
Variational Autoencoders
STATS305B: Applied Statistics II

Scott Linderman

February 24, 2025

1 / 30

Last Time...

Outline:

▶ Principal Components Analysis (PCA)

▶ PCA as a linear Gaussian latent variable model

▶ Factor analysis

▶ Linear Dynamical Systems & the Kalman Filter/Smoother

2 / 30

Today...

Outline:

▶ (Probabilistic) PCA as a (stochastic) linear autoencoder

▶ Variational Autoencoders (VAEs)

▶ Review of Gradient-based Variational Inference

▶ Demo

3 / 30

PCA as a Linear Autoencoder
Last time we introduced PCA as a method for finding dimensions of maximal variance. However, we
can arrive at the same model from another perspective: find the linear projection that minimizes the
average projection cost.

To formalize this, let

W =





| |
w1 · · · wM
| |



 ∈ RD×M with W⊤W = I

be an orthogonal basis for the principal subspace.

We will encode each data point by subtracting the mean and projecting onto the principal subspace to
obtain zn =W⊤(xn − x̄).

4 / 30

PCA as a Linear Autoencoder
Since W is an orthogonal matrix, all we need to do to decode the encoded data point is multiply Wzn
and add back the mean. That gives us,

x̂n =Wzn+ x̄ =WW⊤(xn − x̄) + x̄.

Goal: Find an orthogonal matrix W that minimizes the mean squared reconstruction error,

L (W) =
1
N

N
∑

n=1

∥xn − x̂n∥22

5 / 30

PCA as a Linear Autoencoder
We can write this in matrix notation instead. Let X ∈ RN×D be the centered data matrix with rows
(xn − x̄)⊤. Then,

L (W) =
1
N

Tr[(X − X̂)⊤(X − X̂)]

=
1
N

Tr[(X − XWW⊤)⊤(X − XWW⊤)]

=
1
N

Tr[(X(I−WW⊤))⊤(X(I−WW⊤))]

=
1
N

Tr[(I−WW⊤)⊤X⊤X(I−WW⊤)]

= Tr[(I−WW⊤)⊤S(I−WW⊤)]

where S = 1
NX
⊤X is the sample covariance matrix.

6 / 30

PCA as a Linear Autoencoder
Now apply the circular trace property,

L (W) = Tr[S(I−WW⊤)(I−WW⊤)⊤]

Question: What does (I−WW⊤)(I−WW⊤)⊤ equal?

Note that I−WW⊤ is a projection matrix — it projects a vector onto the nullspace of W . Applying the
projection operator twice doesn’t change the result. Mathematically,

(I−WW⊤)(I−WW⊤)⊤ = I− 2WW⊤+WW⊤WW⊤ = I−WW⊤

where we used the fact that W⊤W = I since W is an orthogonal matrix.

Thus, the objective simplifies to,

L (W) = Tr[S(I−WW⊤)] = Tr[S]− Tr[SWW⊤] = const− Tr[W⊤SW].

7 / 30

PCA as a Linear Autoencoder
Let UΛU⊤ be the eigendecomposition of S. (Since it is a covariance matrix, the eigenvectors are
orthogonal.) Plugging in,

L (W) = const− Tr[W⊤UΛU⊤W]

= const− Tr

�

W⊤
�

D
∑

d=1

λdudu
⊤
d

�

W

�

= const−
M
∑

m=1

D
∑

d=1

λdw
⊤
mudu

⊤
d wm

= const−
M
∑

m=1

D
∑

d=1

λd(w
⊤
mud)

2

We want to minimizeL (W) subject to W being orthogonal. What is the solution? W = UM!

8 / 30

Probabilistic PCA as a Stochastic Linear Autoencoder
The jump from PCA to probabilistic PCA was to treat the scores, zn, as latent variables. We gave them a
Gaussian prior and assumed a generative model,

zn
iid∼ N(0, I)

xn | zn ∼ N(Wz+µ,σ2I),

where zn ∈ RM is a latent variable, W ∈ RD×M are the weights, µ ∈ RD is the bias parameter, and
σ2 ∈ R+ is a variance.

