data x0 ∈ RD.

The standard setup is to apply a Gaussian noising process to each coordinate x0,d independently.

Then, in the generative model,

p(xt | xt+1;θ) =
D
∏

d=1

p(xt,d | xt+1;θ)

=
D
∏

d=1

N(xt,d | µθ (xt+1, t,d), eσ2t).

The generative process still produces a factored distribution, but we need a separate mean function for
each coordinate.

33 / 35

Multidimensional models
Moreover, the mean function needs to consider the entire state xt+1. The reason is that xt,d is not
conditionally independent of xt+1,d′ given xt+1,d; the coordinates are coupled in the inverse process
since all of xt+1 provides information about the x0 that generated it.

34 / 35

Conclusion
There’s a lot we didn’t cover!

The Stein score function that appeared in the inverse of the noising process allows for connections
between denoising score matching {cite:p}song2019generative and denoising diffusion
models.

Another important topic is conditional generation. Suppose we want to take in text and spit out
images, like DALL-E 2 or Stable Diffusion. One way to do so is using a diffusion model, but to steer the
reverse diffusion based on the text prompt.

Finally, this class was nominally about models for discrete data, but this lecture has focused on
continuous diffusions. There has been recent work on discrete denoising diffusion models, which we’ll
have to cover another time!

35 / 35