Given the parameters, we showed that the posterior distribution over latent variables is,

p(zn | xn;θ) = N(zn | (σ2I+W⊤W)−1W⊤(xn −µ), σ2(σ2I+W⊤W)−1),

and when σ2→ 0 and W are the PCs, this converges to a delta function on the PCA scores.

9 / 30

Probabilistic PCA as a Stochastic Linear Autoencoder
To simplify notation, let’s rewrite the posterior as,

p(zn | xn;θ) = N(zn | Exn+ d,G)

where

E = (σ2I+W⊤W)−1W⊤

d = −(σ2I+W⊤W)−1W⊤µ

G = σ2(σ2I+W⊤W)−1.

To “autoencode” the data using probabilistic PCA, we could sample zn ∼ p(zn | xn;θ) by mapping
xn 7→ Exn+ d and adding Gaussian noise with covariance G. Then we can generate a new data point
x̂n ∼ N(Wzn+µ,σ2I).

Just as PCA could be motivated as finding weights that minimize the reconstruction error, probabilistic
PCA can be seen as finding weights that minimize the expected reconstruction error (subject to a little
regularization).

10 / 30

Revisiting EM for Probabilistic PCA
Recall that we justified EM by connecting it to variational inference. We showed that EM maximizes
the evidence lower bound (ELBO),

L (q,θ) =
∑

n

Eq(zn) [log p(xn, zn;θ)− log q(zn)]

=
∑

n

Eq(zn) [log p(xn | zn;θ)]
︸ ︷︷ ︸

expected log likelihood

−DKL (q(zn) ∥ p(zn))
︸ ︷︷ ︸

KL to the prior

≤
∑

n

log p(xn;θ)

EM can be seen as coordinate ascent on the ELBO:

1. The E-step sets q to the posterior over latent variables, q(zn) = p(zn | xn;θ) for the current
parameters θ .

2. 2. The M-step updates the parameters to maximize the expected log joint probability.

11 / 30

Revisiting EM for Probabilistic PCA
In probabilistic PCA, maximizing the expected log likelihood is the same as minimizing the expected
reconstruction error. Plugging in the definition of the model and the posterior,

Eq(zn) [log p(xn | zn;θ)] = EN(zn | Exn+d,G)

�

logN(xn | Wzn+µ,σ2I)
�

= −
1
2σ2
EN(zn | Exn+d,G)

�

∥xn −Wzn −µ∥22
�

+ logσ+ c

where c is an additive constant, and E, d, G are functions of the parameters, as defined above,

We can’t forget about the KL to the prior though! When we maximize the ELBO, we are essentially
finding weights that minimize the expected reconstruction error, while also not deviating too far from
the standard normal prior on the latent variables.

12 / 30

Variational Autoencoders
Variational Autoencodres (VAEs) are “deep” but conceptually simple generative models. The generative
model is the same as probabilistic PCA, but allowing for nonlinear mappings between latent variables
and observations.

To sample a data point xn,

1. First, sample latent variables zn,

zn ∼ N(0, I)

2. Then sample the data point xn from a conditional distribution with mean,

E[xn | zn] = g(zn;θ),

where g : RH→ RD is a nonlinear mapping parameterized by θ .

13 / 30

Variational Autoencoders
We will assume g is a simple feedforward neural network of the form,

g(z;θ) = gL(gL−1(· · ·g1(z) · · ·))

where each layer is a cascade of a linear mapping followed by an element-wise nonlinearity (except
for the last layer, perhaps). For example,

gℓ(uℓ) = relu(Wℓuℓ+ bℓ); relu(a) = max(0,a).

The generative parameters consist of the weights and biases, θ = {Wℓ,bℓ}Lℓ=1.

14 / 30

Learning and Inference
We have two goals. The learning goal is to find the parameters that maximize the marginal likelihood
of the data,

θ ⋆ = argmax
θ
p(X;θ)

= argmax
θ

N
∏

n=1

∫

p(xn | zn;θ)p(zn;θ)dzn

The inference goal is to find the posterior distribution of latent variables,

p(zn | xn;θ) =
p(xn | zn;θ)p(zn;θ)
∫

p(xn | z′n;θ)p(z′n;θ)dz′n

Both goals require an integral over zn, but that is intractable for deep generative models.

15 / 30

The Evidence Lower Bound (ELBO)
Idea: Use the ELBO to get a bound on the marginal probability and maximize that instead.

log p(X;θ) =
N
∑

n=1

log p(xn;θ)

≥
N
∑

n=1

log p(xn;θ)− DKL (q(zn;λn) ∥ p(zn | xn;θ))

=
N
∑

n=1

Eq(zn) [log p(xn, zn;θ)− log q(zn;λn)]
︸ ︷︷ ︸

"local ELBO"

≜
N
∑

n=1

Ln(λn,θ) =L (λ,θ)

where λ= {λn}Nn=1. Here, I’ve written the ELBO as a sum of local ELBOsLn.

16 / 30

Variational Inference
The ELBO is still maximized (and the bound is tight) when each q is equal to the true posterior,

q(zn;λn) = p(zn | xn,θ).

Unfortunately, the posterior no longer has a simple, closed form.

Question: Suppose xn ∼ N(g(zn;θ), I). This deep generative model has a Gaussian prior on zn and a
Gaussian likelihood for xn given zn. Why isn’t the posterior Gaussian?

Nevertheless, we can still constrain q to belong to a simple family. For example, we could constrain it
to be Gaussian and seek the best Gaussian approximation to the posterior. This is sometimes called
fixed-form variational inference. Let,

Q =
�

q : q(z;λ) = N
�

z | µ, diag(σ2)
�

for λ= (µ, logσ2) ∈ R2H
	

17 / 30

Variational Inference
Then, for fixed parameters θ , the best q in this variational family is,

q⋆ = argmin
q∈Q

DKL (q(zn;λn) ∥ p(zn | xn;θ))

= arg max
λn∈R2H

Ln(λn,θ).

18 / 30

Variational Expectation-Maximization (vEM)
Now we can introduce a new algorithm.

Algorithm" Variational EM (vEM) Repeat until either the ELBO or the parameters converges:

1. M-step: Set θ ← argmaxθ L (λ,θ)

2. E-step: Set λn← argmaxλn∈ΛLn(λn,θ) for n= 1, . . . ,N

3. Compute (an estimate of) the ELBOL (λ,θ).

In general, none of these steps will have closed form solutions, so we’ll have to use
approximations.

19 / 30

Generic M-step with Stochastic Gradient Ascent
For exponential family mixture models, the M-step had a closed form solution. For deep generative
models, we need a more general approach.

If the parameters are unconstrained and the ELBO is differentiable wrt θ , we can use stochastic
gradient ascent.

θ ← θ +α∇θL (q,θ)

= θ +α
N
∑

n=1

Eq(zn;λn) [∇θ log p(xn, zn;θ)]

Note that the expected gradient wrt θ can be computed using ordinary Monte Carlo — nothing fancy
needed!

20 / 30

The Variational E-step
AssumeQ is the family of Gaussian distributions with diagonal covariance:

Q =
�

q : q(z;λ) = N
�

z | µ, diag(σ2)
�

for λ= (µ, logσ2) ∈ R2H
	

This family is indexed by variational parameters λn = (µn, logσ
2
n) ∈ R

2H .

To perform SGD, we need an unbiased estimate of the gradient of the local ELBO, but

∇λnLn(λn,θ) =∇λnEq(zn;λn) [log p(xn, zn;θ)− log q(zn;λn)]

̸= Eq(zn;λn)
�

∇λn (log p(xn, zn;θ)− log q(zn;λn))
�

.

21 / 30

Reparameterization Trick
One way around this problem is to use the reparameterization trick, aka the pathwise gradient
estimator. Note that,

zn ∼ q(zn;λn) ⇐⇒ zn = r(λn,ε), ε∼ N(0, I)

where r(λn,ε) = µn+σnε is a reparameterization of zn in terms of parameters λn and noise ε.

We can use the law of the unconscious statistician to rewrite the expectations as,

Eq(zn;λn) [h(xn, zn,θ ,λn)] = Eε∼N(0,I) [h(xn, r(λn,ε),θ ,λn)]

where

h(xn, zn,θ ,λn) = log p(xn, zn;θ)− log q(zn;λn).

22 / 30

Reparameterization Trick
The distribution that the expectation is taken under no longer depends on the parameters λn, so we
can simply take the gradient inside the expectation,

∇λEq(zn;λn) [h(xn, zn,θ ,λn)] = Eε∼N(0,I)

�

∇λnh(xn, r(λn,ε),θ ,λn)
�

Now we can use Monte Carlo to obtain an unbiased estimate of the final expectation!

23 / 30

Working with mini-batches of data
We can view the ELBO as an expectation over data indices,

L (λ,θ) =
N
∑

n=1

Ln(λn,θ)

= NEn∼Unif([N])[Ln(λn,θ)].

We can use Monte Carlo to approximate the expectation (and its gradient) by drawing mini-batches of
data points at random.

In practice, we often cycle through mini-batches of data points deterministically. Each pass over the
whole dataset is called an epoch.

24 / 30

Algorithm
Now we can add some detail to our variational expectation maximization algorithm.

For epoch i = 1, . . . ,∞:

For n= 1, . . . ,N:

1. Sample ε(m)n
iid∼ N(0, I) for m= 1, . . . ,M.

2. M-Step:

2.1 Estimate

∇̂θLn(λn,θ) =
1
M

M
∑

m=1

�

∇θ log p(xn, r(λn,ε
(m)
n);θ)
�

2.2 Set θ ← θ +αiN∇̂θLn(λn,θ)

3. E-step:

25 / 30

Algorithm
3.1 Estimate

∇̂λLn(λn,θ) =
1
M

M
∑

m=1

∇λ
�

log p(xn, r(λn,ε
(m)
n);θ)− log q(r(λn,ε

(m)
n),λn)
�

3.2 Set λn← λn+αi∇̂λLn(λn,θ).

4. Estimate the ELBO

L̂ (λ,θ) =
N
M

M
∑

m=1

log p(xn, r(λn,ε
(m)
n);θ)− log q(r(λn,ε

(m)
n);λn)

5. Decay step size αi according to schedule.

26 / 30

Amortized Inference
Note that vEM involves optimizing separate variational parameters λn for each data point. For large
datasets where we are optimizing using mini-batches of data points, this leads to a strange asymmetry:
we update the generative model parameters θ every mini-batch, but we only update the variational
parameters for the n-th data point once per epoch. Is there any way to share information across data
points?

Note that the optimal variational parameters are just a function of the data point and the model
parameters,

λ⋆n = argmin
λn
DKL (q(zn;λn) ∥ p(zn | xn,θ))≜ f ⋆(xn,θ).

for some implicit and generally nonlinear function f ⋆.

VAEs learn an approximation to f ⋆(xn,θ) with an inference network, a.k.a. recognition network or
encoder.

27 / 30

Amortized Inference
The inference network is (yet another) neural network that takes in a data point xn and outputs
variational parameters λn,

λn ≈ f (xn,φ),

where φ are the weights of the network.

The advantage is that the inference network shares information across data points — it amortizes the
cost of inference, hence the name. The disadvantage is the output will not minimize the KL divergence.
However, in practice we might tolerate a worse variational posterior and a weaker lower bound if it
leads to faster optimization of the ELBO overall.

28 / 30

Putting it all together
Logically, I find it helpful to distinguish between the E and M steps, but with recognition networks and
stochastic gradient ascent, the line is blurred.

The final algorithm looks like this.

Variational EM (with amortized inference)

Repeat until either the ELBO or the parameters converges:

1. Sample data point n∼ Unif(1, . . . ,N). [Or a minibatch of data points.]

2. Estimate the local ELBOLn(φ,θ) with Monte Carlo. [Note: it is a function of φ instead of λn.]

3. Compute unbiased Monte Carlo estimates of the gradients Ò∇θLn(φ,θ) and Ò∇φLn(φ,θ). [The
latter requires the reparameterization trick.]

29 / 30

Putting it all together
4. Set

θ ← θ +αiÒ∇θLn(φ,θ)

φ← φ+αiÒ∇φLn(φ,θ)

with step size αi decreasing over iterations i according to a valid schedule.

30 / 30

